organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-5-(cyclo­hex-1-en-1-yl)-3-(4-methyl­phenyl­sulfon­yl)-1-phenyl­imidazolidin-4-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 6 July 2011; accepted 13 July 2011; online 23 July 2011)

In the title compound, C28H27ClN2O3S, the central imidazolidine ring adopts an envelope conformation with the C atom bearing the chloro­phenyl ring at the flap. The geometry around the S atom is distorted tetra­hedral. Three methyl­ene groups of the cyclo­hexene ring are disordered over two sets of sites [site occupancies = 0.562 (10) and 0.438 (10)]. The crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.]); Chohan & Shad (2008[Chohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369-379.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Wang et al. (1995[Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181-1184.]). For a related structure, see: Ranjith et al. (2011[Ranjith, S., SubbiahPandi, A., Namitharan, K. & Pitchumani, K. (2011). Acta Cryst. E67, o843.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For ring asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27ClN2O3S

  • Mr = 507.03

  • Monoclinic, P 21 /n

  • a = 10.9974 (3) Å

  • b = 13.4095 (4) Å

  • c = 17.4434 (5) Å

  • β = 105.103 (2)°

  • V = 2483.52 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.950

  • 32488 measured reflections

  • 7366 independent reflections

  • 4844 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.01

  • 7366 reflections

  • 346 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg4i 0.96 2.91 3.490 (3) 120
C11—H11⋯Cg2i 0.93 2.86 3.612 (2) 139
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides have widely been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides have also been used clinically as antimalarial agents (Zareef et al., 2007), particularly sulfadiazine and sulfadoxine. Due to their significant pharmacology applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based (Chohan et al., 2008) drug chemistry. Sulfonamide derivatives are well known drugs and are used to control diseases caused by bacterial infections. Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003) and antibacterial activities (Nieto et al., 2005). Imidazolidine compounds are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around the S atom is distorted tetrahedral, comprising two O atoms of the sulfonyl group, a C atom of a phenyl ring and the imidazolidine N atom. The S–O, S–C, and S–N distances are 1.416 (2), 1.747 (2) and 1.677 (2) Å, respectively, these are comparable as observed in similar structures (Ranjith et al., 2011). The atom Cl1 is deviated by 0.136 (1)Å from the leastsquares plane of the rings C9–C14. The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations for the O–S–O [O1–S1–O2 121.2 (9)°] and O–S–N angles [O1–S1–N1 106.4 (7)°]. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Ranjith et al., 2011).

The imidazolidine ring adopts envelope conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli et al., 1983) as follows: q2=0.1230 (17) Å, ϕ=211.7 (8)°, Δs(C8)=1.50 (17) and the cyclohexane ring adopts half-chair conformation, in addition to with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli et al., 1983) as follows: q2=0.399 (7) Å, ϕ=127.2 (8)°, Δs(C24)= 18.4 (7). In the crystal, the molecules form layers that are linked by π···π stacking interactions between the imidazolidine and benzene [C9—C14] rings [centroid–centroid distances = 3.7406 (9) Å].

Related literature top

For the biological activity of sulfonamides, see: Zareef et al. (2007); Chohan & Shad (2008); Pomarnacka & Kozlarska-Kedra (2003); Nieto et al. (2005); Wang et al. (1995). For a related structure, see: Ranjith et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For ring asymmetry parameters, see: Nardelli et al. (1983).

Experimental top

4-Toluenesulfonyl azide (1.3 mmol), 1-ethynyl cyclohexene (1.2 mmol), 4-chlorophenyl N-phenylnitrone (1.0 mmol) and triethylamine (2 mmol) were successively added to Cu1—Y zeolite (30 mg) in dichloromethane under N2 atmosphere. After stirring at room temperature for the 6 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation, the resulting crude product was finally purified by column chromatography (silica gel). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

Three methylene groups of the cyclohexane ring are disordered over two positions (C25/C25', C26/C26' and C27/C27') with refined occupancies of 0.562 (10) and 0.438 (10). The corresponding bond distances involving the disordered atoms were restrained to be equal. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The disordered atoms are omitted for clarity.
2-(4-Chlorophenyl)-5-(cyclohex-1-en-1-yl)-3-(4-methylphenylsulfonyl)-1- phenylimidazolidin-4-one top
Crystal data top
C28H27ClN2O3SF(000) = 1064
Mr = 507.03Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7366 reflections
a = 10.9974 (3) Åθ = 2.0–30.4°
b = 13.4095 (4) ŵ = 0.27 mm1
c = 17.4434 (5) ÅT = 293 K
β = 105.103 (2)°Block, white crystalline
V = 2483.52 (12) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
7366 independent reflections
Radiation source: fine-focus sealed tube4844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.934, Tmax = 0.950k = 1817
32488 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.6285P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7366 reflectionsΔρmax = 0.30 e Å3
346 parametersΔρmin = 0.33 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (5)
Crystal data top
C28H27ClN2O3SV = 2483.52 (12) Å3
Mr = 507.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9974 (3) ŵ = 0.27 mm1
b = 13.4095 (4) ÅT = 293 K
c = 17.4434 (5) Å0.25 × 0.22 × 0.19 mm
β = 105.103 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
7366 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4844 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.950Rint = 0.034
32488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
7366 reflectionsΔρmin = 0.33 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3220 (3)0.3780 (3)0.10334 (16)0.0984 (11)
H1A0.24310.34320.11390.148*
H1B0.38960.33060.09590.148*
H1C0.32290.42060.14740.148*
C20.3385 (2)0.4401 (2)0.02909 (13)0.0630 (6)
C30.3809 (2)0.39928 (18)0.04443 (15)0.0657 (6)
H30.40180.33190.04880.079*
C40.3938 (2)0.45477 (15)0.11277 (12)0.0534 (5)
H40.42170.42500.16240.064*
C50.36483 (15)0.55480 (14)0.10642 (10)0.0399 (4)
C60.32259 (19)0.59833 (18)0.03261 (11)0.0551 (5)
H60.30300.66590.02790.066*
C70.3098 (2)0.5397 (2)0.03421 (12)0.0683 (7)
H70.28090.56870.08410.082*
C80.15703 (15)0.68904 (13)0.20985 (9)0.0357 (3)
H80.19240.75450.22840.043*
C90.08827 (14)0.69380 (12)0.12235 (9)0.0335 (3)
C100.01018 (16)0.61671 (13)0.08682 (10)0.0393 (4)
H100.00620.56450.11780.047*
C110.04370 (16)0.61627 (14)0.00593 (10)0.0428 (4)
H110.09690.56460.01760.051*
C120.01773 (16)0.69310 (14)0.03927 (9)0.0420 (4)
C130.05538 (18)0.77282 (14)0.00504 (10)0.0467 (4)
H130.06960.82570.03610.056*
C140.10737 (17)0.77306 (13)0.07623 (10)0.0412 (4)
H140.15570.82710.10010.049*
C150.02845 (16)0.69953 (14)0.26500 (9)0.0392 (4)
C160.05654 (17)0.79523 (14)0.23440 (10)0.0450 (4)
H160.00100.82800.21090.054*
C170.1665 (2)0.84149 (17)0.23890 (12)0.0558 (5)
H170.18390.90570.21880.067*
C180.2509 (2)0.79421 (19)0.27261 (12)0.0606 (6)
H180.32550.82550.27440.073*
C190.22360 (19)0.70099 (19)0.30332 (12)0.0585 (5)
H190.27990.66910.32670.070*
C200.11374 (18)0.65312 (16)0.30031 (11)0.0498 (4)
H200.09650.58970.32190.060*
C210.11459 (17)0.55093 (13)0.29037 (9)0.0407 (4)
H210.04690.50470.26520.049*
C220.23143 (17)0.52896 (14)0.26277 (9)0.0416 (4)
C230.14710 (17)0.53918 (13)0.37990 (9)0.0401 (4)
N10.25822 (13)0.61314 (11)0.22405 (8)0.0383 (3)
N20.08217 (14)0.65180 (11)0.26115 (8)0.0416 (3)
O10.48872 (12)0.58412 (12)0.25198 (8)0.0570 (4)
O20.38986 (13)0.72903 (10)0.17229 (9)0.0552 (3)
O30.29106 (14)0.45255 (10)0.27358 (8)0.0552 (3)
S10.38901 (4)0.62668 (4)0.19262 (2)0.04154 (13)
Cl10.07606 (6)0.68766 (5)0.14158 (3)0.06699 (18)
C240.1128 (2)0.45825 (15)0.41165 (11)0.0495 (4)
H240.05840.41230.38030.059*
C280.2297 (2)0.61722 (17)0.42755 (11)0.0626 (6)
H28A0.19810.68230.40740.075*
H28B0.31370.61020.42020.075*
C250.1632 (15)0.4414 (10)0.4994 (2)0.062 (3)0.562 (10)
H25A0.18890.37230.50810.074*0.562 (10)
H25B0.09560.45250.52470.074*0.562 (10)
C260.2734 (7)0.5069 (4)0.5394 (3)0.070 (2)0.562 (10)
H26A0.29210.49920.59660.083*0.562 (10)
H26B0.34750.48810.52250.083*0.562 (10)
C270.2384 (8)0.6130 (3)0.5167 (2)0.0693 (18)0.562 (10)
H27A0.30230.65850.54600.083*0.562 (10)
H27B0.15820.63000.52680.083*0.562 (10)
C25'0.1412 (18)0.4256 (11)0.4969 (3)0.052 (2)0.438 (10)
H25C0.19310.36610.50500.062*0.438 (10)
H25D0.06370.41090.51130.062*0.438 (10)
C26'0.2104 (10)0.5104 (8)0.5469 (5)0.075 (3)0.438 (10)
H26C0.14880.55400.56050.090*0.438 (10)
H26D0.26210.48290.59610.090*0.438 (10)
C27'0.2928 (6)0.5719 (8)0.5090 (3)0.092 (4)0.438 (10)
H27C0.36230.53060.50350.111*0.438 (10)
H27D0.32810.62590.54500.111*0.438 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0785 (18)0.152 (3)0.0741 (17)0.0432 (18)0.0375 (14)0.0598 (18)
C20.0472 (11)0.0952 (18)0.0520 (12)0.0222 (12)0.0228 (9)0.0241 (12)
C30.0725 (15)0.0610 (13)0.0723 (15)0.0144 (11)0.0345 (12)0.0184 (11)
C40.0604 (12)0.0556 (12)0.0468 (10)0.0013 (10)0.0186 (9)0.0022 (9)
C50.0349 (8)0.0528 (10)0.0340 (8)0.0017 (7)0.0124 (6)0.0003 (7)
C60.0549 (11)0.0706 (14)0.0416 (10)0.0078 (10)0.0159 (8)0.0099 (9)
C70.0568 (12)0.117 (2)0.0324 (9)0.0009 (13)0.0133 (9)0.0025 (11)
C80.0349 (8)0.0439 (9)0.0279 (7)0.0005 (7)0.0077 (6)0.0007 (6)
C90.0319 (7)0.0399 (9)0.0290 (7)0.0002 (6)0.0082 (6)0.0011 (6)
C100.0420 (9)0.0409 (9)0.0345 (8)0.0053 (7)0.0091 (7)0.0022 (7)
C110.0399 (9)0.0457 (10)0.0391 (9)0.0019 (7)0.0037 (7)0.0053 (7)
C120.0423 (9)0.0531 (10)0.0276 (7)0.0079 (8)0.0039 (6)0.0011 (7)
C130.0529 (10)0.0473 (10)0.0382 (9)0.0002 (8)0.0085 (8)0.0112 (7)
C140.0435 (9)0.0398 (9)0.0382 (8)0.0059 (7)0.0068 (7)0.0023 (7)
C150.0369 (8)0.0552 (10)0.0246 (7)0.0012 (7)0.0062 (6)0.0038 (7)
C160.0458 (10)0.0537 (11)0.0356 (8)0.0012 (8)0.0108 (7)0.0030 (7)
C170.0557 (12)0.0637 (13)0.0466 (10)0.0147 (10)0.0110 (9)0.0020 (9)
C180.0450 (11)0.0851 (16)0.0516 (11)0.0149 (11)0.0121 (9)0.0055 (11)
C190.0423 (10)0.0897 (17)0.0468 (10)0.0004 (10)0.0174 (8)0.0024 (10)
C200.0451 (10)0.0666 (12)0.0390 (9)0.0030 (9)0.0134 (8)0.0060 (8)
C210.0455 (9)0.0469 (10)0.0306 (8)0.0008 (8)0.0114 (7)0.0013 (7)
C220.0468 (10)0.0495 (10)0.0284 (7)0.0019 (8)0.0095 (7)0.0012 (7)
C230.0478 (9)0.0443 (9)0.0297 (7)0.0018 (8)0.0128 (7)0.0017 (7)
N10.0366 (7)0.0478 (8)0.0314 (6)0.0043 (6)0.0103 (5)0.0039 (6)
N20.0430 (8)0.0506 (8)0.0350 (7)0.0067 (7)0.0169 (6)0.0086 (6)
O10.0382 (7)0.0846 (10)0.0426 (7)0.0081 (7)0.0006 (5)0.0051 (7)
O20.0499 (8)0.0530 (8)0.0662 (9)0.0085 (6)0.0217 (7)0.0033 (7)
O30.0656 (9)0.0516 (8)0.0523 (8)0.0137 (7)0.0225 (7)0.0076 (6)
S10.0334 (2)0.0542 (3)0.0366 (2)0.00127 (18)0.00827 (16)0.00333 (18)
Cl10.0809 (4)0.0804 (4)0.0305 (2)0.0147 (3)0.0021 (2)0.0009 (2)
C240.0613 (11)0.0503 (11)0.0409 (9)0.0044 (9)0.0207 (8)0.0039 (8)
C280.0794 (15)0.0635 (14)0.0400 (10)0.0123 (11)0.0065 (10)0.0029 (9)
C250.093 (8)0.054 (4)0.045 (3)0.002 (3)0.030 (3)0.012 (3)
C260.094 (5)0.076 (3)0.033 (2)0.006 (4)0.006 (3)0.004 (2)
C270.106 (5)0.064 (3)0.037 (2)0.004 (3)0.016 (2)0.0115 (18)
C25'0.064 (5)0.052 (5)0.044 (4)0.006 (3)0.024 (3)0.021 (3)
C26'0.099 (7)0.090 (5)0.042 (3)0.016 (5)0.029 (4)0.010 (3)
C27'0.101 (6)0.137 (10)0.036 (3)0.068 (6)0.013 (3)0.004 (4)
Geometric parameters (Å, º) top
C1—C21.511 (3)C18—H180.9300
C1—H1A0.9600C19—C201.381 (3)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—H200.9300
C2—C31.360 (3)C21—N21.457 (2)
C2—C71.370 (4)C21—C221.514 (2)
C3—C41.381 (3)C21—C231.517 (2)
C3—H30.9300C21—H210.9800
C4—C51.376 (3)C22—O31.204 (2)
C4—H40.9300C22—N11.386 (2)
C5—C61.379 (2)C23—C241.317 (3)
C5—S11.7471 (17)C23—C281.489 (3)
C6—C71.382 (3)N1—S11.6774 (14)
C6—H60.9300O1—S11.4173 (13)
C7—H70.9300O2—S11.4181 (15)
C8—N21.453 (2)C24—C251.502 (3)
C8—N11.480 (2)C24—C25'1.502 (3)
C8—C91.518 (2)C24—H240.9300
C8—H80.9800C28—C271.534 (3)
C9—C141.382 (2)C28—C27'1.535 (4)
C9—C101.383 (2)C28—H28A0.9700
C10—C111.381 (2)C28—H28B0.9700
C10—H100.9300C25—C261.511 (6)
C11—C121.372 (3)C25—H25A0.9700
C11—H110.9300C25—H25B0.9700
C12—C131.377 (3)C26—C271.501 (5)
C12—Cl11.7335 (16)C26—H26A0.9700
C13—C141.384 (2)C26—H26B0.9700
C13—H130.9300C27—H27A0.9700
C14—H140.9300C27—H27B0.9700
C15—N21.392 (2)C25'—C26'1.511 (6)
C15—C161.393 (3)C25'—H25C0.9700
C15—C201.395 (3)C25'—H25D0.9700
C16—C171.380 (3)C26'—C27'1.501 (5)
C16—H160.9300C26'—H26C0.9700
C17—C181.375 (3)C26'—H26D0.9700
C17—H170.9300C27'—H27C0.9700
C18—C191.362 (3)C27'—H27D0.9700
C2—C1—H1A109.5C22—C21—H21110.1
C2—C1—H1B109.5C23—C21—H21110.1
H1A—C1—H1B109.5O3—C22—N1126.36 (16)
C2—C1—H1C109.5O3—C22—C21126.04 (16)
H1A—C1—H1C109.5N1—C22—C21107.59 (15)
H1B—C1—H1C109.5C24—C23—C28122.96 (16)
C3—C2—C7118.08 (19)C24—C23—C21120.13 (17)
C3—C2—C1121.4 (3)C28—C23—C21116.58 (15)
C7—C2—C1120.5 (2)C22—N1—C8113.30 (13)
C2—C3—C4122.0 (2)C22—N1—S1123.83 (12)
C2—C3—H3119.0C8—N1—S1122.82 (11)
C4—C3—H3119.0C15—N2—C8120.95 (14)
C5—C4—C3119.1 (2)C15—N2—C21123.20 (14)
C5—C4—H4120.5C8—N2—C21114.10 (13)
C3—C4—H4120.5O1—S1—O2121.21 (9)
C4—C5—C6120.15 (18)O1—S1—N1106.48 (8)
C4—C5—S1119.22 (14)O2—S1—N1104.40 (8)
C6—C5—S1120.56 (15)O1—S1—C5108.78 (9)
C5—C6—C7118.8 (2)O2—S1—C5109.16 (9)
C5—C6—H6120.6N1—S1—C5105.69 (7)
C7—C6—H6120.6C23—C24—C25118.8 (4)
C2—C7—C6121.9 (2)C23—C24—C25'130.3 (4)
C2—C7—H7119.1C23—C24—H24120.6
C6—C7—H7119.1C25—C24—H24120.6
N2—C8—N1100.51 (12)C25'—C24—H24108.9
N2—C8—C9114.83 (13)C23—C28—C27114.1 (3)
N1—C8—C9110.67 (13)C23—C28—C27'107.5 (4)
N2—C8—H8110.2C23—C28—H28A108.7
N1—C8—H8110.2C27—C28—H28A108.7
C9—C8—H8110.2C27'—C28—H28A136.3
C14—C9—C10119.00 (14)C23—C28—H28B108.7
C14—C9—C8120.42 (14)C27—C28—H28B108.7
C10—C9—C8120.51 (14)C27'—C28—H28B82.4
C11—C10—C9120.81 (16)H28A—C28—H28B107.6
C11—C10—H10119.6C24—C25—C26115.0 (5)
C9—C10—H10119.6C24—C25—H25A108.5
C12—C11—C10119.08 (16)C26—C25—H25A108.5
C12—C11—H11120.5C24—C25—H25B108.5
C10—C11—H11120.5C26—C25—H25B108.5
C11—C12—C13121.28 (15)H25A—C25—H25B107.5
C11—C12—Cl1118.91 (14)C27—C26—C25108.0 (8)
C13—C12—Cl1119.79 (14)C27—C26—H26A110.1
C12—C13—C14119.01 (16)C25—C26—H26A110.1
C12—C13—H13120.5C27—C26—H26B110.1
C14—C13—H13120.5C25—C26—H26B110.1
C9—C14—C13120.66 (16)H26A—C26—H26B108.4
C9—C14—H14119.7C26—C27—C28104.3 (3)
C13—C14—H14119.7C26—C27—H27A110.9
N2—C15—C16120.96 (16)C28—C27—H27A110.9
N2—C15—C20120.84 (17)C26—C27—H27B110.9
C16—C15—C20118.19 (17)C28—C27—H27B110.9
C17—C16—C15120.16 (18)H27A—C27—H27B108.9
C17—C16—H16119.9C24—C25'—C26'107.2 (6)
C15—C16—H16119.9C24—C25'—H25C110.3
C18—C17—C16121.0 (2)C26'—C25'—H25C110.3
C18—C17—H17119.5C24—C25'—H25D110.3
C16—C17—H17119.5C26'—C25'—H25D110.3
C19—C18—C17119.2 (2)H25C—C25'—H25D108.5
C19—C18—H18120.4C27'—C26'—C25'115.5 (9)
C17—C18—H18120.4C27'—C26'—H26C108.4
C18—C19—C20121.1 (2)C25'—C26'—H26C108.4
C18—C19—H19119.5C27'—C26'—H26D108.4
C20—C19—H19119.5C25'—C26'—H26D108.4
C19—C20—C15120.3 (2)H26C—C26'—H26D107.5
C19—C20—H20119.8C26'—C27'—C28116.5 (6)
C15—C20—H20119.8C26'—C27'—H27C108.2
N2—C21—C22102.71 (13)C28—C27'—H27C108.2
N2—C21—C23115.29 (14)C26'—C27'—H27D108.2
C22—C21—C23108.38 (14)C28—C27'—H27D108.2
N2—C21—H21110.1H27C—C27'—H27D107.3
C7—C2—C3—C40.8 (3)N2—C8—N1—S1169.07 (11)
C1—C2—C3—C4178.6 (2)C9—C8—N1—S169.17 (16)
C2—C3—C4—C51.0 (3)C16—C15—N2—C814.4 (2)
C3—C4—C5—C60.5 (3)C20—C15—N2—C8166.21 (16)
C3—C4—C5—S1176.61 (16)C16—C15—N2—C21178.39 (15)
C4—C5—C6—C70.2 (3)C20—C15—N2—C212.2 (2)
S1—C5—C6—C7177.24 (16)N1—C8—N2—C15177.89 (14)
C3—C2—C7—C60.1 (3)C9—C8—N2—C1559.1 (2)
C1—C2—C7—C6179.3 (2)N1—C8—N2—C2112.53 (17)
C5—C6—C7—C20.4 (3)C9—C8—N2—C21106.25 (16)
N2—C8—C9—C14140.82 (16)C22—C21—N2—C15172.55 (14)
N1—C8—C9—C14106.26 (18)C23—C21—N2—C1569.8 (2)
N2—C8—C9—C1042.2 (2)C22—C21—N2—C87.56 (18)
N1—C8—C9—C1070.73 (19)C23—C21—N2—C8125.21 (15)
C14—C9—C10—C112.9 (3)C22—N1—S1—O138.92 (15)
C8—C9—C10—C11174.14 (16)C8—N1—S1—O1143.77 (13)
C9—C10—C11—C120.7 (3)C22—N1—S1—O2168.25 (14)
C10—C11—C12—C133.4 (3)C8—N1—S1—O214.44 (14)
C10—C11—C12—Cl1175.27 (14)C22—N1—S1—C576.66 (15)
C11—C12—C13—C142.5 (3)C8—N1—S1—C5100.65 (13)
Cl1—C12—C13—C14176.16 (15)C4—C5—S1—O128.34 (18)
C10—C9—C14—C133.8 (3)C6—C5—S1—O1148.76 (15)
C8—C9—C14—C13173.23 (16)C4—C5—S1—O2162.56 (15)
C12—C13—C14—C91.1 (3)C6—C5—S1—O214.54 (17)
N2—C15—C16—C17179.85 (16)C4—C5—S1—N185.66 (16)
C20—C15—C16—C170.4 (2)C6—C5—S1—N197.24 (16)
C15—C16—C17—C180.7 (3)C28—C23—C24—C252.5 (9)
C16—C17—C18—C191.3 (3)C21—C23—C24—C25170.6 (9)
C17—C18—C19—C200.7 (3)C28—C23—C24—C25'1.8 (12)
C18—C19—C20—C150.4 (3)C21—C23—C24—C25'174.9 (12)
N2—C15—C20—C19179.59 (17)C24—C23—C28—C2717.9 (4)
C16—C15—C20—C191.0 (3)C21—C23—C28—C27168.7 (3)
N2—C21—C22—O3179.64 (17)C24—C23—C28—C27'15.9 (5)
C23—C21—C22—O357.9 (2)C21—C23—C28—C27'157.5 (4)
N2—C21—C22—N11.29 (17)C23—C24—C25—C2614.2 (17)
C23—C21—C22—N1121.16 (15)C25'—C24—C25—C26178 (9)
N2—C21—C23—C24143.30 (18)C24—C25—C26—C2750.9 (15)
C22—C21—C23—C24102.3 (2)C25—C26—C27—C2867.4 (9)
N2—C21—C23—C2843.1 (2)C23—C28—C27—C2652.2 (7)
C22—C21—C23—C2871.3 (2)C27'—C28—C27—C2632.6 (5)
O3—C22—N1—C8171.37 (16)C23—C24—C25'—C26'6 (2)
C21—C22—N1—C89.56 (18)C25—C24—C25'—C26'24 (7)
O3—C22—N1—S16.2 (3)C24—C25'—C26'—C27'32.2 (19)
C21—C22—N1—S1172.90 (11)C25'—C26'—C27'—C2854.7 (17)
N2—C8—N1—C2213.37 (17)C23—C28—C27'—C26'42.8 (12)
C9—C8—N1—C22108.40 (15)C27—C28—C27'—C26'64.7 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg4i0.962.913.490 (3)120
C11—H11···Cg2i0.932.863.612 (2)139
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H27ClN2O3S
Mr507.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.9974 (3), 13.4095 (4), 17.4434 (5)
β (°) 105.103 (2)
V3)2483.52 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
32488, 7366, 4844
Rint0.034
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.01
No. of reflections7366
No. of parameters346
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg4i0.962.913.490 (3)120
C11—H11···Cg2i0.932.863.612 (2)139
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369–379.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationRanjith, S., SubbiahPandi, A., Namitharan, K. & Pitchumani, K. (2011). Acta Cryst. E67, o843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181–1184.  CrossRef CAS Web of Science Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds