organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,6,11-trioxo-2,3-di­hydro-1H-anthra[1,2-d]imidazole-1,3-di­acetate

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: afrassou@yahoo.fr

(Received 11 July 2011; accepted 13 July 2011; online 23 July 2011)

The title compound, C23H20N2O7, consists of three fused six-membered rings (A, B and C) and one five-membered ring (D), linked to two ethyl acetate groups. The four fused rings are slightly folded around the O=C⋯C=O direction of the anthraquinone system, with a dihedral angle of 3.07 (8)° between the fused five- and six-membered rings (C and D) and the terminal ring (A). The planes through the atoms forming each acetate group are nearly perpendicular to the mean plane of the anthra[1,2-d]imidazole system, as indicated by the dihedral angles between them of 79.94 (9) and 85.90 (9)°. The crystal packing displays non-classical C—H⋯O hydrogen bonds.

Related literature

For the biological activity of anthraquinone derivatives, see: Afrakssou et al. (2011[Afrakssou, Z., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1730.]); Guimarães et al. (2009[Guimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.]); Zoń et al. (2003[Zoń, A., Pałys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579-585.]). For their applications as colourants, see: Mori et al. (1990[Mori, H., Yoshimi, N., Iwata, H., Mori, Y., Hara, A., Tanaka, T. & Kawai, K. (1990). Carcinogenesis, 11, 799-802.]); Kowalczyk et al. (2010[Kowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedziałkowski, P., Ossowski, T. & Stojek, Z. (2010). Electroanalysis, 22, 49-59.]); Ossowski et al. (2005[Ossowski, T., Zarzeczan' ska, D., Zalewski, L., Niedziałkowski, P., Majewski, R. & Szyman' ska, A. (2005). Tetrahedron Lett. 46, 1735-1738.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N2O7

  • Mr = 436.41

  • Monoclinic, P 21 /c

  • a = 17.462 (1) Å

  • b = 13.0646 (9) Å

  • c = 9.1411 (6) Å

  • β = 103.915 (3)°

  • V = 2024.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.49 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.602, Tmax = 0.746

  • 32055 measured reflections

  • 5006 independent reflections

  • 3339 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.01

  • 5006 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.49 3.353 (2) 151
C12—H12⋯O6ii 0.95 2.56 3.380 (2) 145
C16—H16A⋯O6ii 0.99 2.47 3.369 (3) 151
C16—H16B⋯O4ii 0.99 2.22 3.120 (2) 151
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Anthraquinones, the largest group of naturally occurring quinones, present in bacteria, fungi and many higher plant families contain π-electrons, reducible p-quinone system and are redoxactive (Zoń et al., 2003). That is the reason why they found many practical applications (Kowalczyk et al., 2010; Ossowski et al., 2005). Both natural and synthetic derivatives have been used as colourants in food, cosmetics, textiles and hair dyes (Mori et al., 1990).

The present work is a continuation of the preparation of new derivatives of anthra [1,2-d]imidazole-2,6,11–trione for biological application (Afrakssou et al., 2011; Guimarães et al., 2009). The reactivity of ethyl acetate bromide towards 1H-anthra [2, 1 - d] imidazole-2, 6, 11(3H)-trione under phase-transfer catalysis conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leads to the formation of the title compound with good yields about 90% (Scheme 1).

The molecule of the title compound consists of three fused six-membered rings (A,B,C) and one five-membered ring (D) linked to two ethyl acetate groups as shown in Fig.1. The fused five and six-membered rings (C,D) are essentially planar with the largest deviation from the mean plane being -0.0185 (16) Å and built a dihedral angle of 3.07 (8) ° with (A) ring. The planes through the atoms forming each acetate group are nearly perpendicular to the mean plane of the anthra[1,2-d]imidazole system, as indicated by the dihedral angles between them of 79.94 (9) and 85.90 (9) °. The crystal packing displays intermolecular C—H···O no classic hydrogen bonding (Table 1).

Related literature top

For the biological activity of anthraquinone derivative, see: Afrakssou et al. (2011); Guimarães et al. (2009); Zoń et al. (2003). For their applications as colourants, see: Mori et al. (1990); Kowalczyk et al. (2010); Ossowski et al. (2005).

Experimental top

To a solution of 1H-anthra [2,1-d]imidazole-2,6,11(3H)-trione (0.4 g, 1.51 mmol), potassium carbonate (1.56 g, 4.54 mmol) and tetra n-butyl ammonium bromide (0.62 g, 1.51 mmol) in DMF (20 ml) was added ethyl acetate bromide (0.41 ml, 3.78 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. The crystals of the title compound were obtained by dissolving 50 mg of product in 5 ml of ethanol at about 363 K, followed by a slow evaporation of the solvent. The melting point of the isolated orange crystals is about 443 K.

Refinement top

All H atoms were located in a difference map and treated as riding with C—H = 0.95 Å for all aromatic H atoms, 0.99 Å for methylene and 0.98Å for methyl with Uiso(H) = 1.2 Ueq aromatic and methylene and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular plot of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
Diethyl 2,6,11-trioxo-2,3-dihydro-1H-anthra[1,2-d]imidazole-1,3-diacetate top
Crystal data top
C23H20N2O7F(000) = 912
Mr = 436.41Dx = 1.432 Mg m3
Monoclinic, P21/cMelting point: 443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.462 (1) ÅCell parameters from 5953 reflections
b = 13.0646 (9) Åθ = 2.8–28.2°
c = 9.1411 (6) ŵ = 0.11 mm1
β = 103.915 (3)°T = 100 K
V = 2024.2 (2) Å3Needle, orange
Z = 40.49 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
5006 independent reflections
Radiation source: fine-focus sealed tube3339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2317
Tmin = 0.602, Tmax = 0.746k = 1717
32055 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.7872P]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C23H20N2O7V = 2024.2 (2) Å3
Mr = 436.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.462 (1) ŵ = 0.11 mm1
b = 13.0646 (9) ÅT = 100 K
c = 9.1411 (6) Å0.49 × 0.11 × 0.09 mm
β = 103.915 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5006 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3339 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.746Rint = 0.057
32055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.57 e Å3
5006 reflectionsΔρmin = 0.32 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03454 (11)0.81216 (15)0.1634 (2)0.0212 (4)
C20.01666 (12)0.88216 (16)0.0739 (2)0.0251 (4)
H20.01200.95310.09700.030*
C30.07428 (12)0.84794 (18)0.0487 (2)0.0291 (5)
H30.10890.89560.10990.035*
C40.08148 (12)0.74399 (17)0.0823 (2)0.0300 (5)
H40.12040.72110.16740.036*
C50.03235 (11)0.67372 (16)0.0073 (2)0.0251 (4)
H50.03780.60270.01530.030*
C60.02552 (11)0.70791 (15)0.1315 (2)0.0213 (4)
C70.07787 (11)0.63253 (15)0.2280 (2)0.0211 (4)
C80.13726 (11)0.67067 (15)0.3619 (2)0.0195 (4)
C90.14819 (11)0.77711 (14)0.3921 (2)0.0180 (4)
C100.09975 (11)0.85232 (15)0.2866 (2)0.0207 (4)
C110.18249 (11)0.59666 (14)0.4533 (2)0.0208 (4)
H110.17290.52630.42960.025*
C120.24099 (11)0.62368 (15)0.5779 (2)0.0213 (4)
H120.27220.57330.63990.026*
C130.25240 (11)0.72640 (15)0.6087 (2)0.0196 (4)
C140.20748 (11)0.80493 (14)0.5205 (2)0.0184 (4)
C150.29890 (11)0.87703 (15)0.7166 (2)0.0219 (4)
C160.36449 (12)0.71882 (15)0.8400 (2)0.0229 (4)
H16A0.33820.66350.88360.028*
H16B0.38800.76700.92210.028*
C170.42943 (11)0.67314 (16)0.7757 (2)0.0229 (4)
C180.51981 (13)0.53472 (18)0.8019 (3)0.0358 (5)
H18A0.55720.49930.88510.043*
H18B0.55060.57890.74910.043*
C190.47416 (16)0.4572 (2)0.6938 (4)0.0512 (7)
H19A0.44390.41350.74650.077*
H19B0.51090.41490.65390.077*
H19C0.43800.49260.61050.077*
C200.21415 (12)1.00388 (15)0.5665 (2)0.0238 (4)
H20A0.22251.03900.66510.029*
H20B0.15731.00810.51630.029*
C210.26099 (12)1.05796 (16)0.4711 (2)0.0250 (4)
C220.29699 (17)1.22304 (19)0.4012 (3)0.0454 (6)
H22A0.27591.21320.29150.054*
H22B0.35361.20460.42720.054*
C230.2867 (2)1.3309 (2)0.4429 (3)0.0564 (8)
H23A0.23041.34760.41990.085*
H23B0.31351.37610.38550.085*
H23C0.30961.34030.55100.085*
N10.30651 (9)0.77227 (12)0.72586 (17)0.0199 (3)
N20.23663 (9)0.89680 (12)0.59127 (18)0.0203 (3)
O10.07231 (9)0.54083 (10)0.19817 (16)0.0272 (3)
O20.11351 (9)0.94387 (11)0.29568 (17)0.0309 (4)
O30.33699 (8)0.94101 (11)0.80032 (15)0.0260 (3)
O40.44572 (9)0.70173 (12)0.66182 (16)0.0325 (4)
O50.46530 (9)0.59785 (12)0.86323 (17)0.0336 (4)
O60.29952 (9)1.01755 (12)0.39486 (17)0.0320 (4)
O70.25385 (10)1.15896 (12)0.48532 (19)0.0374 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0234 (9)0.0248 (10)0.0172 (9)0.0005 (8)0.0085 (7)0.0014 (7)
C20.0291 (10)0.0255 (10)0.0215 (10)0.0010 (8)0.0077 (8)0.0019 (8)
C30.0274 (10)0.0357 (12)0.0234 (10)0.0036 (9)0.0044 (8)0.0035 (9)
C40.0267 (10)0.0387 (13)0.0230 (10)0.0040 (9)0.0030 (8)0.0016 (9)
C50.0251 (10)0.0264 (11)0.0252 (10)0.0045 (8)0.0087 (8)0.0055 (8)
C60.0210 (9)0.0261 (10)0.0194 (9)0.0022 (8)0.0097 (7)0.0007 (7)
C70.0241 (9)0.0228 (10)0.0193 (9)0.0035 (8)0.0111 (8)0.0016 (7)
C80.0228 (9)0.0199 (10)0.0184 (9)0.0014 (7)0.0099 (7)0.0012 (7)
C90.0203 (9)0.0190 (9)0.0167 (9)0.0016 (7)0.0084 (7)0.0005 (7)
C100.0239 (9)0.0214 (10)0.0181 (9)0.0005 (8)0.0080 (7)0.0001 (7)
C110.0278 (10)0.0149 (9)0.0216 (9)0.0014 (8)0.0097 (8)0.0012 (7)
C120.0260 (10)0.0210 (10)0.0187 (9)0.0026 (8)0.0088 (8)0.0033 (7)
C130.0207 (9)0.0228 (10)0.0170 (9)0.0007 (7)0.0078 (7)0.0008 (7)
C140.0212 (9)0.0168 (9)0.0198 (9)0.0007 (7)0.0099 (7)0.0004 (7)
C150.0229 (9)0.0243 (10)0.0207 (9)0.0008 (8)0.0096 (8)0.0001 (8)
C160.0269 (10)0.0257 (10)0.0161 (9)0.0015 (8)0.0050 (8)0.0018 (8)
C170.0216 (9)0.0281 (11)0.0178 (9)0.0002 (8)0.0023 (7)0.0024 (8)
C180.0273 (11)0.0401 (14)0.0414 (13)0.0138 (10)0.0107 (10)0.0111 (10)
C190.0367 (14)0.0409 (16)0.078 (2)0.0058 (11)0.0164 (14)0.0043 (14)
C200.0282 (10)0.0188 (10)0.0249 (10)0.0003 (8)0.0077 (8)0.0028 (8)
C210.0260 (10)0.0241 (10)0.0249 (10)0.0004 (8)0.0063 (8)0.0003 (8)
C220.0604 (16)0.0309 (13)0.0533 (16)0.0024 (12)0.0305 (13)0.0111 (11)
C230.082 (2)0.0395 (16)0.0500 (17)0.0095 (15)0.0199 (15)0.0078 (13)
N10.0225 (8)0.0196 (8)0.0174 (8)0.0010 (6)0.0047 (6)0.0013 (6)
N20.0234 (8)0.0179 (8)0.0202 (8)0.0005 (6)0.0062 (6)0.0014 (6)
O10.0325 (8)0.0224 (8)0.0270 (7)0.0027 (6)0.0078 (6)0.0044 (6)
O20.0374 (8)0.0211 (8)0.0301 (8)0.0007 (6)0.0000 (6)0.0032 (6)
O30.0281 (7)0.0247 (8)0.0253 (7)0.0037 (6)0.0067 (6)0.0054 (6)
O40.0330 (8)0.0458 (10)0.0213 (7)0.0098 (7)0.0116 (6)0.0105 (6)
O50.0315 (8)0.0438 (10)0.0276 (8)0.0139 (7)0.0114 (6)0.0144 (7)
O60.0389 (9)0.0311 (8)0.0304 (8)0.0011 (7)0.0167 (7)0.0025 (6)
O70.0519 (10)0.0224 (8)0.0454 (10)0.0007 (7)0.0261 (8)0.0036 (7)
Geometric parameters (Å, º) top
C1—C61.394 (3)C15—N21.401 (2)
C1—C21.397 (3)C16—N11.447 (2)
C1—C101.492 (3)C16—C171.519 (3)
C2—C31.388 (3)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.391 (3)C17—O41.203 (2)
C3—H30.9500C17—O51.326 (2)
C4—C51.383 (3)C18—O51.469 (3)
C4—H40.9500C18—C191.503 (4)
C5—C61.399 (3)C18—H18A0.9900
C5—H50.9500C18—H18B0.9900
C6—C71.482 (3)C19—H19A0.9800
C7—O11.227 (2)C19—H19B0.9800
C7—C81.487 (3)C19—H19C0.9800
C8—C111.393 (3)C20—N21.456 (2)
C8—C91.422 (3)C20—C211.508 (3)
C9—C141.413 (3)C20—H20A0.9900
C9—C101.489 (3)C20—H20B0.9900
C10—O21.219 (2)C21—O61.201 (2)
C11—C121.380 (3)C21—O71.335 (3)
C11—H110.9500C22—O71.462 (3)
C12—C131.376 (3)C22—C231.482 (4)
C12—H120.9500C22—H22A0.9900
C13—N11.383 (2)C22—H22B0.9900
C13—C141.419 (3)C23—H23A0.9800
C14—N21.400 (2)C23—H23B0.9800
C15—O31.217 (2)C23—H23C0.9800
C15—N11.376 (2)
C6—C1—C2119.54 (18)N1—C16—H16B109.3
C6—C1—C10121.94 (17)C17—C16—H16B109.3
C2—C1—C10118.47 (18)H16A—C16—H16B108.0
C3—C2—C1119.95 (19)O4—C17—O5125.21 (19)
C3—C2—H2120.0O4—C17—C16124.53 (18)
C1—C2—H2120.0O5—C17—C16110.26 (16)
C2—C3—C4120.1 (2)O5—C18—C19109.85 (19)
C2—C3—H3119.9O5—C18—H18A109.7
C4—C3—H3119.9C19—C18—H18A109.7
C5—C4—C3120.47 (19)O5—C18—H18B109.7
C5—C4—H4119.8C19—C18—H18B109.7
C3—C4—H4119.8H18A—C18—H18B108.2
C4—C5—C6119.52 (19)C18—C19—H19A109.5
C4—C5—H5120.2C18—C19—H19B109.5
C6—C5—H5120.2H19A—C19—H19B109.5
C1—C6—C5120.32 (18)C18—C19—H19C109.5
C1—C6—C7120.17 (17)H19A—C19—H19C109.5
C5—C6—C7119.51 (18)H19B—C19—H19C109.5
O1—C7—C6120.79 (17)N2—C20—C21112.12 (16)
O1—C7—C8120.81 (18)N2—C20—H20A109.2
C6—C7—C8118.40 (17)C21—C20—H20A109.2
C11—C8—C9122.16 (17)N2—C20—H20B109.2
C11—C8—C7116.35 (17)C21—C20—H20B109.2
C9—C8—C7121.47 (17)H20A—C20—H20B107.9
C14—C9—C8116.75 (16)O6—C21—O7124.74 (19)
C14—C9—C10123.82 (17)O6—C21—C20125.98 (19)
C8—C9—C10119.39 (16)O7—C21—C20109.28 (16)
O2—C10—C9122.11 (17)O7—C22—C23107.4 (2)
O2—C10—C1119.91 (17)O7—C22—H22A110.2
C9—C10—C1117.94 (16)C23—C22—H22A110.2
C12—C11—C8121.18 (18)O7—C22—H22B110.2
C12—C11—H11119.4C23—C22—H22B110.2
C8—C11—H11119.4H22A—C22—H22B108.5
C13—C12—C11117.42 (17)C22—C23—H23A109.5
C13—C12—H12121.3C22—C23—H23B109.5
C11—C12—H12121.3H23A—C23—H23B109.5
C12—C13—N1128.30 (17)C22—C23—H23C109.5
C12—C13—C14123.76 (17)H23A—C23—H23C109.5
N1—C13—C14107.94 (16)H23B—C23—H23C109.5
N2—C14—C9135.76 (17)C15—N1—C13110.22 (15)
N2—C14—C13105.53 (16)C15—N1—C16124.39 (16)
C9—C14—C13118.71 (17)C13—N1—C16125.37 (16)
O3—C15—N1127.91 (18)C14—N2—C15110.13 (15)
O3—C15—N2125.93 (18)C14—N2—C20134.24 (16)
N1—C15—N2106.15 (16)C15—N2—C20115.56 (16)
N1—C16—C17111.62 (15)C17—O5—C18116.20 (16)
N1—C16—H16A109.3C21—O7—C22116.27 (17)
C17—C16—H16A109.3
C6—C1—C2—C32.2 (3)C10—C9—C14—N23.2 (3)
C10—C1—C2—C3175.18 (18)C8—C9—C14—C130.8 (2)
C1—C2—C3—C40.4 (3)C10—C9—C14—C13177.01 (17)
C2—C3—C4—C51.1 (3)C12—C13—C14—N2178.95 (17)
C3—C4—C5—C60.7 (3)N1—C13—C14—N20.7 (2)
C2—C1—C6—C52.5 (3)C12—C13—C14—C90.9 (3)
C10—C1—C6—C5174.73 (17)N1—C13—C14—C9179.43 (16)
C2—C1—C6—C7178.23 (17)N1—C16—C17—O421.5 (3)
C10—C1—C6—C74.5 (3)N1—C16—C17—O5158.68 (16)
C4—C5—C6—C11.1 (3)N2—C20—C21—O615.8 (3)
C4—C5—C6—C7179.67 (18)N2—C20—C21—O7163.51 (17)
C1—C6—C7—O1177.49 (17)O3—C15—N1—C13179.68 (19)
C5—C6—C7—O11.8 (3)N2—C15—N1—C131.4 (2)
C1—C6—C7—C82.6 (3)O3—C15—N1—C161.2 (3)
C5—C6—C7—C8178.19 (17)N2—C15—N1—C16179.85 (16)
O1—C7—C8—C113.0 (3)C12—C13—N1—C15179.94 (18)
C6—C7—C8—C11176.95 (16)C14—C13—N1—C150.4 (2)
O1—C7—C8—C9175.54 (17)C12—C13—N1—C161.5 (3)
C6—C7—C8—C94.5 (3)C14—C13—N1—C16178.88 (16)
C11—C8—C9—C140.1 (3)C17—C16—N1—C15107.4 (2)
C7—C8—C9—C14178.58 (16)C17—C16—N1—C1370.9 (2)
C11—C8—C9—C10177.81 (17)C9—C14—N2—C15178.6 (2)
C7—C8—C9—C100.6 (3)C13—C14—N2—C151.6 (2)
C14—C9—C10—O27.6 (3)C9—C14—N2—C204.7 (4)
C8—C9—C10—O2170.20 (18)C13—C14—N2—C20175.14 (19)
C14—C9—C10—C1174.76 (16)O3—C15—N2—C14179.19 (18)
C8—C9—C10—C17.5 (3)N1—C15—N2—C141.8 (2)
C6—C1—C10—O2168.12 (18)O3—C15—N2—C203.4 (3)
C2—C1—C10—O29.2 (3)N1—C15—N2—C20175.55 (15)
C6—C1—C10—C99.6 (3)C21—C20—N2—C1495.1 (2)
C2—C1—C10—C9173.13 (17)C21—C20—N2—C1588.3 (2)
C9—C8—C11—C120.6 (3)O4—C17—O5—C1810.5 (3)
C7—C8—C11—C12177.95 (17)C16—C17—O5—C18169.61 (17)
C8—C11—C12—C130.5 (3)C19—C18—O5—C1780.1 (2)
C11—C12—C13—N1179.80 (18)O6—C21—O7—C220.2 (3)
C11—C12—C13—C140.2 (3)C20—C21—O7—C22179.08 (19)
C8—C9—C14—N2178.98 (19)C23—C22—O7—C21175.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.493.353 (2)151
C12—H12···O6ii0.952.563.380 (2)145
C16—H16A···O6ii0.992.473.369 (3)151
C16—H16B···O4ii0.992.223.120 (2)151
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H20N2O7
Mr436.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.462 (1), 13.0646 (9), 9.1411 (6)
β (°) 103.915 (3)
V3)2024.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.602, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
32055, 5006, 3339
Rint0.057
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.01
No. of reflections5006
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.493.353 (2)151.3
C12—H12···O6ii0.952.563.380 (2)145.1
C16—H16A···O6ii0.992.473.369 (3)151.0
C16—H16B···O4ii0.992.223.120 (2)150.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.
 

References

First citationAfrakssou, Z., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuimarães, T. T., Da Silva Júnior, E. N., Carvalho, C. E. M., De Simone, C. A. & Pinto, A. V. (2009). Acta Cryst. E65, o1063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedziałkowski, P., Ossowski, T. & Stojek, Z. (2010). Electroanalysis, 22, 49–59.  CrossRef CAS Google Scholar
First citationMori, H., Yoshimi, N., Iwata, H., Mori, Y., Hara, A., Tanaka, T. & Kawai, K. (1990). Carcinogenesis, 11, 799–802.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOssowski, T., Zarzeczan' ska, D., Zalewski, L., Niedziałkowski, P., Majewski, R. & Szyman' ska, A. (2005). Tetrahedron Lett. 46, 1735–1738.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoń, A., Pałys, M., Stojek, Z., Sulowska, H. & Ossowski, T. (2003). Electroanalysis, 15, 579–585.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds