organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4,6-Tri­chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 July 2011; accepted 20 July 2011; online 30 July 2011)

In the crystal structure of the title compound, C10H6Cl3NO3, the conformation of the amide bond is trans. The C=O and O—H bonds of the acid group are in the relatively rare anti position to each other. This is a consequence of the intra­molecular O—H⋯O hydrogen bond donated to the amide carbonyl group stabilizing the mol­ecular structure. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the c axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]); Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]), and on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491-500.]). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Cl3NO3

  • Mr = 294.51

  • Monoclinic, C 2/c

  • a = 21.928 (3) Å

  • b = 8.2678 (8) Å

  • c = 13.248 (2) Å

  • β = 99.08 (1)°

  • V = 2371.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.44 × 0.44 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.729, Tmax = 0.749

  • 4862 measured reflections

  • 2436 independent reflections

  • 2000 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.08

  • 2436 reflections

  • 161 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.04 (2) 2.884 (2) 175 (2)
O3—H3O⋯O1 0.82 (2) 1.69 (2) 2.498 (2) 168 (3)
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Bhat & Gowda, 2000; Gowda et al., 2000, 2009; Prasad et al., 2002) and N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), the crystal structure of N-(2,4,6-trimethylphenyl)-maleamic acid (I) has been determined. The conformation of the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). The rare anti conformation of the C=O and O–H bonds of the acid group has been observed, similar to that obsrved in N-(2,4,6-trimethylphenyl)-maleamic acid (Gowda et al., 2009) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O–H bonds. The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

The maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The C8–C9 bond length of 1.331 (3)Å clearly indicates the double bond character. The dihedral angle between the phenyl ring and the amido group –NHCO– is 83.2 (2)°. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into column like chains along b-axis (Fig. 2).

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Bhat & Gowda (2000); Gowda et al. (2000, 2009); Lo & Ng (2009); Prasad et al. (2002), and on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,4,6-trichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trichloroaniline. The resultant solid N-(2,4,6-trichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH group and the OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,4,6-Trichlorophenyl)maleamic acid top
Crystal data top
C10H6Cl3NO3F(000) = 1184
Mr = 294.51Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2201 reflections
a = 21.928 (3) Åθ = 2.6–27.9°
b = 8.2678 (8) ŵ = 0.77 mm1
c = 13.248 (2) ÅT = 293 K
β = 99.08 (1)°Prism, colourless
V = 2371.7 (5) Å30.44 × 0.44 × 0.40 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2436 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω and ϕ scansθmax = 26.3°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2127
Tmin = 0.729, Tmax = 0.749k = 910
4862 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0453P)2 + 2.1238P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.008
2436 reflectionsΔρmax = 0.55 e Å3
161 parametersΔρmin = 0.44 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (5)
Crystal data top
C10H6Cl3NO3V = 2371.7 (5) Å3
Mr = 294.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.928 (3) ŵ = 0.77 mm1
b = 8.2678 (8) ÅT = 293 K
c = 13.248 (2) Å0.44 × 0.44 × 0.40 mm
β = 99.08 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2436 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2000 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.749Rint = 0.012
4862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.55 e Å3
2436 reflectionsΔρmin = 0.44 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01367 (3)0.14374 (7)0.38180 (5)0.0547 (2)
Cl20.05298 (3)0.76688 (8)0.35643 (5)0.0546 (2)
Cl30.18696 (3)0.61105 (7)0.44095 (6)0.0594 (2)
O10.13622 (8)0.26049 (19)0.24188 (11)0.0489 (4)
O20.20438 (7)0.1698 (2)0.11143 (12)0.0491 (4)
O30.15810 (9)0.0634 (2)0.10918 (12)0.0554 (5)
H3O0.1526 (15)0.138 (3)0.147 (2)0.083*
N10.14268 (8)0.2673 (2)0.41225 (12)0.0356 (4)
H1N0.1593 (10)0.234 (3)0.4704 (14)0.043*
C10.09629 (9)0.3880 (2)0.40607 (13)0.0325 (4)
C20.03409 (10)0.3452 (2)0.38660 (14)0.0355 (4)
C30.01220 (9)0.4607 (3)0.37139 (15)0.0389 (5)
H30.05350.43050.35690.047*
C40.00448 (9)0.6214 (3)0.37825 (14)0.0362 (5)
C50.06509 (10)0.6697 (3)0.40216 (16)0.0394 (5)
H50.07530.77870.40960.047*
C60.11040 (9)0.5516 (2)0.41482 (15)0.0358 (4)
C70.15744 (9)0.2035 (2)0.32652 (15)0.0344 (4)
C80.19895 (10)0.0623 (3)0.34006 (15)0.0391 (5)
H80.21830.04260.40660.047*
C90.21238 (10)0.0406 (3)0.26948 (16)0.0407 (5)
H90.24050.12060.29500.049*
C100.19092 (9)0.0518 (3)0.15725 (15)0.0371 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0623 (4)0.0373 (3)0.0631 (4)0.0113 (3)0.0060 (3)0.0095 (3)
Cl20.0499 (3)0.0574 (4)0.0557 (4)0.0228 (3)0.0064 (3)0.0018 (3)
Cl30.0376 (3)0.0433 (3)0.0960 (5)0.0025 (2)0.0072 (3)0.0033 (3)
O10.0625 (10)0.0509 (10)0.0327 (8)0.0257 (8)0.0056 (7)0.0070 (7)
O20.0507 (9)0.0483 (9)0.0485 (9)0.0001 (7)0.0086 (7)0.0150 (7)
O30.0717 (12)0.0589 (11)0.0340 (8)0.0200 (9)0.0034 (7)0.0018 (7)
N10.0442 (10)0.0324 (9)0.0292 (8)0.0089 (7)0.0026 (7)0.0037 (7)
C10.0398 (10)0.0322 (10)0.0263 (9)0.0039 (8)0.0073 (7)0.0011 (8)
C20.0437 (11)0.0346 (10)0.0288 (9)0.0037 (8)0.0075 (8)0.0044 (8)
C30.0345 (10)0.0498 (13)0.0330 (10)0.0009 (9)0.0073 (8)0.0067 (9)
C40.0391 (11)0.0403 (11)0.0302 (10)0.0108 (9)0.0085 (8)0.0009 (8)
C50.0453 (12)0.0307 (10)0.0433 (11)0.0040 (9)0.0108 (9)0.0018 (9)
C60.0351 (10)0.0341 (10)0.0390 (11)0.0007 (8)0.0082 (8)0.0021 (8)
C70.0379 (10)0.0326 (10)0.0322 (10)0.0033 (8)0.0039 (8)0.0019 (8)
C80.0456 (12)0.0380 (11)0.0315 (10)0.0102 (9)0.0006 (8)0.0018 (8)
C90.0425 (12)0.0352 (11)0.0429 (11)0.0107 (9)0.0018 (9)0.0007 (9)
C100.0320 (10)0.0415 (11)0.0387 (11)0.0035 (9)0.0087 (8)0.0040 (9)
Geometric parameters (Å, º) top
Cl1—C21.723 (2)C2—C31.385 (3)
Cl2—C41.733 (2)C3—C41.377 (3)
Cl3—C61.731 (2)C3—H30.9300
O1—C71.237 (2)C4—C51.376 (3)
O2—C101.210 (3)C5—C61.384 (3)
O3—C101.299 (3)C5—H50.9300
O3—H3O0.819 (18)C7—C81.473 (3)
N1—C71.338 (3)C8—C91.331 (3)
N1—C11.418 (2)C8—H80.9300
N1—H1N0.843 (16)C9—C101.490 (3)
C1—C61.388 (3)C9—H90.9300
C1—C21.393 (3)
C10—O3—H3O112 (2)C4—C5—H5120.9
C7—N1—C1119.74 (16)C6—C5—H5120.9
C7—N1—H1N121.4 (16)C5—C6—C1122.08 (19)
C1—N1—H1N118.8 (16)C5—C6—Cl3118.60 (16)
C6—C1—C2117.51 (18)C1—C6—Cl3119.32 (15)
C6—C1—N1122.16 (18)O1—C7—N1120.82 (18)
C2—C1—N1120.28 (18)O1—C7—C8123.28 (18)
C3—C2—C1121.69 (19)N1—C7—C8115.89 (17)
C3—C2—Cl1118.74 (16)C9—C8—C7128.44 (19)
C1—C2—Cl1119.58 (16)C9—C8—H8115.8
C4—C3—C2118.33 (19)C7—C8—H8115.8
C4—C3—H3120.8C8—C9—C10132.11 (19)
C2—C3—H3120.8C8—C9—H9113.9
C5—C4—C3122.17 (19)C10—C9—H9113.9
C5—C4—Cl2119.15 (16)O2—C10—O3120.37 (19)
C3—C4—Cl2118.69 (16)O2—C10—C9119.2 (2)
C4—C5—C6118.12 (19)O3—C10—C9120.47 (18)
C7—N1—C1—C698.7 (2)C4—C5—C6—Cl3178.00 (15)
C7—N1—C1—C278.7 (2)C2—C1—C6—C51.7 (3)
C6—C1—C2—C33.1 (3)N1—C1—C6—C5175.71 (18)
N1—C1—C2—C3174.36 (17)C2—C1—C6—Cl3179.01 (14)
C6—C1—C2—Cl1176.52 (14)N1—C1—C6—Cl33.5 (3)
N1—C1—C2—Cl16.0 (2)C1—N1—C7—O18.1 (3)
C1—C2—C3—C41.5 (3)C1—N1—C7—C8170.97 (18)
Cl1—C2—C3—C4178.18 (15)O1—C7—C8—C911.8 (4)
C2—C3—C4—C51.7 (3)N1—C7—C8—C9167.2 (2)
C2—C3—C4—Cl2178.53 (14)C7—C8—C9—C101.0 (4)
C3—C4—C5—C63.0 (3)C8—C9—C10—O2170.9 (2)
Cl2—C4—C5—C6177.20 (15)C8—C9—C10—O39.0 (4)
C4—C5—C6—C11.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.04 (2)2.884 (2)175 (2)
O3—H3O···O10.82 (2)1.69 (2)2.498 (2)168 (3)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6Cl3NO3
Mr294.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.928 (3), 8.2678 (8), 13.248 (2)
β (°) 99.08 (1)
V3)2371.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.44 × 0.44 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.729, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
4862, 2436, 2000
Rint0.012
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.08
No. of reflections2436
No. of parameters161
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.843 (16)2.043 (17)2.884 (2)175 (2)
O3—H3O···O10.819 (18)1.692 (19)2.498 (2)168 (3)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491–500.  Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds