metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1154-m1155

trans-Di­chloridobis(3,5-di­methyl­pyridine-κN)(ethano­lato-κO)oxido­rhenium(V)

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com

(Received 20 July 2011; accepted 21 July 2011; online 30 July 2011)

The title compound, [Re(C2H5O)Cl2O(C7H9N)2], was crystallized from ethanol. The crystal structure of this complex contains a Re(V) atom in a slightly distorted octahedral coordination geometry with pairs of equivalent ligands in trans positions. Adjacent complex mol­ecules are linked by weak C—H⋯Cl hydrogen bonds. The crystal structure is additionally stabilized by ππ stacking inter­actions between the aromatic rings with centroid–centroid distances of 3.546 (4) Å.

Related literature

The structure of the title compound was determined as part of a larger study on rhenium chemistry. For related structures and further discussion, see: Fortin & Beauchamp (1998[Fortin, S. & Beauchamp, A. L. (1998). Inorg. Chim. Acta, 279, 159-164.]); Iengo et al. (2001[Iengo, E., Zangrando, E., Mestroni, S., Fronzoni, G., Stener, M. & Alessio, E. (2001). J. Chem. Soc. Dalton Trans. pp. 1338-1346.]); Lock & Turner (1977[Lock, C. J. L. & Turner, G. (1977). Can. J. Chem. 55, 333-339.]). For hydrogen-bond inter­actions, see: Aullón et al. (1998[Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653-654.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]) and for ππ stacking contacts, see: McGaughey et al. (1998[McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458-15463.]). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]) and for specifications of the analytical numeric absorption correction, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C2H5O)Cl2O(C7H9N)2]

  • Mr = 532.46

  • Triclinic, [P \overline 1]

  • a = 8.782 (2) Å

  • b = 9.458 (2) Å

  • c = 12.022 (3) Å

  • α = 76.71 (3)°

  • β = 70.84 (3)°

  • γ = 73.21 (3)°

  • V = 892.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.11 mm−1

  • T = 90 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur PX diffractometer with CCD detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.522, Tmax = 0.608

  • 9213 measured reflections

  • 3992 independent reflections

  • 3519 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.043

  • S = 0.96

  • 3992 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Re—O1 1.698 (2)
Re—O2 1.882 (2)
Re—Cl1 2.4360 (11)
Re—Cl2 2.3728 (11)
Re—N1 2.143 (3)
Re—N2 2.132 (3)
O1—Re—O2 171.57 (10)
N1—Re—N2 177.79 (10)
Cl1—Re—Cl2 173.74 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C121—H12C⋯Cl1i 0.98 2.82 3.754 (4) 160
C13—H13⋯Cl1i 0.95 2.92 3.717 (4) 142
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Complexes of the ReO(OR)X2L2 type (where R is an alkyl group, X is a halogen and L is an N-donor ligand or monodendate phosphine) are commonly used as precursors for other Re(V) species, such as dioxo mononuclear and dinuclear compounds (Fortin & Beauchamp, 1998). When L is a diaza ligand, they might also be applied for the construction of multi-metal supramolecular assemblies (Iengo et al., 2001). Normally, these complexes are obtained as the all trans isomers (Lock & Turner, 1977). In this paper we report the synthesis procedure and crystal structure of an oxorhenium(V) complex with 3,5-dimethylpyridine ligands, the title compound.

The environment around the metal center is a slightly distorted octahedron with two chloro ligands, two 3,5-dimethylpyridine ligands, ethoxo and oxo ligands, all in trans positions to each other (Fig. 1). The observed Re—ligand bond distances (Table 1) are similar to the reported for analogous complexes of the ReO(OR)X2L2 type. However, the distortion of the angles in the coordination sphere of the Re atom is more significant than in similar compounds. Especially, the O1—Re—O2 and Cl1—Re—Cl2 angles differ from the expected value of 180°.

In the crystal structure, the molecules of the title complex are linked by a few weak hydrogen interactions of the C—H···Cl type (Desiraju & Steiner, 1999). The C13 and C121 atoms act as hydrogen-bond donors to Cl1i [symmetry code: (i) x – 1, y, z] as an acceptor (Table 2). The observed C—H···Cl distances are similar to the values of the N—H···Cl hydrogen bonds identified for Cl bonded to a transition metal (Aullón et al., 1998). Each of the molecules accepts two hydrogen bonds and also donates two hydrogen bonds (Fig. 2), thus forming a C(7)C(7)[R21(6)] chain of rings motif (Bernstein et al., 1995).

Additionally, the N1/C11–C15 and N2/C21–C25 rings are engaged in π-π stacking contacts (Fig. 2), which further assist in the stabilization of the crystal structure by assembling chains running parallel to the [100] direction. The distance of the centroids and the offset of the pyridine rings (Table 3) are typical for energetically favorable non-bonded aromatic interactions (McGaughey et al., 1998).

Related literature top

The structure of the title compound was determined as part of a larger study on rhenium chemistry. For related structures and further discussion, see: Fortin & Beauchamp (1998); Iengo et al. (2001); Lock & Turner (1977). For hydrogen-bond interactions, see: Aullón et al. (1998); Bernstein et al. (1995); Desiraju & Steiner (1999) and for ππ stacking contacts, see: McGaughey et al. (1998). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986) and for specifications of the analytical numeric absorption correction, see: Clark & Reid (1995).

Experimental top

The title compound was prepared similarly to the previously reported rhenium(V) complex with pyrazine ligands (Iengo et al., 2001). 3,5-dimethylpyridine (0.55 ml, 4.77 mmol) was added to the suspension of ReOCl3(OPPh3)(SMe2) (1.0 g, 1.54 mmol) in absolute ethanol (10 ml). The mixture was heated under reflux for 1 h, forming dark blue solution. Upon cooling down, crystalline precipitate appeared in the system. It was filtered off, washed with ethanol and diethyl ether. Finally, the product was dried in vacuo. Yield: 0.70 g, 85%. Analysis calculated: C 36.09, H 4.35, N 5.26%; found: C 36.04, H 4.23, N 5.25%. IR (KBr, cm-1): δ(OCH2) 915 (versus), ν(Re=O) 960 (versus). 1H NMR (CDCl3): δ 1.00 (3H, t, 3J = 6.9 Hz, CH3), 2.32 (12H, s, CH3) 3.75 (2H, q, 3J = 6.9 Hz, CH2), 7.34 (2H, s, CH), 8.48 (4H, s, CH).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with aromatic C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C). The highest residual peak and the deepest hole in the final difference map are located 0.97 and 1.24Å from the Re atom, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure, a perspective view in an oblique direction. Weak intermolecular hydrogen bonds are represented by dashed lines and the π-π stacking interactions by dotted lines. Cg1 and Cg2 denote the centroids of the N1/C11—C15 and N2/C21—C25 pyridine rings, respectively. For clarity, H atoms that are not involved in the discussed interactions have been omitted. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]
trans-Dichloridobis(3,5-dimethylpyridine- κN)(ethanolato-κO)oxidorhenium(V) top
Crystal data top
[Re(C2H5O)Cl2O(C7H9N)2]Z = 2
Mr = 532.46F(000) = 516
Triclinic, P1Dx = 1.980 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.782 (2) ÅCell parameters from 6128 reflections
b = 9.458 (2) Åθ = 5.0–27.5°
c = 12.022 (3) ŵ = 7.11 mm1
α = 76.71 (3)°T = 90 K
β = 70.84 (3)°Block, dark blue
γ = 73.21 (3)°0.14 × 0.10 × 0.08 mm
V = 892.9 (4) Å3
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with CCD detector
3992 independent reflections
Radiation source: fine-focus sealed tube3519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.5°, θmin = 5.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 118
Tmin = 0.522, Tmax = 0.608k = 1212
9213 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0155P)2]
where P = (Fo2 + 2Fc2)/3
3992 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Re(C2H5O)Cl2O(C7H9N)2]γ = 73.21 (3)°
Mr = 532.46V = 892.9 (4) Å3
Triclinic, P1Z = 2
a = 8.782 (2) ÅMo Kα radiation
b = 9.458 (2) ŵ = 7.11 mm1
c = 12.022 (3) ÅT = 90 K
α = 76.71 (3)°0.14 × 0.10 × 0.08 mm
β = 70.84 (3)°
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with CCD detector
3992 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
3519 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.608Rint = 0.039
9213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 0.96Δρmax = 0.89 e Å3
3992 reflectionsΔρmin = 0.69 e Å3
213 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 90 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.631394 (17)0.243503 (16)0.216648 (12)0.00894 (4)
Cl10.77034 (10)0.01144 (9)0.27897 (7)0.01403 (17)
Cl20.48876 (10)0.49592 (9)0.17785 (7)0.01358 (17)
O10.6619 (3)0.1964 (3)0.0816 (2)0.0130 (5)
O20.5921 (3)0.2674 (3)0.37560 (19)0.0115 (5)
N10.4009 (3)0.1765 (3)0.2774 (2)0.0104 (6)
N20.8601 (3)0.3103 (3)0.1631 (2)0.0101 (6)
C10.5564 (4)0.1947 (4)0.4951 (3)0.0136 (7)
H1A0.66030.13160.51200.016*
H1B0.48110.12900.50670.016*
C20.4763 (5)0.3073 (4)0.5805 (3)0.0188 (8)
H2A0.55370.36810.57270.028*
H2B0.44760.25490.66230.028*
H2C0.37560.37210.56210.028*
C110.3875 (4)0.0612 (4)0.2362 (3)0.0106 (7)
H110.48250.00940.18290.013*
C120.2406 (4)0.0147 (4)0.2683 (3)0.0112 (7)
C130.1050 (4)0.0892 (4)0.3481 (3)0.0114 (7)
H130.00280.05980.37190.014*
C140.1167 (4)0.2065 (4)0.3940 (3)0.0121 (7)
C150.2686 (4)0.2471 (4)0.3544 (3)0.0107 (7)
H150.27830.32850.38340.013*
C1210.2334 (4)0.1124 (4)0.2158 (3)0.0150 (7)
H12A0.28200.20740.25820.022*
H12B0.29600.10380.13140.022*
H12C0.11780.10870.22370.022*
C1410.0273 (4)0.2905 (4)0.4818 (3)0.0182 (8)
H14A0.12940.26440.48600.027*
H14B0.03800.39810.45590.027*
H14C0.00800.26360.56060.027*
C210.8737 (4)0.4278 (4)0.2016 (3)0.0103 (7)
H210.77920.48000.25490.012*
C221.0199 (4)0.4760 (4)0.1666 (3)0.0102 (7)
C231.1549 (4)0.4001 (4)0.0868 (3)0.0107 (7)
H231.25630.43130.06030.013*
C241.1439 (4)0.2788 (4)0.0452 (3)0.0107 (7)
C250.9937 (4)0.2371 (4)0.0874 (3)0.0126 (7)
H250.98480.15290.06150.015*
C2211.0287 (4)0.6068 (4)0.2129 (3)0.0157 (7)
H22A1.10260.57270.26450.024*
H22B0.91760.65370.25860.024*
H22C1.07160.67960.14590.024*
C2411.2877 (4)0.1938 (4)0.0404 (3)0.0147 (7)
H24A1.25420.11400.05940.022*
H24B1.37920.15010.00420.022*
H24C1.32390.26160.11350.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.00818 (7)0.00968 (7)0.00966 (7)0.00304 (5)0.00212 (5)0.00210 (5)
Cl10.0115 (4)0.0100 (4)0.0204 (4)0.0022 (3)0.0049 (3)0.0020 (3)
Cl20.0124 (4)0.0107 (4)0.0170 (4)0.0025 (3)0.0045 (3)0.0006 (3)
O10.0115 (12)0.0156 (12)0.0131 (12)0.0047 (10)0.0018 (10)0.0049 (10)
O20.0126 (12)0.0117 (11)0.0110 (11)0.0035 (10)0.0044 (10)0.0007 (10)
N10.0112 (15)0.0110 (14)0.0105 (13)0.0018 (12)0.0063 (12)0.0006 (11)
N20.0107 (14)0.0111 (14)0.0092 (13)0.0032 (12)0.0037 (11)0.0010 (11)
C10.0151 (18)0.0121 (17)0.0105 (16)0.0037 (15)0.0010 (14)0.0012 (14)
C20.025 (2)0.0162 (18)0.0134 (17)0.0051 (16)0.0011 (16)0.0042 (15)
C110.0105 (17)0.0099 (16)0.0103 (16)0.0013 (14)0.0032 (13)0.0005 (13)
C120.0132 (18)0.0108 (16)0.0118 (16)0.0045 (14)0.0068 (14)0.0011 (14)
C130.0102 (17)0.0127 (16)0.0102 (16)0.0035 (14)0.0015 (14)0.0009 (14)
C140.0098 (17)0.0140 (17)0.0112 (16)0.0013 (14)0.0022 (14)0.0025 (14)
C150.0114 (17)0.0095 (16)0.0110 (16)0.0003 (14)0.0055 (14)0.0010 (13)
C1210.0136 (18)0.0126 (17)0.0197 (18)0.0048 (15)0.0018 (15)0.0063 (15)
C1410.0164 (19)0.0175 (18)0.0202 (19)0.0063 (16)0.0004 (15)0.0069 (16)
C210.0108 (17)0.0114 (16)0.0079 (15)0.0013 (14)0.0031 (13)0.0009 (13)
C220.0136 (17)0.0088 (16)0.0098 (15)0.0038 (14)0.0068 (14)0.0027 (13)
C230.0075 (17)0.0117 (16)0.0126 (16)0.0036 (14)0.0020 (14)0.0008 (14)
C240.0139 (18)0.0105 (16)0.0076 (15)0.0037 (14)0.0053 (14)0.0031 (13)
C250.0160 (18)0.0117 (16)0.0118 (16)0.0042 (15)0.0051 (14)0.0022 (14)
C2210.0169 (19)0.0142 (17)0.0196 (18)0.0047 (15)0.0075 (15)0.0047 (15)
C2410.0142 (18)0.0167 (18)0.0133 (17)0.0065 (15)0.0004 (14)0.0042 (15)
Geometric parameters (Å, º) top
Re—O11.698 (2)C14—C1411.508 (5)
Re—O21.882 (2)C15—H150.9500
Re—Cl12.4360 (11)C121—H12A0.9800
Re—Cl22.3728 (11)C121—H12B0.9800
Re—N12.143 (3)C121—H12C0.9800
Re—N22.132 (3)C141—H14A0.9800
O2—C11.418 (4)C141—H14B0.9800
N1—C151.334 (4)C141—H14C0.9800
N1—C111.345 (4)C21—C221.389 (4)
N2—C251.343 (4)C21—H210.9500
N2—C211.346 (4)C22—C231.385 (4)
C1—C21.510 (5)C22—C2211.500 (5)
C1—H1A0.9900C23—C241.392 (4)
C1—H1B0.9900C23—H230.9500
C2—H2A0.9800C24—C251.387 (4)
C2—H2B0.9800C24—C2411.497 (5)
C2—H2C0.9800C25—H250.9500
C11—C121.390 (4)C221—H22A0.9800
C11—H110.9500C221—H22B0.9800
C12—C131.383 (4)C221—H22C0.9800
C12—C1211.504 (5)C241—H24A0.9800
C13—C141.389 (4)C241—H24B0.9800
C13—H130.9500C241—H24C0.9800
C14—C151.397 (4)
O1—Re—N188.90 (10)C13—C14—C141122.6 (3)
O2—Re—N185.89 (10)C15—C14—C141120.0 (3)
O1—Re—N293.24 (10)N1—C15—C14122.8 (3)
O2—Re—N291.92 (10)N1—C15—H15118.6
O1—Re—O2171.57 (10)C14—C15—H15118.6
N1—Re—N2177.79 (10)C12—C121—H12A109.5
O1—Re—Cl188.90 (8)C12—C121—H12B109.5
O2—Re—Cl184.42 (8)H12A—C121—H12B109.5
N1—Re—Cl189.20 (8)C12—C121—H12C109.5
N2—Re—Cl190.33 (8)H12A—C121—H12C109.5
O1—Re—Cl297.31 (8)H12B—C121—H12C109.5
O2—Re—Cl289.33 (8)C14—C141—H14A109.5
N1—Re—Cl290.07 (8)C14—C141—H14B109.5
N2—Re—Cl290.16 (8)H14A—C141—H14B109.5
Cl1—Re—Cl2173.74 (3)C14—C141—H14C109.5
C1—O2—Re144.0 (2)H14A—C141—H14C109.5
C15—N1—C11118.7 (3)H14B—C141—H14C109.5
C15—N1—Re121.9 (2)N2—C21—C22122.7 (3)
C11—N1—Re119.4 (2)N2—C21—H21118.6
C25—N2—C21118.5 (3)C22—C21—H21118.6
C25—N2—Re120.2 (2)C23—C22—C21117.6 (3)
C21—N2—Re121.3 (2)C23—C22—C221121.8 (3)
O2—C1—C2110.8 (3)C21—C22—C221120.6 (3)
O2—C1—H1A109.5C22—C23—C24120.8 (3)
C2—C1—H1A109.5C22—C23—H23119.6
O2—C1—H1B109.5C24—C23—H23119.6
C2—C1—H1B109.5C25—C24—C23117.3 (3)
H1A—C1—H1B108.1C25—C24—C241120.5 (3)
C1—C2—H2A109.5C23—C24—C241122.2 (3)
C1—C2—H2B109.5N2—C25—C24123.0 (3)
H2A—C2—H2B109.5N2—C25—H25118.5
C1—C2—H2C109.5C24—C25—H25118.5
H2A—C2—H2C109.5C22—C221—H22A109.5
H2B—C2—H2C109.5C22—C221—H22B109.5
N1—C11—C12122.7 (3)H22A—C221—H22B109.5
N1—C11—H11118.7C22—C221—H22C109.5
C12—C11—H11118.7H22A—C221—H22C109.5
C13—C12—C11117.7 (3)H22B—C221—H22C109.5
C13—C12—C121122.5 (3)C24—C241—H24A109.5
C11—C12—C121119.8 (3)C24—C241—H24B109.5
C12—C13—C14120.6 (3)H24A—C241—H24B109.5
C12—C13—H13119.7C24—C241—H24C109.5
C14—C13—H13119.7H24A—C241—H24C109.5
C13—C14—C15117.4 (3)H24B—C241—H24C109.5
N2—Re—O2—C1125.9 (4)N1—C11—C12—C131.6 (5)
N1—Re—O2—C153.9 (4)N1—C11—C12—C121178.2 (3)
Cl2—Re—O2—C1144.0 (3)C11—C12—C13—C140.1 (5)
Cl1—Re—O2—C135.7 (3)C121—C12—C13—C14179.7 (3)
O1—Re—N1—C15145.0 (2)C12—C13—C14—C151.3 (5)
O2—Re—N1—C1541.7 (2)C12—C13—C14—C141179.6 (3)
Cl2—Re—N1—C1547.7 (2)C11—N1—C15—C140.0 (4)
Cl1—Re—N1—C15126.1 (2)Re—N1—C15—C14179.2 (2)
O1—Re—N1—C1134.2 (2)C13—C14—C15—N11.3 (5)
O2—Re—N1—C11139.2 (2)C141—C14—C15—N1179.5 (3)
Cl2—Re—N1—C11131.5 (2)C25—N2—C21—C220.2 (4)
Cl1—Re—N1—C1154.7 (2)Re—N2—C21—C22178.7 (2)
O1—Re—N2—C2535.3 (2)N2—C21—C22—C231.3 (4)
O2—Re—N2—C25138.1 (2)N2—C21—C22—C221179.5 (3)
Cl2—Re—N2—C25132.6 (2)C21—C22—C23—C240.9 (5)
Cl1—Re—N2—C2553.7 (2)C221—C22—C23—C24179.9 (3)
O1—Re—N2—C21143.2 (2)C22—C23—C24—C250.5 (5)
O2—Re—N2—C2143.4 (2)C22—C23—C24—C241179.6 (3)
Cl2—Re—N2—C2145.9 (2)C21—N2—C25—C241.3 (4)
Cl1—Re—N2—C21127.9 (2)Re—N2—C25—C24177.2 (2)
Re—O2—C1—C2157.5 (3)C23—C24—C25—N21.6 (5)
C15—N1—C11—C121.5 (4)C241—C24—C25—N2179.2 (3)
Re—N1—C11—C12177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C121—H12C···Cl1i0.982.823.754 (4)160
C13—H13···Cl1i0.952.923.717 (4)142
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Re(C2H5O)Cl2O(C7H9N)2]
Mr532.46
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.782 (2), 9.458 (2), 12.022 (3)
α, β, γ (°)76.71 (3), 70.84 (3), 73.21 (3)
V3)892.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.11
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur PX
diffractometer with CCD detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.522, 0.608
No. of measured, independent and
observed [I > 2σ(I)] reflections
9213, 3992, 3519
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.043, 0.96
No. of reflections3992
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.69

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Re—O11.698 (2)Re—Cl22.3728 (11)
Re—O21.882 (2)Re—N12.143 (3)
Re—Cl12.4360 (11)Re—N22.132 (3)
O1—Re—O2171.57 (10)Cl1—Re—Cl2173.74 (3)
N1—Re—N2177.79 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C121—H12C···Cl1i0.982.823.754 (4)160
C13—H13···Cl1i0.952.923.717 (4)142
Symmetry code: (i) x1, y, z.
Intermolecular π-π interactions (Å, °). top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
12i3.546 (4)2.0 (3)3.381 (4)1.069 (4)
21ii3.546 (4)2.0 (3)3.362 (4)1.127 (4)
Cg1 denotes the centroid of ring N1/C11-C15; Cg2 of ring N2/C21-C25. Cg···Cg is the distance between ring centroids. The dihedral plane is that between the CgI and CgJ planes. The interplanar distance is the perpendicular distance of CgI from ring J plane. The offset is the lateral displacement of ring I relative to ring J.

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was partially supported by the Polish Ministry of Science and Higher Education through grant No. N204 028538. The financial support is gratefully acknowledged.

References

First citationAullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFortin, S. & Beauchamp, A. L. (1998). Inorg. Chim. Acta, 279, 159–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationIengo, E., Zangrando, E., Mestroni, S., Fronzoni, G., Stener, M. & Alessio, E. (2001). J. Chem. Soc. Dalton Trans. pp. 1338–1346.  Web of Science CSD CrossRef Google Scholar
First citationLock, C. J. L. & Turner, G. (1977). Can. J. Chem. 55, 333–339.  CrossRef CAS Web of Science Google Scholar
First citationMcGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458–15463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1154-m1155
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds