metal-organic compounds
trans-Dichloridobis(3,5-dimethylpyridine-κN)(ethanolato-κO)oxidorhenium(V)
aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com
The title compound, [Re(C2H5O)Cl2O(C7H9N)2], was crystallized from ethanol. The of this complex contains a Re(V) atom in a slightly distorted octahedral coordination geometry with pairs of equivalent ligands in trans positions. Adjacent complex molecules are linked by weak C—H⋯Cl hydrogen bonds. The is additionally stabilized by π–π stacking interactions between the aromatic rings with centroid–centroid distances of 3.546 (4) Å.
Related literature
The structure of the title compound was determined as part of a larger study on rhenium chemistry. For related structures and further discussion, see: Fortin & Beauchamp (1998); Iengo et al. (2001); Lock & Turner (1977). For hydrogen-bond interactions, see: Aullón et al. (1998); Bernstein et al. (1995); Desiraju & Steiner (1999) and for π–π stacking contacts, see: McGaughey et al. (1998). For details of the temperature control applied during data collection, see: Cosier & Glazer (1986) and for specifications of the analytical numeric absorption correction, see: Clark & Reid (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811029588/bt5584sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811029588/bt5584Isup2.hkl
The title compound was prepared similarly to the previously reported rhenium(V) complex with pyrazine ligands (Iengo et al., 2001). 3,5-dimethylpyridine (0.55 ml, 4.77 mmol) was added to the suspension of ReOCl3(OPPh3)(SMe2) (1.0 g, 1.54 mmol) in absolute ethanol (10 ml). The mixture was heated under reflux for 1 h, forming dark blue solution. Upon cooling down, crystalline precipitate appeared in the system. It was filtered off, washed with ethanol and diethyl ether. Finally, the product was dried in vacuo. Yield: 0.70 g, 85%. Analysis calculated: C 36.09, H 4.35, N 5.26%; found: C 36.04, H 4.23, N 5.25%. IR (KBr, cm-1): δ(OCH2) 915 (versus), ν(Re=O) 960 (versus). 1H NMR (CDCl3): δ 1.00 (3H, t, 3J = 6.9 Hz, CH3), 2.32 (12H, s, CH3) 3.75 (2H, q, 3J = 6.9 Hz, CH2), 7.34 (2H, s, CH), 8.48 (4H, s, CH).
All H atoms were positioned geometrically and refined using a riding model with aromatic C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). The methyl groups were refined with C—H = 0.98Å and Uiso(H) = 1.5Ueq(C). The highest residual peak and the deepest hole in the final difference map are located 0.97 and 1.24Å from the Re atom, respectively.
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Re(C2H5O)Cl2O(C7H9N)2] | Z = 2 |
Mr = 532.46 | F(000) = 516 |
Triclinic, P1 | Dx = 1.980 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.782 (2) Å | Cell parameters from 6128 reflections |
b = 9.458 (2) Å | θ = 5.0–27.5° |
c = 12.022 (3) Å | µ = 7.11 mm−1 |
α = 76.71 (3)° | T = 90 K |
β = 70.84 (3)° | Block, dark blue |
γ = 73.21 (3)° | 0.14 × 0.10 × 0.08 mm |
V = 892.9 (4) Å3 |
Oxford Diffraction Xcalibur PX diffractometer with CCD detector | 3992 independent reflections |
Radiation source: fine-focus sealed tube | 3519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ϕ and ω scans | θmax = 27.5°, θmin = 5.0° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) | h = −11→8 |
Tmin = 0.522, Tmax = 0.608 | k = −12→12 |
9213 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.043 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0155P)2] where P = (Fo2 + 2Fc2)/3 |
3992 reflections | (Δ/σ)max = 0.001 |
213 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Re(C2H5O)Cl2O(C7H9N)2] | γ = 73.21 (3)° |
Mr = 532.46 | V = 892.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.782 (2) Å | Mo Kα radiation |
b = 9.458 (2) Å | µ = 7.11 mm−1 |
c = 12.022 (3) Å | T = 90 K |
α = 76.71 (3)° | 0.14 × 0.10 × 0.08 mm |
β = 70.84 (3)° |
Oxford Diffraction Xcalibur PX diffractometer with CCD detector | 3992 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010) | 3519 reflections with I > 2σ(I) |
Tmin = 0.522, Tmax = 0.608 | Rint = 0.039 |
9213 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.043 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.89 e Å−3 |
3992 reflections | Δρmin = −0.69 e Å−3 |
213 parameters |
Experimental. The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 90 K. Analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Re | 0.631394 (17) | 0.243503 (16) | 0.216648 (12) | 0.00894 (4) | |
Cl1 | 0.77034 (10) | −0.01144 (9) | 0.27897 (7) | 0.01403 (17) | |
Cl2 | 0.48876 (10) | 0.49592 (9) | 0.17785 (7) | 0.01358 (17) | |
O1 | 0.6619 (3) | 0.1964 (3) | 0.0816 (2) | 0.0130 (5) | |
O2 | 0.5921 (3) | 0.2674 (3) | 0.37560 (19) | 0.0115 (5) | |
N1 | 0.4009 (3) | 0.1765 (3) | 0.2774 (2) | 0.0104 (6) | |
N2 | 0.8601 (3) | 0.3103 (3) | 0.1631 (2) | 0.0101 (6) | |
C1 | 0.5564 (4) | 0.1947 (4) | 0.4951 (3) | 0.0136 (7) | |
H1A | 0.6603 | 0.1316 | 0.5120 | 0.016* | |
H1B | 0.4811 | 0.1290 | 0.5067 | 0.016* | |
C2 | 0.4763 (5) | 0.3073 (4) | 0.5805 (3) | 0.0188 (8) | |
H2A | 0.5537 | 0.3681 | 0.5727 | 0.028* | |
H2B | 0.4476 | 0.2549 | 0.6623 | 0.028* | |
H2C | 0.3756 | 0.3721 | 0.5621 | 0.028* | |
C11 | 0.3875 (4) | 0.0612 (4) | 0.2362 (3) | 0.0106 (7) | |
H11 | 0.4825 | 0.0094 | 0.1829 | 0.013* | |
C12 | 0.2406 (4) | 0.0147 (4) | 0.2683 (3) | 0.0112 (7) | |
C13 | 0.1050 (4) | 0.0892 (4) | 0.3481 (3) | 0.0114 (7) | |
H13 | 0.0028 | 0.0598 | 0.3719 | 0.014* | |
C14 | 0.1167 (4) | 0.2065 (4) | 0.3940 (3) | 0.0121 (7) | |
C15 | 0.2686 (4) | 0.2471 (4) | 0.3544 (3) | 0.0107 (7) | |
H15 | 0.2783 | 0.3285 | 0.3834 | 0.013* | |
C121 | 0.2334 (4) | −0.1124 (4) | 0.2158 (3) | 0.0150 (7) | |
H12A | 0.2820 | −0.2074 | 0.2582 | 0.022* | |
H12B | 0.2960 | −0.1038 | 0.1314 | 0.022* | |
H12C | 0.1178 | −0.1087 | 0.2237 | 0.022* | |
C141 | −0.0273 (4) | 0.2905 (4) | 0.4818 (3) | 0.0182 (8) | |
H14A | −0.1294 | 0.2644 | 0.4860 | 0.027* | |
H14B | −0.0380 | 0.3981 | 0.4559 | 0.027* | |
H14C | −0.0080 | 0.2636 | 0.5606 | 0.027* | |
C21 | 0.8737 (4) | 0.4278 (4) | 0.2016 (3) | 0.0103 (7) | |
H21 | 0.7792 | 0.4800 | 0.2549 | 0.012* | |
C22 | 1.0199 (4) | 0.4760 (4) | 0.1666 (3) | 0.0102 (7) | |
C23 | 1.1549 (4) | 0.4001 (4) | 0.0868 (3) | 0.0107 (7) | |
H23 | 1.2563 | 0.4313 | 0.0603 | 0.013* | |
C24 | 1.1439 (4) | 0.2788 (4) | 0.0452 (3) | 0.0107 (7) | |
C25 | 0.9937 (4) | 0.2371 (4) | 0.0874 (3) | 0.0126 (7) | |
H25 | 0.9848 | 0.1529 | 0.0615 | 0.015* | |
C221 | 1.0287 (4) | 0.6068 (4) | 0.2129 (3) | 0.0157 (7) | |
H22A | 1.1026 | 0.5727 | 0.2645 | 0.024* | |
H22B | 0.9176 | 0.6537 | 0.2586 | 0.024* | |
H22C | 1.0716 | 0.6796 | 0.1459 | 0.024* | |
C241 | 1.2877 (4) | 0.1938 (4) | −0.0404 (3) | 0.0147 (7) | |
H24A | 1.2542 | 0.1140 | −0.0594 | 0.022* | |
H24B | 1.3792 | 0.1501 | −0.0042 | 0.022* | |
H24C | 1.3239 | 0.2616 | −0.1135 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re | 0.00818 (7) | 0.00968 (7) | 0.00966 (7) | −0.00304 (5) | −0.00212 (5) | −0.00210 (5) |
Cl1 | 0.0115 (4) | 0.0100 (4) | 0.0204 (4) | −0.0022 (3) | −0.0049 (3) | −0.0020 (3) |
Cl2 | 0.0124 (4) | 0.0107 (4) | 0.0170 (4) | −0.0025 (3) | −0.0045 (3) | −0.0006 (3) |
O1 | 0.0115 (12) | 0.0156 (12) | 0.0131 (12) | −0.0047 (10) | −0.0018 (10) | −0.0049 (10) |
O2 | 0.0126 (12) | 0.0117 (11) | 0.0110 (11) | −0.0035 (10) | −0.0044 (10) | −0.0007 (10) |
N1 | 0.0112 (15) | 0.0110 (14) | 0.0105 (13) | −0.0018 (12) | −0.0063 (12) | −0.0006 (11) |
N2 | 0.0107 (14) | 0.0111 (14) | 0.0092 (13) | −0.0032 (12) | −0.0037 (11) | −0.0010 (11) |
C1 | 0.0151 (18) | 0.0121 (17) | 0.0105 (16) | −0.0037 (15) | −0.0010 (14) | 0.0012 (14) |
C2 | 0.025 (2) | 0.0162 (18) | 0.0134 (17) | −0.0051 (16) | −0.0011 (16) | −0.0042 (15) |
C11 | 0.0105 (17) | 0.0099 (16) | 0.0103 (16) | −0.0013 (14) | −0.0032 (13) | −0.0005 (13) |
C12 | 0.0132 (18) | 0.0108 (16) | 0.0118 (16) | −0.0045 (14) | −0.0068 (14) | 0.0011 (14) |
C13 | 0.0102 (17) | 0.0127 (16) | 0.0102 (16) | −0.0035 (14) | −0.0015 (14) | −0.0009 (14) |
C14 | 0.0098 (17) | 0.0140 (17) | 0.0112 (16) | −0.0013 (14) | −0.0022 (14) | −0.0025 (14) |
C15 | 0.0114 (17) | 0.0095 (16) | 0.0110 (16) | 0.0003 (14) | −0.0055 (14) | −0.0010 (13) |
C121 | 0.0136 (18) | 0.0126 (17) | 0.0197 (18) | −0.0048 (15) | −0.0018 (15) | −0.0063 (15) |
C141 | 0.0164 (19) | 0.0175 (18) | 0.0202 (19) | −0.0063 (16) | 0.0004 (15) | −0.0069 (16) |
C21 | 0.0108 (17) | 0.0114 (16) | 0.0079 (15) | −0.0013 (14) | −0.0031 (13) | −0.0009 (13) |
C22 | 0.0136 (17) | 0.0088 (16) | 0.0098 (15) | −0.0038 (14) | −0.0068 (14) | 0.0027 (13) |
C23 | 0.0075 (17) | 0.0117 (16) | 0.0126 (16) | −0.0036 (14) | −0.0020 (14) | −0.0008 (14) |
C24 | 0.0139 (18) | 0.0105 (16) | 0.0076 (15) | −0.0037 (14) | −0.0053 (14) | 0.0031 (13) |
C25 | 0.0160 (18) | 0.0117 (16) | 0.0118 (16) | −0.0042 (15) | −0.0051 (14) | −0.0022 (14) |
C221 | 0.0169 (19) | 0.0142 (17) | 0.0196 (18) | −0.0047 (15) | −0.0075 (15) | −0.0047 (15) |
C241 | 0.0142 (18) | 0.0167 (18) | 0.0133 (17) | −0.0065 (15) | −0.0004 (14) | −0.0042 (15) |
Re—O1 | 1.698 (2) | C14—C141 | 1.508 (5) |
Re—O2 | 1.882 (2) | C15—H15 | 0.9500 |
Re—Cl1 | 2.4360 (11) | C121—H12A | 0.9800 |
Re—Cl2 | 2.3728 (11) | C121—H12B | 0.9800 |
Re—N1 | 2.143 (3) | C121—H12C | 0.9800 |
Re—N2 | 2.132 (3) | C141—H14A | 0.9800 |
O2—C1 | 1.418 (4) | C141—H14B | 0.9800 |
N1—C15 | 1.334 (4) | C141—H14C | 0.9800 |
N1—C11 | 1.345 (4) | C21—C22 | 1.389 (4) |
N2—C25 | 1.343 (4) | C21—H21 | 0.9500 |
N2—C21 | 1.346 (4) | C22—C23 | 1.385 (4) |
C1—C2 | 1.510 (5) | C22—C221 | 1.500 (5) |
C1—H1A | 0.9900 | C23—C24 | 1.392 (4) |
C1—H1B | 0.9900 | C23—H23 | 0.9500 |
C2—H2A | 0.9800 | C24—C25 | 1.387 (4) |
C2—H2B | 0.9800 | C24—C241 | 1.497 (5) |
C2—H2C | 0.9800 | C25—H25 | 0.9500 |
C11—C12 | 1.390 (4) | C221—H22A | 0.9800 |
C11—H11 | 0.9500 | C221—H22B | 0.9800 |
C12—C13 | 1.383 (4) | C221—H22C | 0.9800 |
C12—C121 | 1.504 (5) | C241—H24A | 0.9800 |
C13—C14 | 1.389 (4) | C241—H24B | 0.9800 |
C13—H13 | 0.9500 | C241—H24C | 0.9800 |
C14—C15 | 1.397 (4) | ||
O1—Re—N1 | 88.90 (10) | C13—C14—C141 | 122.6 (3) |
O2—Re—N1 | 85.89 (10) | C15—C14—C141 | 120.0 (3) |
O1—Re—N2 | 93.24 (10) | N1—C15—C14 | 122.8 (3) |
O2—Re—N2 | 91.92 (10) | N1—C15—H15 | 118.6 |
O1—Re—O2 | 171.57 (10) | C14—C15—H15 | 118.6 |
N1—Re—N2 | 177.79 (10) | C12—C121—H12A | 109.5 |
O1—Re—Cl1 | 88.90 (8) | C12—C121—H12B | 109.5 |
O2—Re—Cl1 | 84.42 (8) | H12A—C121—H12B | 109.5 |
N1—Re—Cl1 | 89.20 (8) | C12—C121—H12C | 109.5 |
N2—Re—Cl1 | 90.33 (8) | H12A—C121—H12C | 109.5 |
O1—Re—Cl2 | 97.31 (8) | H12B—C121—H12C | 109.5 |
O2—Re—Cl2 | 89.33 (8) | C14—C141—H14A | 109.5 |
N1—Re—Cl2 | 90.07 (8) | C14—C141—H14B | 109.5 |
N2—Re—Cl2 | 90.16 (8) | H14A—C141—H14B | 109.5 |
Cl1—Re—Cl2 | 173.74 (3) | C14—C141—H14C | 109.5 |
C1—O2—Re | 144.0 (2) | H14A—C141—H14C | 109.5 |
C15—N1—C11 | 118.7 (3) | H14B—C141—H14C | 109.5 |
C15—N1—Re | 121.9 (2) | N2—C21—C22 | 122.7 (3) |
C11—N1—Re | 119.4 (2) | N2—C21—H21 | 118.6 |
C25—N2—C21 | 118.5 (3) | C22—C21—H21 | 118.6 |
C25—N2—Re | 120.2 (2) | C23—C22—C21 | 117.6 (3) |
C21—N2—Re | 121.3 (2) | C23—C22—C221 | 121.8 (3) |
O2—C1—C2 | 110.8 (3) | C21—C22—C221 | 120.6 (3) |
O2—C1—H1A | 109.5 | C22—C23—C24 | 120.8 (3) |
C2—C1—H1A | 109.5 | C22—C23—H23 | 119.6 |
O2—C1—H1B | 109.5 | C24—C23—H23 | 119.6 |
C2—C1—H1B | 109.5 | C25—C24—C23 | 117.3 (3) |
H1A—C1—H1B | 108.1 | C25—C24—C241 | 120.5 (3) |
C1—C2—H2A | 109.5 | C23—C24—C241 | 122.2 (3) |
C1—C2—H2B | 109.5 | N2—C25—C24 | 123.0 (3) |
H2A—C2—H2B | 109.5 | N2—C25—H25 | 118.5 |
C1—C2—H2C | 109.5 | C24—C25—H25 | 118.5 |
H2A—C2—H2C | 109.5 | C22—C221—H22A | 109.5 |
H2B—C2—H2C | 109.5 | C22—C221—H22B | 109.5 |
N1—C11—C12 | 122.7 (3) | H22A—C221—H22B | 109.5 |
N1—C11—H11 | 118.7 | C22—C221—H22C | 109.5 |
C12—C11—H11 | 118.7 | H22A—C221—H22C | 109.5 |
C13—C12—C11 | 117.7 (3) | H22B—C221—H22C | 109.5 |
C13—C12—C121 | 122.5 (3) | C24—C241—H24A | 109.5 |
C11—C12—C121 | 119.8 (3) | C24—C241—H24B | 109.5 |
C12—C13—C14 | 120.6 (3) | H24A—C241—H24B | 109.5 |
C12—C13—H13 | 119.7 | C24—C241—H24C | 109.5 |
C14—C13—H13 | 119.7 | H24A—C241—H24C | 109.5 |
C13—C14—C15 | 117.4 (3) | H24B—C241—H24C | 109.5 |
N2—Re—O2—C1 | −125.9 (4) | N1—C11—C12—C13 | −1.6 (5) |
N1—Re—O2—C1 | 53.9 (4) | N1—C11—C12—C121 | 178.2 (3) |
Cl2—Re—O2—C1 | 144.0 (3) | C11—C12—C13—C14 | 0.1 (5) |
Cl1—Re—O2—C1 | −35.7 (3) | C121—C12—C13—C14 | −179.7 (3) |
O1—Re—N1—C15 | −145.0 (2) | C12—C13—C14—C15 | 1.3 (5) |
O2—Re—N1—C15 | 41.7 (2) | C12—C13—C14—C141 | −179.6 (3) |
Cl2—Re—N1—C15 | −47.7 (2) | C11—N1—C15—C14 | 0.0 (4) |
Cl1—Re—N1—C15 | 126.1 (2) | Re—N1—C15—C14 | 179.2 (2) |
O1—Re—N1—C11 | 34.2 (2) | C13—C14—C15—N1 | −1.3 (5) |
O2—Re—N1—C11 | −139.2 (2) | C141—C14—C15—N1 | 179.5 (3) |
Cl2—Re—N1—C11 | 131.5 (2) | C25—N2—C21—C22 | −0.2 (4) |
Cl1—Re—N1—C11 | −54.7 (2) | Re—N2—C21—C22 | −178.7 (2) |
O1—Re—N2—C25 | −35.3 (2) | N2—C21—C22—C23 | 1.3 (4) |
O2—Re—N2—C25 | 138.1 (2) | N2—C21—C22—C221 | −179.5 (3) |
Cl2—Re—N2—C25 | −132.6 (2) | C21—C22—C23—C24 | −0.9 (5) |
Cl1—Re—N2—C25 | 53.7 (2) | C221—C22—C23—C24 | 179.9 (3) |
O1—Re—N2—C21 | 143.2 (2) | C22—C23—C24—C25 | −0.5 (5) |
O2—Re—N2—C21 | −43.4 (2) | C22—C23—C24—C241 | −179.6 (3) |
Cl2—Re—N2—C21 | 45.9 (2) | C21—N2—C25—C24 | −1.3 (4) |
Cl1—Re—N2—C21 | −127.9 (2) | Re—N2—C25—C24 | 177.2 (2) |
Re—O2—C1—C2 | −157.5 (3) | C23—C24—C25—N2 | 1.6 (5) |
C15—N1—C11—C12 | 1.5 (4) | C241—C24—C25—N2 | −179.2 (3) |
Re—N1—C11—C12 | −177.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C121—H12C···Cl1i | 0.98 | 2.82 | 3.754 (4) | 160 |
C13—H13···Cl1i | 0.95 | 2.92 | 3.717 (4) | 142 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Re(C2H5O)Cl2O(C7H9N)2] |
Mr | 532.46 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 90 |
a, b, c (Å) | 8.782 (2), 9.458 (2), 12.022 (3) |
α, β, γ (°) | 76.71 (3), 70.84 (3), 73.21 (3) |
V (Å3) | 892.9 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.11 |
Crystal size (mm) | 0.14 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur PX diffractometer with CCD detector |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.522, 0.608 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9213, 3992, 3519 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.043, 0.96 |
No. of reflections | 3992 |
No. of parameters | 213 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −0.69 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Re—O1 | 1.698 (2) | Re—Cl2 | 2.3728 (11) |
Re—O2 | 1.882 (2) | Re—N1 | 2.143 (3) |
Re—Cl1 | 2.4360 (11) | Re—N2 | 2.132 (3) |
O1—Re—O2 | 171.57 (10) | Cl1—Re—Cl2 | 173.74 (3) |
N1—Re—N2 | 177.79 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C121—H12C···Cl1i | 0.98 | 2.82 | 3.754 (4) | 160 |
C13—H13···Cl1i | 0.95 | 2.92 | 3.717 (4) | 142 |
Symmetry code: (i) x−1, y, z. |
CgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
1 | 2i | 3.546 (4) | 2.0 (3) | 3.381 (4) | 1.069 (4) |
2 | 1ii | 3.546 (4) | 2.0 (3) | 3.362 (4) | 1.127 (4) |
Cg1 denotes the centroid of ring N1/C11-C15; Cg2 of ring N2/C21-C25. Cg···Cg is the distance between ring centroids. The dihedral plane is that between the CgI and CgJ planes. The interplanar distance is the perpendicular distance of CgI from ring J plane. The offset is the lateral displacement of ring I relative to ring J. Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. |
Acknowledgements
This work was partially supported by the Polish Ministry of Science and Higher Education through grant No. N204 028538. The financial support is gratefully acknowledged.
References
Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fortin, S. & Beauchamp, A. L. (1998). Inorg. Chim. Acta, 279, 159–164. Web of Science CSD CrossRef CAS Google Scholar
Iengo, E., Zangrando, E., Mestroni, S., Fronzoni, G., Stener, M. & Alessio, E. (2001). J. Chem. Soc. Dalton Trans. pp. 1338–1346. Web of Science CSD CrossRef Google Scholar
Lock, C. J. L. & Turner, G. (1977). Can. J. Chem. 55, 333–339. CrossRef CAS Web of Science Google Scholar
McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458–15463. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of the ReO(OR)X2L2 type (where R is an alkyl group, X is a halogen and L is an N-donor ligand or monodendate phosphine) are commonly used as precursors for other Re(V) species, such as dioxo mononuclear and dinuclear compounds (Fortin & Beauchamp, 1998). When L is a diaza ligand, they might also be applied for the construction of multi-metal supramolecular assemblies (Iengo et al., 2001). Normally, these complexes are obtained as the all trans isomers (Lock & Turner, 1977). In this paper we report the synthesis procedure and crystal structure of an oxorhenium(V) complex with 3,5-dimethylpyridine ligands, the title compound.
The environment around the metal center is a slightly distorted octahedron with two chloro ligands, two 3,5-dimethylpyridine ligands, ethoxo and oxo ligands, all in trans positions to each other (Fig. 1). The observed Re—ligand bond distances (Table 1) are similar to the reported for analogous complexes of the ReO(OR)X2L2 type. However, the distortion of the angles in the coordination sphere of the Re atom is more significant than in similar compounds. Especially, the O1—Re—O2 and Cl1—Re—Cl2 angles differ from the expected value of 180°.
In the crystal structure, the molecules of the title complex are linked by a few weak hydrogen interactions of the C—H···Cl type (Desiraju & Steiner, 1999). The C13 and C121 atoms act as hydrogen-bond donors to Cl1i [symmetry code: (i) x – 1, y, z] as an acceptor (Table 2). The observed C—H···Cl distances are similar to the values of the N—H···Cl hydrogen bonds identified for Cl bonded to a transition metal (Aullón et al., 1998). Each of the molecules accepts two hydrogen bonds and also donates two hydrogen bonds (Fig. 2), thus forming a C(7)C(7)[R21(6)] chain of rings motif (Bernstein et al., 1995).
Additionally, the N1/C11–C15 and N2/C21–C25 rings are engaged in π-π stacking contacts (Fig. 2), which further assist in the stabilization of the crystal structure by assembling chains running parallel to the [100] direction. The distance of the centroids and the offset of the pyridine rings (Table 3) are typical for energetically favorable non-bonded aromatic interactions (McGaughey et al., 1998).