organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(3,4-Dimeth­­oxy­phen­yl)eth­yl]-N,4-di­methyl­benzene­sulfonamide

aDepartment of Physics, Panimalar Institute of Technology, Chennai 602 103, India, bDepartment of Physics, SRM University, Kattankulathur Campus, Chennai, India, cDepartment of Chemistry, SRM University, Ramapuram Campus, Chennai 600 089, India, dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 21 July 2011; accepted 22 July 2011; online 30 July 2011)

In the title compound, C18H23NO4S, the dihedral angle between the two aromatic rings is 29.14 (7)°. The S atom has a distorted tetra­hedral geometry [106.15 (9)–119.54 (10)°]. The crystal structure exhibits weak C—H⋯O and ππ inter­actions.

Related literature

For the biological activity of sulfonamide derivatives, see: Chumakov et al. (2006[Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., PalomaresSa'nches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923-929.]); Kremer et al. (2006[Kremer, E., Facchin, G., Este'vez, E., Albore' s, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167-1175.]). For related structures, see: Khan et al. (2010[Khan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23NO4S

  • Mr = 349.43

  • Monoclinic, P 21 /n

  • a = 5.7814 (4) Å

  • b = 13.9861 (12) Å

  • c = 21.9791 (18) Å

  • β = 92.949 (4)°

  • V = 1774.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.960

  • 18724 measured reflections

  • 3343 independent reflections

  • 2614 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.04

  • 3343 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.54 3.452 (2) 166
C18—H18B⋯O2ii 0.96 2.38 3.302 (3) 160
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamide derivatives are extensively used in medicine as they possess a wide range of medicinal, pharmacological and antimicrobial properties (Chumakov et al., 2006, Kremer et al., 2006). We report the crystal structure of the titled compound (I) (Fig. 1).

In the title compound (I), the geometric pararameters are similar with the reported similar structures (Khan et al., 2010; Sharif et al., 2010). The S atom of the title molecule has a distorted tetrahedral geometry, with S1—O1 = 1.4210 (15), S1—O2 = 1.4195 (15), S1—N1 = 1.6391 (17), S1—C1 = 1.7538 (19) Å, O1—S1—O2 = 119.54 (10), O1—S1—N1 = 106.83 (9), O1—S1—C7 = 108.64 (9), O2—S1—N1 = 106.32 (9), O2—S1—C7 = 108.57 (9) and N1—S1—C7 = 106.15 (9)°.

The dihedral angle between the two rings C1—C6 and C11—C16 is 29.14 (7)°. The crystal structure exhibits weak C—H···O (Fig.2 and Table 1) and ππ [Cg1···Cg2 (-x,2 - y,-z) distance of 5.2909 (13)Å and Cg2···Cg2 (-x,1 - y,-z) distance of 4.7146 (12) Å; Cg1 and Cg2 are the centroids of the rings C1—C6 and C11—C16, respectively] interactions.

Related literature top

For the biological activity of sulfonamide derivatives, see: Chumakov et al. (2006); Kremer et al. (2006). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

2-(3,4-dimethoxyphenyl)-N-methyl ethanamine (51 mmol) was dissolved in dichloromethane (20 ml) in a round bottom flask. To this, added triethylamine (10.2 mmol) with stirring for 5 minutes. Then 4-methylbenzene-1-sulfonyl chloride (51 mmol) was added into the reaction mass and heated to 50 °C for 6 hrs. After cooling the reaction mixture to the normal temperature, it was added to water (20 ml). The aqueous layer was separated. The ethyl acetate layer was washed twice with 10% sodium chloride solution. The organic layer was dried over 2 g of anhydrous sodium sulfate and filtered. The filtrate was evaporated under vacuum to isolate the crude compound. Recrystallization of the compound using ethyl acetate and hexane mixture yielded the diffraction quality crystals.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.
N-[2-(3,4-Dimethoxyphenyl)ethyl]-N,4-dimethylbenzenesulfonamide top
Crystal data top
C18H23NO4SF(000) = 744
Mr = 349.43Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6145 reflections
a = 5.7814 (4) Åθ = 2.4–25.5°
b = 13.9861 (12) ŵ = 0.20 mm1
c = 21.9791 (18) ÅT = 295 K
β = 92.949 (4)°Block, colourless
V = 1774.9 (2) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3343 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 25.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 47
Tmin = 0.942, Tmax = 0.960k = 1617
18724 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.6472P]
where P = (Fo2 + 2Fc2)/3
3343 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H23NO4SV = 1774.9 (2) Å3
Mr = 349.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7814 (4) ŵ = 0.20 mm1
b = 13.9861 (12) ÅT = 295 K
c = 21.9791 (18) Å0.30 × 0.24 × 0.20 mm
β = 92.949 (4)°
Data collection top
Bruker Kappa APEXII
diffractometer
3343 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2614 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.960Rint = 0.036
18724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3343 reflectionsΔρmin = 0.30 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58829 (8)0.85799 (4)0.11159 (2)0.04660 (17)
O10.6833 (3)0.87108 (11)0.05383 (7)0.0609 (4)
O20.7388 (3)0.84655 (12)0.16418 (7)0.0663 (5)
O30.0375 (3)0.48564 (11)0.16121 (7)0.0607 (4)
O40.3215 (2)0.58964 (12)0.18094 (6)0.0612 (4)
N10.4284 (3)0.76123 (11)0.10662 (7)0.0430 (4)
C10.3980 (3)0.95272 (13)0.12431 (8)0.0425 (4)
C20.3502 (4)0.97724 (15)0.18308 (9)0.0537 (5)
H20.43080.94870.21600.064*
C30.1823 (4)1.04423 (16)0.19236 (11)0.0628 (6)
H30.15011.06100.23200.075*
C40.0602 (4)1.08733 (15)0.14425 (11)0.0597 (6)
C50.1148 (4)1.06328 (16)0.08611 (11)0.0615 (6)
H50.03681.09290.05320.074*
C60.2822 (4)0.99631 (15)0.07548 (9)0.0522 (5)
H60.31670.98070.03580.063*
C70.1298 (5)1.15787 (19)0.15501 (15)0.0872 (9)
H7A0.06521.22090.15910.131*
H7B0.20381.14120.19160.131*
H7C0.24161.15650.12120.131*
C80.3156 (4)0.73564 (17)0.16243 (10)0.0587 (6)
H8A0.17780.77320.16560.088*
H8B0.41940.74780.19710.088*
H8C0.27550.66900.16130.088*
C90.2771 (4)0.75162 (14)0.05110 (9)0.0492 (5)
H9A0.34400.78630.01810.059*
H9B0.12720.77960.05800.059*
C100.2458 (4)0.64822 (14)0.03316 (9)0.0497 (5)
H10A0.39610.62110.02560.060*
H10B0.18410.61350.06690.060*
C110.0868 (3)0.63423 (13)0.02258 (8)0.0408 (4)
C120.1148 (3)0.68548 (15)0.03237 (9)0.0489 (5)
H120.15720.72980.00340.059*
C130.2558 (3)0.67224 (15)0.08459 (9)0.0498 (5)
H130.39040.70820.09050.060*
C140.1991 (3)0.60677 (14)0.12757 (8)0.0420 (4)
C150.0004 (3)0.55133 (13)0.11718 (8)0.0416 (4)
C160.1404 (3)0.56603 (13)0.06575 (9)0.0431 (5)
H160.27420.52960.05960.052*
C170.2289 (4)0.42275 (18)0.15152 (13)0.0742 (7)
H17A0.37030.45880.15080.111*
H17B0.22870.37670.18390.111*
H17C0.21690.39030.11330.111*
C180.4992 (4)0.65515 (19)0.19872 (11)0.0662 (7)
H18A0.61910.65260.17010.099*
H18B0.56260.63860.23860.099*
H18C0.43630.71860.19950.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0386 (3)0.0522 (3)0.0483 (3)0.0061 (2)0.0042 (2)0.0112 (2)
O10.0549 (9)0.0663 (10)0.0630 (10)0.0020 (7)0.0177 (7)0.0123 (8)
O20.0512 (8)0.0763 (11)0.0685 (10)0.0111 (8)0.0249 (7)0.0178 (8)
O30.0600 (9)0.0594 (9)0.0614 (9)0.0207 (7)0.0094 (7)0.0241 (7)
O40.0541 (8)0.0736 (11)0.0538 (9)0.0195 (7)0.0170 (7)0.0185 (8)
N10.0453 (9)0.0435 (9)0.0394 (9)0.0073 (7)0.0075 (7)0.0039 (7)
C10.0457 (10)0.0391 (10)0.0425 (11)0.0008 (8)0.0010 (8)0.0059 (8)
C20.0714 (14)0.0478 (12)0.0420 (12)0.0067 (10)0.0031 (10)0.0046 (9)
C30.0869 (17)0.0490 (13)0.0548 (14)0.0079 (12)0.0246 (12)0.0054 (11)
C40.0648 (14)0.0407 (12)0.0757 (16)0.0065 (10)0.0224 (12)0.0010 (11)
C50.0687 (14)0.0523 (13)0.0631 (14)0.0140 (11)0.0003 (11)0.0081 (11)
C60.0634 (13)0.0507 (12)0.0426 (11)0.0062 (10)0.0041 (9)0.0023 (9)
C70.0838 (18)0.0608 (16)0.120 (2)0.0226 (14)0.0352 (17)0.0052 (16)
C80.0647 (14)0.0592 (14)0.0520 (13)0.0055 (11)0.0017 (10)0.0009 (11)
C90.0508 (11)0.0448 (11)0.0501 (12)0.0040 (9)0.0139 (9)0.0035 (9)
C100.0555 (12)0.0445 (12)0.0480 (12)0.0055 (9)0.0088 (9)0.0028 (9)
C110.0425 (10)0.0379 (10)0.0416 (11)0.0011 (8)0.0021 (8)0.0006 (8)
C120.0471 (11)0.0535 (12)0.0459 (11)0.0088 (9)0.0014 (9)0.0142 (9)
C130.0390 (10)0.0563 (12)0.0536 (12)0.0140 (9)0.0031 (9)0.0107 (10)
C140.0378 (9)0.0457 (11)0.0420 (11)0.0025 (8)0.0031 (8)0.0035 (9)
C150.0424 (10)0.0368 (10)0.0453 (11)0.0031 (8)0.0012 (8)0.0068 (8)
C160.0407 (10)0.0354 (10)0.0525 (12)0.0076 (8)0.0036 (8)0.0023 (9)
C170.0615 (14)0.0631 (16)0.0972 (19)0.0222 (12)0.0040 (13)0.0318 (14)
C180.0567 (13)0.0845 (18)0.0556 (14)0.0189 (12)0.0147 (11)0.0004 (12)
Geometric parameters (Å, º) top
S1—O21.4195 (15)C8—H8A0.9600
S1—O11.4210 (15)C8—H8B0.9600
S1—N11.6391 (17)C8—H8C0.9600
S1—C11.7538 (19)C9—C101.507 (3)
O3—C151.359 (2)C9—H9A0.9700
O3—C171.421 (3)C9—H9B0.9700
O4—C141.360 (2)C10—C111.506 (3)
O4—C181.417 (2)C10—H10A0.9700
N1—C81.463 (3)C10—H10B0.9700
N1—C91.471 (2)C11—C121.376 (3)
C1—C61.378 (3)C11—C161.392 (3)
C1—C21.378 (3)C12—C131.386 (3)
C2—C31.372 (3)C12—H120.9300
C2—H20.9300C13—C141.367 (3)
C3—C41.380 (3)C13—H130.9300
C3—H30.9300C14—C151.399 (3)
C4—C51.374 (3)C15—C161.372 (2)
C4—C71.504 (3)C16—H160.9300
C5—C61.375 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
O2—S1—O1119.54 (10)N1—C9—H9A109.4
O2—S1—N1106.32 (9)C10—C9—H9A109.4
O1—S1—N1106.83 (9)N1—C9—H9B109.4
O2—S1—C1108.57 (9)C10—C9—H9B109.4
O1—S1—C1108.64 (9)H9A—C9—H9B108.0
N1—S1—C1106.15 (9)C11—C10—C9113.42 (16)
C15—O3—C17117.52 (16)C11—C10—H10A108.9
C14—O4—C18117.51 (16)C9—C10—H10A108.9
C8—N1—C9113.66 (16)C11—C10—H10B108.9
C8—N1—S1114.86 (13)C9—C10—H10B108.9
C9—N1—S1116.11 (13)H10A—C10—H10B107.7
C6—C1—C2120.49 (18)C12—C11—C16117.84 (17)
C6—C1—S1119.59 (15)C12—C11—C10122.44 (17)
C2—C1—S1119.67 (15)C16—C11—C10119.71 (16)
C3—C2—C1119.1 (2)C11—C12—C13121.17 (18)
C3—C2—H2120.4C11—C12—H12119.4
C1—C2—H2120.4C13—C12—H12119.4
C2—C3—C4121.5 (2)C14—C13—C12120.65 (18)
C2—C3—H3119.2C14—C13—H13119.7
C4—C3—H3119.2C12—C13—H13119.7
C5—C4—C3118.2 (2)O4—C14—C13125.54 (17)
C5—C4—C7120.8 (2)O4—C14—C15115.54 (16)
C3—C4—C7121.0 (2)C13—C14—C15118.91 (17)
C4—C5—C6121.5 (2)O3—C15—C16125.43 (17)
C4—C5—H5119.3O3—C15—C14114.69 (16)
C6—C5—H5119.3C16—C15—C14119.88 (17)
C5—C6—C1119.15 (19)C15—C16—C11121.46 (17)
C5—C6—H6120.4C15—C16—H16119.3
C1—C6—H6120.4C11—C16—H16119.3
C4—C7—H7A109.5O3—C17—H17A109.5
C4—C7—H7B109.5O3—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C4—C7—H7C109.5O3—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
N1—C8—H8A109.5O4—C18—H18A109.5
N1—C8—H8B109.5O4—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
N1—C8—H8C109.5O4—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N1—C9—C10111.29 (16)
O2—S1—N1—C851.06 (16)C8—N1—C9—C1075.5 (2)
O1—S1—N1—C8179.76 (14)S1—N1—C9—C10147.97 (15)
C1—S1—N1—C864.43 (15)N1—C9—C10—C11178.43 (16)
O2—S1—N1—C9172.91 (13)C9—C10—C11—C1241.2 (3)
O1—S1—N1—C944.21 (15)C9—C10—C11—C16140.1 (2)
C1—S1—N1—C971.59 (15)C16—C11—C12—C132.3 (3)
O2—S1—C1—C6161.10 (17)C10—C11—C12—C13178.9 (2)
O1—S1—C1—C629.63 (19)C11—C12—C13—C140.8 (3)
N1—S1—C1—C684.94 (18)C18—O4—C14—C1311.4 (3)
O2—S1—C1—C224.6 (2)C18—O4—C14—C15168.70 (19)
O1—S1—C1—C2156.06 (17)C12—C13—C14—O4178.3 (2)
N1—S1—C1—C289.36 (18)C12—C13—C14—C151.8 (3)
C6—C1—C2—C31.4 (3)C17—O3—C15—C164.2 (3)
S1—C1—C2—C3172.90 (17)C17—O3—C15—C14176.0 (2)
C1—C2—C3—C40.1 (4)O4—C14—C15—O32.4 (3)
C2—C3—C4—C51.6 (4)C13—C14—C15—O3177.47 (19)
C2—C3—C4—C7177.6 (2)O4—C14—C15—C16177.38 (18)
C3—C4—C5—C61.7 (4)C13—C14—C15—C162.7 (3)
C7—C4—C5—C6177.6 (2)O3—C15—C16—C11179.08 (18)
C4—C5—C6—C10.2 (3)C14—C15—C16—C111.2 (3)
C2—C1—C6—C51.3 (3)C12—C11—C16—C151.4 (3)
S1—C1—C6—C5172.95 (17)C10—C11—C16—C15179.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.592.942 (3)103
C8—H8B···O20.962.442.895 (3)109
C9—H9A···O10.972.392.880 (3)111
C12—H12···O1i0.932.543.452 (2)166
C18—H18B···O2ii0.962.383.302 (3)160
Symmetry codes: (i) x1, y, z; (ii) x3/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H23NO4S
Mr349.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)5.7814 (4), 13.9861 (12), 21.9791 (18)
β (°) 92.949 (4)
V3)1774.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
18724, 3343, 2614
Rint0.036
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04
No. of reflections3343
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.592.942 (3)103
C8—H8B···O20.962.442.895 (3)109
C9—H9A···O10.972.392.880 (3)111
C12—H12···O1i0.932.543.452 (2)166
C18—H18B···O2ii0.962.383.302 (3)160
Symmetry codes: (i) x1, y, z; (ii) x3/2, y+3/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., PalomaresSa'nches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923–929.  Web of Science CrossRef CAS Google Scholar
First citationKhan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKremer, E., Facchin, G., Este'vez, E., Albore' s, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167–1175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds