organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­chloro­phen­yl)-4-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 July 2011; accepted 18 July 2011; online 23 July 2011)

In the title compound, C14H11Cl2NO, the two aromatic rings are nearly orthogonal to each other [dihedral angle 79.7 (1)°], while the central amide core –NH—C(=O)– is nearly coplanar with the benzoyl ring [N—C—C—C torsion angles = −5.5 (3) and 1772. (2)°]. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [001].

Related literature

For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2006[Gowda, B. T., Kožíšek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.]), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491-500.]) and on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2NO

  • Mr = 280.14

  • Tetragonal, I 41 /a

  • a = 16.4706 (8) Å

  • c = 19.8709 (9) Å

  • V = 5390.6 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 K

  • 0.48 × 0.34 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.807, Tmax = 0.937

  • 5852 measured reflections

  • 2752 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.01

  • 2752 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.08 (2) 2.878 (2) 164 (2)
Symmetry code: (i) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Bhat & Gowda, 2000; Gowda et al., 2006, 2009), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004) and N-(aryl)-arylsulfonamides (Gowda et al., 2005), the crystal structure of N-(2,6-dichlorophenyl)-4-methylbenzamide (I) has been determined (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other, similar to that observed in N-(2,6-dimethylphenyl)-4-methylbenzamide (II) (Gowda et al., 2009) and other benzanilides, with similar bond parameters.

The two aromatic rings in the structure make the dihedral angle of 79.7 (1)°, compared to the value of 78.8 (1)° in (II). The central amide core –NH—C(=O)– is nearly coplanar with the benzoyl ring. The orientation of the anilino ring with respect to the amide core are given by the torsion angles, C2—C1—N1—C7 = 105.8 (3)° and C6—C1—N1—C7 = -74.5 (3)°.

Part of the crystal structure of (I), showing the formation of hydrogen- bonded layered chains (Table 1) running along b axis is shown in Fig.2.

Related literature top

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2006, 2009), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004) and on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental top

The title compound was prepared by the method described by Gowda et al. (2009). The purity of the compound was checked and characterized by recording its infrared and NMR spectra.

Needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding with the aromatic C—H = 0.93Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,6-Dichlorophenyl)-4-methylbenzamide top
Crystal data top
C14H11Cl2NODx = 1.381 Mg m3
Mr = 280.14Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1773 reflections
Hall symbol: -I 4adθ = 2.8–27.9°
a = 16.4706 (8) ŵ = 0.47 mm1
c = 19.8709 (9) ÅT = 293 K
V = 5390.6 (4) Å3Prism, colourless
Z = 160.48 × 0.34 × 0.14 mm
F(000) = 2304
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2752 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1217
Tmin = 0.807, Tmax = 0.937k = 1720
5852 measured reflectionsl = 1024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0618P)2 + 1.1095P]
where P = (Fo2 + 2Fc2)/3
2752 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C14H11Cl2NOZ = 16
Mr = 280.14Mo Kα radiation
Tetragonal, I41/aµ = 0.47 mm1
a = 16.4706 (8) ÅT = 293 K
c = 19.8709 (9) Å0.48 × 0.34 × 0.14 mm
V = 5390.6 (4) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2752 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1701 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.937Rint = 0.021
5852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
2752 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14058 (13)0.52556 (15)0.06376 (10)0.0437 (5)
C20.07328 (15)0.48135 (16)0.08354 (12)0.0542 (6)
C30.00303 (16)0.51539 (19)0.08617 (14)0.0686 (8)
H30.04740.48490.10020.082*
C40.01236 (17)0.5952 (2)0.06771 (14)0.0707 (8)
H40.06380.61860.06860.085*
C50.05259 (16)0.64076 (17)0.04806 (14)0.0630 (7)
H50.04550.69470.03560.076*
C60.12874 (14)0.60634 (16)0.04678 (11)0.0505 (6)
C70.25465 (13)0.47064 (13)0.00212 (10)0.0397 (5)
C80.33829 (13)0.43726 (13)0.00489 (9)0.0388 (5)
C90.37543 (16)0.4135 (2)0.05361 (12)0.0726 (9)
H90.34720.41720.09400.087*
C100.45324 (17)0.3845 (2)0.05353 (13)0.0792 (9)
H100.47660.36920.09420.095*
C110.49760 (14)0.37724 (14)0.00367 (12)0.0497 (6)
C120.46104 (15)0.40214 (18)0.06207 (12)0.0655 (8)
H120.48990.39920.10220.079*
C130.38295 (15)0.43136 (17)0.06293 (11)0.0600 (7)
H130.36000.44740.10360.072*
C140.58324 (16)0.34561 (19)0.00401 (16)0.0713 (8)
H14A0.61670.37960.02380.086*
H14B0.58390.29120.01320.086*
H14C0.60380.34590.04920.086*
N10.21884 (11)0.49001 (12)0.06109 (8)0.0462 (5)
H1N0.2409 (14)0.4795 (15)0.0972 (9)0.055*
O10.21852 (10)0.48106 (11)0.05131 (7)0.0548 (5)
Cl10.08438 (5)0.37957 (5)0.10321 (4)0.0777 (3)
Cl20.21062 (4)0.66582 (4)0.02405 (4)0.0717 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (13)0.0624 (16)0.0309 (11)0.0084 (11)0.0007 (9)0.0048 (10)
C20.0483 (15)0.0640 (16)0.0502 (14)0.0043 (12)0.0027 (11)0.0034 (11)
C30.0425 (15)0.082 (2)0.0817 (19)0.0023 (14)0.0067 (13)0.0058 (15)
C40.0432 (16)0.086 (2)0.083 (2)0.0163 (15)0.0036 (14)0.0081 (16)
C50.0530 (16)0.0590 (17)0.0770 (18)0.0150 (13)0.0009 (13)0.0057 (14)
C60.0438 (14)0.0612 (16)0.0465 (13)0.0046 (11)0.0013 (10)0.0056 (11)
C70.0430 (12)0.0448 (13)0.0315 (11)0.0010 (10)0.0003 (9)0.0002 (9)
C80.0400 (12)0.0426 (12)0.0337 (11)0.0009 (10)0.0014 (9)0.0010 (9)
C90.0600 (18)0.120 (3)0.0375 (13)0.0260 (16)0.0047 (12)0.0161 (14)
C100.0616 (19)0.127 (3)0.0485 (15)0.0296 (18)0.0082 (14)0.0186 (16)
C110.0414 (13)0.0509 (14)0.0566 (14)0.0011 (11)0.0053 (11)0.0013 (11)
C120.0492 (16)0.101 (2)0.0461 (14)0.0154 (14)0.0064 (12)0.0001 (14)
C130.0492 (15)0.095 (2)0.0355 (13)0.0157 (14)0.0000 (11)0.0048 (12)
C140.0482 (16)0.081 (2)0.0845 (19)0.0108 (14)0.0077 (14)0.0042 (16)
N10.0414 (11)0.0676 (14)0.0297 (10)0.0122 (9)0.0026 (8)0.0012 (9)
O10.0541 (10)0.0812 (12)0.0291 (8)0.0129 (8)0.0065 (7)0.0015 (7)
Cl10.0697 (5)0.0710 (5)0.0924 (5)0.0008 (4)0.0054 (4)0.0200 (4)
Cl20.0594 (5)0.0703 (5)0.0853 (5)0.0040 (3)0.0068 (3)0.0012 (4)
Geometric parameters (Å, º) top
C1—C21.383 (3)C8—C91.371 (3)
C1—C61.386 (3)C8—C131.371 (3)
C1—N11.417 (3)C9—C101.368 (4)
C2—C31.377 (3)C9—H90.9300
C2—Cl11.731 (3)C10—C111.357 (3)
C3—C41.374 (4)C10—H100.9300
C3—H30.9300C11—C121.370 (3)
C4—C51.364 (4)C11—C141.504 (3)
C4—H40.9300C12—C131.373 (3)
C5—C61.377 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—Cl21.727 (2)C14—H14A0.9600
C7—O11.229 (2)C14—H14B0.9600
C7—N11.350 (3)C14—H14C0.9600
C7—C81.484 (3)N1—H1N0.823 (16)
C2—C1—C6117.5 (2)C10—C9—C8121.1 (2)
C2—C1—N1121.5 (2)C10—C9—H9119.4
C6—C1—N1121.0 (2)C8—C9—H9119.4
C3—C2—C1121.9 (3)C11—C10—C9122.4 (2)
C3—C2—Cl1118.8 (2)C11—C10—H10118.8
C1—C2—Cl1119.30 (19)C9—C10—H10118.8
C4—C3—C2118.8 (3)C10—C11—C12116.5 (2)
C4—C3—H3120.6C10—C11—C14122.7 (2)
C2—C3—H3120.6C12—C11—C14120.8 (2)
C5—C4—C3121.0 (3)C11—C12—C13121.8 (2)
C5—C4—H4119.5C11—C12—H12119.1
C3—C4—H4119.5C13—C12—H12119.1
C4—C5—C6119.6 (3)C8—C13—C12121.1 (2)
C4—C5—H5120.2C8—C13—H13119.4
C6—C5—H5120.2C12—C13—H13119.4
C5—C6—C1121.3 (2)C11—C14—H14A109.5
C5—C6—Cl2118.9 (2)C11—C14—H14B109.5
C1—C6—Cl2119.88 (17)H14A—C14—H14B109.5
O1—C7—N1120.3 (2)C11—C14—H14C109.5
O1—C7—C8122.21 (18)H14A—C14—H14C109.5
N1—C7—C8117.44 (17)H14B—C14—H14C109.5
C9—C8—C13117.0 (2)C7—N1—C1121.85 (17)
C9—C8—C7119.24 (19)C7—N1—H1N120.9 (17)
C13—C8—C7123.73 (19)C1—N1—H1N117.2 (17)
C6—C1—C2—C30.3 (4)O1—C7—C8—C13174.2 (2)
N1—C1—C2—C3179.9 (2)N1—C7—C8—C135.5 (3)
C6—C1—C2—Cl1178.38 (16)C13—C8—C9—C100.7 (4)
N1—C1—C2—Cl11.8 (3)C7—C8—C9—C10178.2 (3)
C1—C2—C3—C40.9 (4)C8—C9—C10—C110.3 (5)
Cl1—C2—C3—C4177.2 (2)C9—C10—C11—C121.3 (5)
C2—C3—C4—C51.0 (4)C9—C10—C11—C14179.8 (3)
C3—C4—C5—C60.1 (4)C10—C11—C12—C131.3 (4)
C4—C5—C6—C11.4 (4)C14—C11—C12—C13179.9 (3)
C4—C5—C6—Cl2178.2 (2)C9—C8—C13—C120.6 (4)
C2—C1—C6—C51.5 (3)C7—C8—C13—C12178.0 (2)
N1—C1—C6—C5178.7 (2)C11—C12—C13—C80.4 (4)
C2—C1—C6—Cl2178.09 (17)O1—C7—N1—C12.5 (3)
N1—C1—C6—Cl21.7 (3)C8—C7—N1—C1177.2 (2)
O1—C7—C8—C93.2 (4)C2—C1—N1—C7105.8 (3)
N1—C7—C8—C9177.2 (2)C6—C1—N1—C774.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.08 (2)2.878 (2)164 (2)
Symmetry code: (i) y+3/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC14H11Cl2NO
Mr280.14
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)16.4706 (8), 19.8709 (9)
V3)5390.6 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.48 × 0.34 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.807, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
5852, 2752, 1701
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.01
No. of reflections2752
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.823 (16)2.077 (17)2.878 (2)164 (2)
Symmetry code: (i) y+3/4, x+1/4, z+1/4.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

References

First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationGowda, B. T., Kožíšek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491–500.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds