organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–pyridine-3,5-dicarb­­oxy­lic acid (3/4)

aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@cczu.edu.cn

(Received 20 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, 3C10H8N2·4C7H5NO4, the asymmetric unit contains two mol­ecules of pyridine-3,5-dicarb­oxy­lic acid and one mol­ecule of 4,4′-bipyridine in general positions together with one mol­ecule of 4,4′-bipyridine lying across a centre of inversion, thus giving a 4:3 molar ratio of pyridine-3,5-dicarb­oxy­lic acid to 4,4′-bipyridine. The dihedral angle between the bipyridine rings on general positions is 21.2 (2)°. These mol­ecular units are linked by O—H⋯N hydrogen bonds forming an extended two-dimensional framework in the crystal.

Related literature

For structures and properties of self-assembled supermolecular compounds, see: Lehn (1990[Lehn, M.-L. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.]). For hydrogen bonds and ππ stacking inter­actions in supermolecular compounds, see: Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]). For related structures, see: Soleimannejad et al. (2009[Soleimannejad, J., Aghabozorg, H., Morsali, A., Hemmati, F. & Manteghi, F. (2009). Acta Cryst. E65, o153.]); Jiang et al. (2010[Jiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o3308.]).

[Scheme 1]

Experimental

Crystal data
  • 3C10H8N2·4C7H5NO4

  • Mr = 1137.04

  • Monoclinic, P 21 /n

  • a = 13.8461 (4) Å

  • b = 11.0564 (3) Å

  • c = 18.1060 (4) Å

  • β = 110.511 (1)°

  • V = 2596.09 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.14 × 0.12 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.995

  • 24265 measured reflections

  • 5918 independent reflections

  • 4086 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.03

  • 5918 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N5i 0.82 1.80 2.5928 (17) 162
O4—H4⋯N4ii 0.82 1.79 2.6037 (18) 172
O5—H5⋯N3iii 0.82 1.78 2.5956 (17) 173
O7—H7⋯N2ii 0.82 1.83 2.5862 (16) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, the field of self-assembled supermolecular chemistry attracted increasing concerns due to their interesting structures and unique properties (Lehn, 1990). Hydrogen-bonds and pi—pi stacking are the most two important interactions in supermolecular compounds (Roesky & Andruh, 2003). As well known, many organic molecules with N– and O-donors such as bipyridine and pyridine-carboxylate acid have been wildly employed for constructing supermolecular complexes. In this paper, we report the hydrothermal synthesis and co-crystal structure of a two-dimensional framework of 4,4'-bipyridine (4,4'-bipy) and pyridine-3,5-dicarboxylic acid (3,5-pydcH2) assembled by the intermolecular hydrogen-bonding interactions. In the title compound, the asymmetric unit is formed by two molecules of pyridine-3,5-dicarboxylic acid and one molecule of 4,4'-bipyridine lying in general positions, together with one molecule of 4,4'-bipyridine lying across a centre of inversion, thus giving a 4:3 molar ratio of pyridine-3,5-dicarboxylic acid to 4,4'-bipyridine. These molecular units are linked by O—H···N hydrogen-bonds forming an extended two-dimensional framework, Table 1, Fig.2. The geometric parameters are in normal range.

Related literature top

For structures and properties of self-assembled supermolecular compounds, see: Lehn (1990). For hydrogen bonds and pi–pi stacking interactions in supermolecular compounds, see: Roesky & Andruh (2003). For related structures, see: Soleimannejad et al. (2009); Jiang et al. (2010).

Experimental top

4, 4'-bipyridine (31.2 mg, 0.2 mmol) and 3, 5-pyridinedicarboxylic acid (50.1 mg, 0.3 mmol) were mixed in 2.5 ml water solution and the mixture was stirred for a while. The solution was transferred to a 23 ml Teflon-lined stainless autoclave. The vessel was sealed and heated to 110 C° for 2 days. The autoclave was cooled to ambient temperature. Colorless flake crystals of title co-crystal compound were obtained and air dried. Yield: 43.2 mg, ca 67%. Anal. Calcd. for C29H21O8N5: C, 61.4; H, 3.71; N, 12.3%. Found: C, 61.1; H, 3.65; N, 12.1%.

Refinement top

H atoms were positioned geometrically and refined using a riding model C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.2 and 1.5 time for Ueq(C) and hydroxyl groups, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title co-crystal compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along b-axis showing hydrogen bonds as dash lines.
4,4'-Bipyridine–pyridine-3,5-dicarboxylic acid (3/4) top
Crystal data top
3C10H8N2·4C7H5NO4F(000) = 1180
Mr = 1137.04Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8461 (4) ÅCell parameters from 6026 reflections
b = 11.0564 (3) Åθ = 2.3–27.4°
c = 18.1060 (4) ŵ = 0.11 mm1
β = 110.511 (1)°T = 296 K
V = 2596.09 (12) Å3Bar, colourless
Z = 20.14 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5918 independent reflections
Radiation source: fine-focus sealed tube4086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1717
Tmin = 0.985, Tmax = 0.995k = 1414
24265 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3037P]
where P = (Fo2 + 2Fc2)/3
5918 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
3C10H8N2·4C7H5NO4V = 2596.09 (12) Å3
Mr = 1137.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.8461 (4) ŵ = 0.11 mm1
b = 11.0564 (3) ÅT = 296 K
c = 18.1060 (4) Å0.14 × 0.12 × 0.05 mm
β = 110.511 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4086 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.995Rint = 0.031
24265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
5918 reflectionsΔρmin = 0.22 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89232 (10)0.36614 (11)1.13048 (7)0.0566 (4)
O20.91840 (11)0.19752 (11)1.20316 (7)0.0556 (4)
H20.94750.24391.23950.083*
O30.74670 (12)0.28184 (12)0.82900 (7)0.0623 (4)
O40.71741 (11)0.08686 (12)0.79668 (7)0.0619 (4)
H40.70580.11240.75190.093*
O50.87147 (10)0.21216 (11)0.58878 (6)0.0513 (3)
H50.89400.21000.63710.077*
O60.91991 (11)0.01904 (12)0.60066 (7)0.0624 (4)
O70.79322 (9)0.10426 (10)0.23327 (6)0.0469 (3)
H70.79690.16890.21230.070*
O80.84624 (11)0.21541 (11)0.34327 (7)0.0577 (4)
N10.75488 (11)0.01589 (13)1.02110 (8)0.0448 (4)
N20.76208 (10)0.19983 (11)0.34879 (7)0.0357 (3)
N31.06273 (12)0.77515 (15)0.25843 (8)0.0504 (4)
N40.83365 (12)0.65049 (16)0.14945 (8)0.0520 (4)
N50.51891 (10)0.82688 (12)0.16936 (7)0.0391 (3)
C10.88290 (13)0.25840 (16)1.13706 (9)0.0403 (4)
C20.82884 (12)0.17824 (14)1.06824 (9)0.0360 (4)
C30.79903 (13)0.06220 (15)1.07946 (9)0.0412 (4)
H30.81050.03711.13090.049*
C40.74003 (12)0.02231 (15)0.94810 (9)0.0399 (4)
H4A0.71180.03170.90670.048*
C50.76425 (12)0.13790 (15)0.93021 (9)0.0365 (4)
C60.80869 (12)0.21694 (15)0.99183 (9)0.0387 (4)
H60.82490.29550.98190.046*
C70.74147 (13)0.17741 (17)0.84653 (9)0.0435 (4)
C80.88248 (12)0.10611 (15)0.56092 (9)0.0387 (4)
C90.84316 (11)0.10225 (13)0.47271 (8)0.0326 (3)
C100.79689 (12)0.20178 (14)0.42774 (9)0.0341 (3)
H100.78970.27240.45330.041*
C110.77338 (12)0.09854 (14)0.31231 (9)0.0351 (4)
H110.75070.09800.25750.042*
C120.81732 (11)0.00551 (13)0.35251 (8)0.0333 (3)
C130.85226 (12)0.00289 (14)0.43401 (9)0.0353 (4)
H130.88180.07150.46280.042*
C140.82183 (12)0.11939 (14)0.30945 (9)0.0365 (4)
C151.05291 (14)0.66299 (18)0.23018 (10)0.0517 (5)
H151.07780.59970.26560.062*
C161.00790 (13)0.63556 (17)0.15141 (10)0.0468 (4)
H161.00070.55540.13480.056*
C170.97328 (12)0.72881 (15)0.09689 (9)0.0377 (4)
C180.92417 (12)0.70293 (16)0.01128 (9)0.0380 (4)
C190.88180 (13)0.58973 (16)0.01519 (9)0.0444 (4)
H190.88300.52940.02090.053*
C200.83816 (14)0.56738 (18)0.09498 (10)0.0501 (5)
H200.81070.49110.11150.060*
C210.87225 (15)0.75957 (19)0.12476 (10)0.0557 (5)
H210.86840.81870.16220.067*
C220.91764 (14)0.78877 (17)0.04623 (10)0.0484 (4)
H220.94390.86600.03170.058*
C230.98663 (14)0.84544 (17)0.12672 (10)0.0505 (5)
H230.96660.91100.09260.061*
C241.02949 (15)0.86454 (18)0.20685 (11)0.0553 (5)
H241.03540.94350.22560.066*
C250.48131 (13)0.77880 (15)0.09709 (9)0.0407 (4)
H250.45990.69850.09190.049*
C260.47296 (12)0.84300 (14)0.02999 (9)0.0376 (4)
H260.44690.80570.01910.045*
C270.50350 (11)0.96381 (14)0.03536 (8)0.0323 (3)
C280.54147 (13)1.01290 (15)0.11086 (9)0.0438 (4)
H280.56241.09330.11800.053*
C290.54790 (13)0.94206 (16)0.17488 (9)0.0444 (4)
H290.57400.97670.22480.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0855 (9)0.0374 (7)0.0412 (7)0.0112 (6)0.0149 (6)0.0045 (6)
O20.0860 (9)0.0441 (7)0.0262 (6)0.0050 (6)0.0065 (6)0.0053 (5)
O30.0973 (11)0.0522 (9)0.0348 (7)0.0113 (7)0.0198 (7)0.0069 (6)
O40.0973 (10)0.0599 (9)0.0235 (6)0.0126 (7)0.0148 (6)0.0025 (6)
O50.0793 (9)0.0441 (7)0.0249 (6)0.0074 (6)0.0109 (6)0.0062 (5)
O60.1012 (10)0.0483 (8)0.0291 (6)0.0213 (7)0.0123 (6)0.0055 (6)
O70.0818 (9)0.0287 (6)0.0277 (6)0.0007 (5)0.0160 (6)0.0037 (5)
O80.0974 (10)0.0319 (7)0.0366 (7)0.0155 (6)0.0147 (7)0.0028 (5)
N10.0630 (9)0.0356 (8)0.0315 (8)0.0053 (6)0.0110 (7)0.0003 (6)
N20.0488 (8)0.0287 (7)0.0277 (7)0.0007 (6)0.0111 (6)0.0008 (5)
N30.0596 (9)0.0583 (10)0.0293 (8)0.0016 (8)0.0105 (7)0.0065 (7)
N40.0595 (9)0.0672 (11)0.0277 (8)0.0081 (8)0.0129 (7)0.0009 (8)
N50.0472 (8)0.0396 (8)0.0284 (7)0.0025 (6)0.0104 (6)0.0056 (6)
C10.0531 (10)0.0393 (10)0.0283 (8)0.0024 (8)0.0141 (7)0.0041 (7)
C20.0427 (9)0.0362 (9)0.0284 (8)0.0006 (7)0.0114 (7)0.0014 (7)
C30.0583 (10)0.0381 (9)0.0255 (8)0.0010 (8)0.0125 (7)0.0009 (7)
C40.0486 (9)0.0390 (9)0.0286 (8)0.0021 (7)0.0092 (7)0.0044 (7)
C50.0425 (9)0.0409 (9)0.0250 (8)0.0014 (7)0.0104 (7)0.0001 (7)
C60.0487 (9)0.0363 (9)0.0313 (9)0.0033 (7)0.0141 (7)0.0013 (7)
C70.0491 (10)0.0525 (11)0.0278 (9)0.0062 (8)0.0119 (7)0.0005 (8)
C80.0488 (9)0.0392 (10)0.0271 (8)0.0020 (7)0.0121 (7)0.0024 (7)
C90.0404 (8)0.0315 (8)0.0256 (8)0.0001 (6)0.0112 (6)0.0005 (6)
C100.0441 (9)0.0297 (8)0.0288 (8)0.0016 (7)0.0131 (7)0.0032 (6)
C110.0473 (9)0.0323 (8)0.0241 (8)0.0019 (7)0.0106 (6)0.0005 (6)
C120.0420 (8)0.0290 (8)0.0278 (8)0.0015 (6)0.0110 (6)0.0020 (6)
C130.0464 (9)0.0305 (8)0.0267 (8)0.0030 (7)0.0100 (7)0.0022 (6)
C140.0489 (9)0.0304 (9)0.0284 (8)0.0010 (7)0.0113 (7)0.0006 (6)
C150.0652 (12)0.0530 (12)0.0299 (9)0.0009 (9)0.0080 (8)0.0027 (8)
C160.0588 (11)0.0435 (10)0.0340 (9)0.0013 (8)0.0112 (8)0.0023 (8)
C170.0393 (8)0.0444 (10)0.0292 (8)0.0030 (7)0.0116 (7)0.0020 (7)
C180.0388 (8)0.0477 (10)0.0279 (8)0.0066 (7)0.0119 (7)0.0006 (7)
C190.0513 (10)0.0498 (11)0.0298 (9)0.0020 (8)0.0114 (7)0.0000 (7)
C200.0586 (11)0.0560 (12)0.0330 (9)0.0013 (9)0.0129 (8)0.0066 (8)
C210.0693 (13)0.0634 (13)0.0351 (10)0.0069 (10)0.0190 (9)0.0098 (9)
C220.0583 (11)0.0500 (11)0.0370 (10)0.0004 (8)0.0166 (8)0.0020 (8)
C230.0645 (11)0.0435 (11)0.0372 (10)0.0082 (9)0.0097 (8)0.0006 (8)
C240.0693 (12)0.0499 (11)0.0409 (11)0.0036 (9)0.0119 (9)0.0121 (9)
C250.0529 (10)0.0320 (9)0.0353 (9)0.0008 (7)0.0130 (8)0.0026 (7)
C260.0496 (9)0.0319 (9)0.0276 (8)0.0005 (7)0.0088 (7)0.0018 (7)
C270.0361 (8)0.0317 (8)0.0268 (8)0.0015 (6)0.0080 (6)0.0016 (6)
C280.0607 (11)0.0354 (9)0.0306 (9)0.0111 (8)0.0104 (8)0.0024 (7)
C290.0583 (10)0.0442 (10)0.0258 (8)0.0061 (8)0.0086 (7)0.0013 (7)
Geometric parameters (Å, º) top
O1—C11.209 (2)C9—C131.386 (2)
O2—C11.310 (2)C10—H100.9300
O2—H20.8200C11—C121.383 (2)
O3—C71.206 (2)C11—H110.9300
O4—C71.311 (2)C12—C131.383 (2)
O4—H40.8200C12—C141.494 (2)
O5—C81.3063 (19)C13—H130.9300
O5—H50.8200C15—C161.375 (2)
O6—C81.2049 (19)C15—H150.9300
O7—C141.3056 (18)C16—C171.391 (2)
O7—H70.8200C16—H160.9300
O8—C141.2129 (19)C17—C231.385 (2)
N1—C41.333 (2)C17—C181.486 (2)
N1—C31.335 (2)C18—C221.388 (2)
N2—C111.3370 (19)C18—C191.394 (2)
N2—C101.3391 (19)C19—C201.379 (2)
N3—C241.326 (2)C19—H190.9300
N3—C151.330 (2)C20—H200.9300
N4—C211.331 (2)C21—C221.376 (2)
N4—C201.333 (2)C21—H210.9300
N5—C291.328 (2)C22—H220.9300
N5—C251.337 (2)C23—C241.378 (2)
C1—C21.498 (2)C23—H230.9300
C2—C61.380 (2)C24—H240.9300
C2—C31.384 (2)C25—C261.377 (2)
C3—H30.9300C25—H250.9300
C4—C51.388 (2)C26—C271.394 (2)
C4—H4A0.9300C26—H260.9300
C5—C61.380 (2)C27—C281.391 (2)
C5—C71.500 (2)C27—C27i1.484 (3)
C6—H60.9300C28—C291.376 (2)
C8—C91.496 (2)C28—H280.9300
C9—C101.385 (2)C29—H290.9300
C1—O2—H2109.5O8—C14—O7124.97 (15)
C7—O4—H4109.5O8—C14—C12121.98 (14)
C8—O5—H5109.5O7—C14—C12113.00 (13)
C14—O7—H7109.5N3—C15—C16123.54 (17)
C4—N1—C3116.65 (14)N3—C15—H15118.2
C11—N2—C10118.70 (13)C16—C15—H15118.2
C24—N3—C15117.42 (15)C15—C16—C17119.38 (17)
C21—N4—C20117.81 (15)C15—C16—H16120.3
C29—N5—C25117.28 (13)C17—C16—H16120.3
O1—C1—O2125.29 (15)C23—C17—C16116.58 (15)
O1—C1—C2122.74 (15)C23—C17—C18122.40 (15)
O2—C1—C2111.97 (14)C16—C17—C18121.02 (15)
C6—C2—C3117.94 (15)C22—C18—C19116.55 (15)
C6—C2—C1121.12 (15)C22—C18—C17122.44 (16)
C3—C2—C1120.93 (14)C19—C18—C17121.01 (15)
N1—C3—C2124.09 (15)C20—C19—C18119.88 (17)
N1—C3—H3118.0C20—C19—H19120.1
C2—C3—H3118.0C18—C19—H19120.1
N1—C4—C5123.85 (15)N4—C20—C19122.77 (18)
N1—C4—H4A118.1N4—C20—H20118.6
C5—C4—H4A118.1C19—C20—H20118.6
C6—C5—C4118.04 (14)N4—C21—C22122.94 (17)
C6—C5—C7120.54 (15)N4—C21—H21118.5
C4—C5—C7121.41 (14)C22—C21—H21118.5
C2—C6—C5119.35 (15)C21—C22—C18120.04 (18)
C2—C6—H6120.3C21—C22—H22120.0
C5—C6—H6120.3C18—C22—H22120.0
O3—C7—O4125.04 (15)C24—C23—C17120.18 (17)
O3—C7—C5122.25 (16)C24—C23—H23119.9
O4—C7—C5112.70 (15)C17—C23—H23119.9
O6—C8—O5124.79 (15)N3—C24—C23122.84 (18)
O6—C8—C9122.28 (15)N3—C24—H24118.6
O5—C8—C9112.93 (14)C23—C24—H24118.6
C10—C9—C13118.32 (14)N5—C25—C26122.83 (15)
C10—C9—C8121.67 (14)N5—C25—H25118.6
C13—C9—C8120.00 (13)C26—C25—H25118.6
N2—C10—C9122.28 (14)C25—C26—C27120.19 (14)
N2—C10—H10118.9C25—C26—H26119.9
C9—C10—H10118.9C27—C26—H26119.9
N2—C11—C12122.87 (14)C28—C27—C26116.31 (14)
N2—C11—H11118.6C28—C27—C27i121.69 (17)
C12—C11—H11118.6C26—C27—C27i122.00 (17)
C13—C12—C11117.97 (14)C29—C28—C27119.75 (15)
C13—C12—C14120.78 (14)C29—C28—H28120.1
C11—C12—C14121.17 (13)C27—C28—H28120.1
C12—C13—C9119.84 (14)N5—C29—C28123.63 (15)
C12—C13—H13120.1N5—C29—H29118.2
C9—C13—H13120.1C28—C29—H29118.2
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N5ii0.821.802.5928 (17)162
O4—H4···N4iii0.821.792.6037 (18)172
O5—H5···N3iv0.821.782.5956 (17)173
O7—H7···N2iii0.821.832.5862 (16)152
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula3C10H8N2·4C7H5NO4
Mr1137.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.8461 (4), 11.0564 (3), 18.1060 (4)
β (°) 110.511 (1)
V3)2596.09 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.14 × 0.12 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.985, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
24265, 5918, 4086
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.03
No. of reflections5918
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N5i0.821.802.5928 (17)161.9
O4—H4···N4ii0.821.792.6037 (18)171.5
O5—H5···N3iii0.821.782.5956 (17)172.6
O7—H7···N2ii0.821.832.5862 (16)152.0
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o3308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehn, M.-L. (1990). Angew. Chem. Int. Ed. 29, 1304–1319.  CrossRef Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Morsali, A., Hemmati, F. & Manteghi, F. (2009). Acta Cryst. E65, o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds