organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Allyl-8-meth­­oxy-3-phenyl-3,4-di­hydro-2H-benzo[e][1,3]oxazine

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: jingzhuhaut@126.com

(Received 27 June 2011; accepted 8 July 2011; online 16 July 2011)

In the title compound, C18H19NO2, the allyl group is disordered over two sets of sites [occupancy ratio 0.662 (4):0.338 (4)]. The dihedral angle between the phenyl and benzene rings is 87.44 (10)°. The oxazinane ring adopts a sofa conformation.

Related literature

For similar heterocyclic compounds, see: Chen et al. (2007[Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3580.]); Kiskan et al. (2007[Kiskan, B., Yagci, Y., Sahmetlioglu, E. & Toppare, L. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 999-1006.]); Liu et al. (2007[Liu, Y.-L., Hsu, C.-W. & Chou, C.-I. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1007-1015.]); Ran & Gu (2011[Ran, Q.-C. & Gu, Y. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 1671-1677.]); Sawaryn et al. (2010[Sawaryn, C., Landfester, K. & Taden, A. (2010). Macromolecules, 43, 8933-8941.]); Su et al. (2005[Su, Y.-C., Yei, D.-R. & Chang, F.-C. (2005). J. Appl. Polym. Sci. 95, 730-737.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO2

  • Mr = 281.34

  • Triclinic, [P \overline 1]

  • a = 8.4087 (5) Å

  • b = 9.4852 (5) Å

  • c = 10.7735 (7) Å

  • α = 99.193 (5)°

  • β = 98.900 (5)°

  • γ = 115.476 (6)°

  • V = 741.30 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO . Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.659, Tmax = 1.000

  • 5471 measured reflections

  • 2644 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.05

  • 2644 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Benzo[e][1,3]oxazines, which can be cured via a thermal ring opening reaction to construct an analogous phenolic structure characterized by a Mannich base bridge (–CH2—NR—CH2), are an important class of heterocycles (Su et al., 2005, Kiskan et al., 2007; Liu et al., 2007, Ran & Gu, 2011, Sawaryn et al., 2010). The title compound (I) was prepared by reaction of aniline, formaldehyde and 4-allyl-2-methoxyphenol. We report here the crystal structure of (I) .

The molecular structure of title compound (I) is showing in Fig. 1. The dihedral angle between the phenyl and benzene rings is 87.44 (10)° and this value is longer than similar compound reported by Chen et al., 2007. The allyl group was refined using a disorder model with an occupancy ratio of 0.662 (4):0.338 (4). The oxazinane ring of the benzoxazine moiety adopts the sofa conformation, with the puckering parameters q2 = 0.3505 (16) Å and ϕ = 272.3 (3)° (Cremer & Pople, 1975) .

Related literature top

For similar heterocyclic compounds, see: Chen et al. (2007); Kiskan et al. (2007); Liu et al. (2007); Ran & Gu (2011); Sawaryn et al. (2010); Su et al. (2005). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Aniline (0.05 mol), formaldehyde (0.1 mol), 4-allyl-2-methoxyphenol (0.05 mol) and 1,4-dioxine (50 ml) were introduced into a 250 ml flask, and the mixtures were stirred at 60 °C for 5 h, then condensed by rotary evaporators (35 °C), a red mucus was got and set at 15 °C for a few hour. The title compound was precipitated out in the meantime and washed by methanol. Colourless crystals suitable for X-ray diffraction analysis were obtained by recrystallization from methanol. And then the crystal of title compound was mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Refinement top

All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å and were refined isotropic with Uiso(H) = 1.2Ueq(C) of parent atom using a riding model.

Atoms C16 of the allyl group is disordered and was refined using a disorder model with site occupancy factors of 0.662 (4) and 0.338 (4). The corresponding bond distances in the disordered groups were restrained to be equal.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major occupied component is shown.
6-Allyl-8-methoxy-3-phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazine top
Crystal data top
C18H19NO2Z = 2
Mr = 281.34F(000) = 300
Triclinic, P1Dx = 1.260 Mg m3
a = 8.4087 (5) ÅCu Kα radiation, λ = 1.5418 Å
b = 9.4852 (5) ÅCell parameters from 3645 reflections
c = 10.7735 (7) Åθ = 4.3–71.9°
α = 99.193 (5)°µ = 0.65 mm1
β = 98.900 (5)°T = 291 K
γ = 115.476 (6)°Prismatics, colourless
V = 741.30 (9) Å30.20 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
2644 independent reflections
Radiation source: Enhance (Cu) X-ray Source2282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 4.3°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2010)
k = 118
Tmin = 0.659, Tmax = 1.000l = 1211
5471 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.1724P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2644 reflectionsΔρmax = 0.48 e Å3
190 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (14)
Crystal data top
C18H19NO2γ = 115.476 (6)°
Mr = 281.34V = 741.30 (9) Å3
Triclinic, P1Z = 2
a = 8.4087 (5) ÅCu Kα radiation
b = 9.4852 (5) ŵ = 0.65 mm1
c = 10.7735 (7) ÅT = 291 K
α = 99.193 (5)°0.20 × 0.18 × 0.18 mm
β = 98.900 (5)°
Data collection top
Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
2644 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Oxford Diffraction, 2010)
2282 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 1.000Rint = 0.015
5471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
2644 reflectionsΔρmin = 0.50 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.42456 (15)0.62744 (13)0.74629 (10)0.0489 (3)
O20.70231 (17)0.91501 (15)0.80687 (12)0.0603 (4)
N10.16240 (18)0.42342 (15)0.79032 (13)0.0462 (3)
C10.0068 (2)0.5813 (2)0.80579 (17)0.0524 (4)
H10.06790.64330.88780.063*
C20.1479 (3)0.6089 (3)0.7517 (2)0.0664 (5)
H20.16770.68880.79800.080*
C30.2584 (3)0.5198 (3)0.6308 (2)0.0721 (6)
H30.35280.53910.59500.087*
C40.2286 (3)0.4014 (3)0.5626 (2)0.0708 (6)
H40.30280.34100.48010.085*
C50.0896 (2)0.3719 (2)0.61587 (17)0.0579 (5)
H50.07130.29110.56930.070*
C60.0235 (2)0.46179 (18)0.73834 (15)0.0439 (4)
C70.3052 (2)0.45678 (19)0.72467 (17)0.0494 (4)
H7A0.25160.40970.63220.059*
H7B0.37660.40530.75390.059*
C80.2421 (2)0.4814 (2)0.93066 (16)0.0495 (4)
H8A0.28350.40840.95940.059*
H8B0.14920.48070.97430.059*
C90.4001 (2)0.65000 (19)0.96899 (15)0.0443 (4)
C100.4830 (2)0.71108 (19)0.87442 (15)0.0433 (4)
C110.6315 (2)0.86659 (19)0.90761 (16)0.0475 (4)
C120.6934 (2)0.9570 (2)1.03462 (18)0.0555 (4)
H120.79271.05951.05670.067*
C130.6105 (3)0.8981 (2)1.13087 (17)0.0566 (4)
C140.4646 (2)0.7445 (2)1.09664 (16)0.0517 (4)
H140.40850.70351.15990.062*
C150.6797 (5)1.0036 (3)1.2695 (2)0.0958 (6)
H15A0.76761.11131.26950.115*0.662 (4)
H15B0.57821.01171.29610.115*0.662 (4)
H15C0.81141.05211.29170.115*0.338 (4)
H15D0.64831.09081.26950.115*0.338 (4)
C160.7611 (5)0.9503 (4)1.3628 (3)0.0737 (8)0.662 (4)
H160.86570.94561.34990.088*0.662 (4)
C170.7103 (4)0.9065 (3)1.4652 (2)0.0958 (6)
H17A0.60680.90831.48400.115*0.662 (4)
H17B0.77760.87361.51920.115*0.662 (4)
H17C0.83260.93431.47440.115*0.338 (4)
H17D0.65010.85851.52440.115*0.338 (4)
C180.8505 (3)1.0730 (2)0.8341 (2)0.0700 (6)
H18A0.88541.09300.75540.105*
H18B0.95161.08160.89590.105*
H18C0.81441.15090.86920.105*
C16A0.6213 (10)0.9354 (8)1.3672 (6)0.0737 (8)0.338 (4)
H16A0.49950.90411.36480.088*0.338 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (6)0.0476 (6)0.0440 (6)0.0192 (5)0.0114 (5)0.0092 (5)
O20.0589 (7)0.0502 (7)0.0648 (8)0.0165 (6)0.0224 (6)0.0160 (6)
N10.0484 (7)0.0398 (7)0.0461 (7)0.0182 (6)0.0075 (6)0.0107 (5)
C10.0509 (9)0.0496 (9)0.0533 (9)0.0213 (7)0.0117 (7)0.0117 (7)
C20.0639 (11)0.0742 (13)0.0799 (14)0.0418 (10)0.0281 (10)0.0305 (10)
C30.0525 (11)0.1021 (16)0.0756 (13)0.0392 (11)0.0188 (10)0.0464 (12)
C40.0531 (10)0.0885 (15)0.0530 (10)0.0197 (10)0.0013 (8)0.0223 (10)
C50.0553 (10)0.0554 (10)0.0493 (9)0.0174 (8)0.0063 (8)0.0086 (8)
C60.0414 (8)0.0380 (7)0.0461 (8)0.0119 (6)0.0106 (6)0.0142 (6)
C70.0531 (9)0.0434 (8)0.0519 (9)0.0244 (7)0.0114 (7)0.0085 (7)
C80.0511 (9)0.0496 (9)0.0475 (9)0.0219 (7)0.0091 (7)0.0192 (7)
C90.0443 (8)0.0465 (8)0.0451 (8)0.0246 (7)0.0063 (6)0.0143 (6)
C100.0429 (8)0.0445 (8)0.0443 (8)0.0238 (7)0.0069 (6)0.0102 (6)
C110.0465 (8)0.0436 (8)0.0556 (9)0.0235 (7)0.0114 (7)0.0144 (7)
C120.0540 (10)0.0418 (8)0.0602 (10)0.0184 (7)0.0027 (8)0.0086 (7)
C130.0676 (11)0.0496 (9)0.0498 (9)0.0309 (8)0.0024 (8)0.0066 (7)
C140.0618 (10)0.0556 (10)0.0444 (9)0.0331 (8)0.0108 (7)0.0159 (7)
C150.1375 (17)0.0678 (10)0.0570 (9)0.0373 (11)0.0030 (10)0.0026 (8)
C160.0783 (19)0.0780 (18)0.0525 (14)0.0396 (17)0.0006 (14)0.0091 (13)
C170.1375 (17)0.0678 (10)0.0570 (9)0.0373 (11)0.0030 (10)0.0026 (8)
C180.0596 (11)0.0532 (10)0.0888 (15)0.0155 (9)0.0242 (10)0.0226 (10)
C16A0.0783 (19)0.0780 (18)0.0525 (14)0.0396 (17)0.0006 (14)0.0091 (13)
Geometric parameters (Å, º) top
O1—C71.4463 (19)C10—C111.404 (2)
O1—C101.3716 (18)C11—C121.378 (2)
O2—C111.367 (2)C12—H120.9300
O2—C181.423 (2)C12—C131.395 (3)
N1—C61.427 (2)C13—C141.384 (3)
N1—C71.432 (2)C13—C151.524 (3)
N1—C81.463 (2)C14—H140.9300
C1—H10.9300C15—H15A0.9700
C1—C21.384 (3)C15—H15B0.9700
C1—C61.387 (2)C15—H15C0.9700
C2—H20.9300C15—H15D0.9700
C2—C31.368 (3)C15—C161.408 (4)
C3—H30.9300C15—C16A1.368 (8)
C3—C41.379 (3)C16—H160.9300
C4—H40.9300C16—C171.308 (4)
C4—C51.378 (3)C17—H17A0.9300
C5—H50.9300C17—H17B0.9300
C5—C61.388 (2)C17—H17C0.9300
C7—H7A0.9700C17—H17D0.9300
C7—H7B0.9700C17—C16A1.332 (7)
C8—H8A0.9700C18—H18A0.9600
C8—H8B0.9700C18—H18B0.9600
C8—C91.511 (2)C18—H18C0.9600
C9—C101.386 (2)C16A—H16A0.9300
C9—C141.395 (2)
C10—O1—C7113.65 (12)C13—C14—C9121.22 (16)
C11—O2—C18117.67 (15)C13—C14—H14119.4
C6—N1—C7115.33 (13)C13—C15—H15A108.3
C6—N1—C8117.51 (13)C13—C15—H15B108.3
C7—N1—C8109.17 (13)C13—C15—H15C107.5
C2—C1—H1119.9C13—C15—H15D107.5
C2—C1—C6120.30 (17)H15A—C15—H15B107.4
C6—C1—H1119.9H15A—C15—H15C51.2
C1—C2—H2119.6H15A—C15—H15D57.7
C3—C2—C1120.71 (19)H15B—C15—H15C142.9
C3—C2—H2119.6H15B—C15—H15D52.4
C2—C3—H3120.3H15C—C15—H15D107.0
C2—C3—C4119.46 (18)C16—C15—C13115.9 (2)
C4—C3—H3120.3C16—C15—H15A108.3
C3—C4—H4119.8C16—C15—H15B108.3
C5—C4—C3120.37 (18)C16—C15—H15C63.0
C5—C4—H4119.8C16—C15—H15D136.5
C4—C5—H5119.7C16A—C15—C13119.2 (3)
C4—C5—C6120.62 (18)C16A—C15—H15A132.4
C6—C5—H5119.7C16A—C15—H15B61.8
C1—C6—N1123.14 (14)C16A—C15—H15C107.5
C1—C6—C5118.54 (16)C16A—C15—H15D107.5
C5—C6—N1118.30 (15)C16A—C15—C1648.1 (3)
O1—C7—H7A108.9C15—C16—H16115.5
O1—C7—H7B108.9C17—C16—C15129.1 (3)
N1—C7—O1113.26 (13)C17—C16—H16115.5
N1—C7—H7A108.9C16—C17—H17A120.0
N1—C7—H7B108.9C16—C17—H17B120.0
H7A—C7—H7B107.7C16—C17—H17C70.0
N1—C8—H8A109.1C16—C17—H17D167.1
N1—C8—H8B109.1C16—C17—C16A50.8 (4)
N1—C8—C9112.41 (13)H17A—C17—H17B120.0
H8A—C8—H8B107.9H17A—C17—H17C159.0
C9—C8—H8A109.1H17A—C17—H17D53.8
C9—C8—H8B109.1H17B—C17—H17C53.8
C10—C9—C8118.78 (14)H17B—C17—H17D67.4
C10—C9—C14119.50 (15)H17C—C17—H17D120.0
C14—C9—C8121.72 (15)C16A—C17—H17A69.9
O1—C10—C9122.98 (14)C16A—C17—H17B167.4
O1—C10—C11117.02 (14)C16A—C17—H17C120.0
C9—C10—C11119.99 (15)C16A—C17—H17D120.0
O2—C11—C10115.13 (14)O2—C18—H18A109.5
O2—C11—C12125.52 (15)O2—C18—H18B109.5
C12—C11—C10119.36 (16)O2—C18—H18C109.5
C11—C12—H12119.3H18A—C18—H18B109.5
C11—C12—C13121.45 (16)H18A—C18—H18C109.5
C13—C12—H12119.3H18B—C18—H18C109.5
C12—C13—C15119.89 (19)C15—C16A—H16A114.7
C14—C13—C12118.48 (16)C17—C16A—C15130.5 (6)
C14—C13—C15121.63 (19)C17—C16A—H16A114.7
C9—C14—H14119.4
O1—C10—C11—O21.0 (2)C8—C9—C14—C13179.36 (15)
O1—C10—C11—C12178.79 (14)C9—C10—C11—O2179.74 (13)
O2—C11—C12—C13179.05 (15)C9—C10—C11—C120.1 (2)
N1—C8—C9—C1017.6 (2)C10—O1—C7—N147.99 (18)
N1—C8—C9—C14162.77 (14)C10—C9—C14—C130.3 (2)
C1—C2—C3—C40.1 (3)C10—C11—C12—C130.7 (3)
C2—C1—C6—N1177.76 (15)C11—C12—C13—C140.9 (3)
C2—C1—C6—C50.4 (2)C11—C12—C13—C15178.27 (19)
C2—C3—C4—C50.4 (3)C12—C13—C14—C90.4 (3)
C3—C4—C5—C60.6 (3)C12—C13—C15—C16113.3 (3)
C4—C5—C6—N1178.38 (16)C12—C13—C15—C16A167.9 (4)
C4—C5—C6—C10.2 (3)C13—C15—C16—C17117.6 (3)
C6—N1—C7—O171.23 (17)C13—C15—C16A—C17110.4 (6)
C6—N1—C8—C987.32 (17)C14—C9—C10—O1178.21 (13)
C6—C1—C2—C30.5 (3)C14—C9—C10—C110.4 (2)
C7—O1—C10—C916.4 (2)C14—C13—C15—C1667.6 (4)
C7—O1—C10—C11164.92 (13)C14—C13—C15—C16A13.0 (5)
C7—N1—C6—C1114.38 (17)C15—C13—C14—C9178.77 (18)
C7—N1—C6—C567.48 (18)C15—C16—C17—C16A10.4 (4)
C7—N1—C8—C946.45 (17)C16—C15—C16A—C1710.5 (4)
C8—N1—C6—C116.6 (2)C16—C17—C16A—C1510.9 (4)
C8—N1—C6—C5161.52 (14)C18—O2—C11—C10178.62 (15)
C8—N1—C7—O163.64 (17)C18—O2—C11—C121.2 (2)
C8—C9—C10—O12.1 (2)C16A—C15—C16—C1710.5 (4)
C8—C9—C10—C11179.22 (13)

Experimental details

Crystal data
Chemical formulaC18H19NO2
Mr281.34
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.4087 (5), 9.4852 (5), 10.7735 (7)
α, β, γ (°)99.193 (5), 98.900 (5), 115.476 (6)
V3)741.30 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur, Eos, Gemini
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO (Oxford Diffraction, 2010)
Tmin, Tmax0.659, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5471, 2644, 2282
Rint0.015
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.05
No. of reflections2644
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.50

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected geometric parameters (Å, º) top
O1—C71.4463 (19)N1—C61.427 (2)
O1—C101.3716 (18)N1—C71.432 (2)
O2—C111.367 (2)N1—C81.463 (2)
O2—C181.423 (2)
C10—O1—C7113.65 (12)C6—N1—C8117.51 (13)
C6—N1—C7115.33 (13)C7—N1—C8109.17 (13)
 

References

First citationChen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKiskan, B., Yagci, Y., Sahmetlioglu, E. & Toppare, L. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 999–1006.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y.-L., Hsu, C.-W. & Chou, C.-I. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1007–1015.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO . Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRan, Q.-C. & Gu, Y. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 1671–1677.  Web of Science CrossRef CAS Google Scholar
First citationSawaryn, C., Landfester, K. & Taden, A. (2010). Macromolecules, 43, 8933–8941.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Y.-C., Yei, D.-R. & Chang, F.-C. (2005). J. Appl. Polym. Sci. 95, 730–737.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds