organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Amino­phen­yl)methanol

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 July 2011; accepted 19 July 2011; online 23 July 2011)

In the title compound, C7H9NO, a derivative of benzyl alcohol, the endocyclic C—C—C angles are in the range 119.50 (12)–121.04 (12)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen-bond inter­actions, forming an extended two-dimensional framework parallel to ab. O—H⋯N inter­actions are also observed.

Related literature

For the crystal structure of (3-(hy­droxy­meth­yl)phen­yl)-bis­(diphenyl­phosphinometh­yl)amine, see: Hursthouse et al. (2003[Hursthouse, M. B., Smith, M. B. & Coles, S. J. (2003). Private Communication (CCDC 662967, refcode CIRCIQ). CCDC, Cambridge, England.]). For the crystal structure of 3-nitro­benzyl alcohol as a co-crystal with platinum-containing coordination compounds, see: Oskui et al. (1999[Oskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72-81.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the use of chelating ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9NO

  • Mr = 123.15

  • Orthorhombic, P 21 21 21

  • a = 4.7977 (4) Å

  • b = 6.2954 (6) Å

  • c = 21.6341 (18) Å

  • V = 653.42 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.53 × 0.47 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 1.000

  • 6010 measured reflections

  • 961 independent reflections

  • 924 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.11

  • 961 reflections

  • 94 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯N1i 0.85 (3) 2.02 (3) 2.8620 (18) 171 (2)
N1—H71⋯O1ii 0.87 (2) 2.19 (2) 3.0588 (16) 177 (2)
N1—H72⋯O1iii 0.904 (19) 2.24 (2) 3.1204 (16) 165.3 (16)
Symmetry codes: (i) x, y-1, z; (ii) x+1, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining two different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, 3-aminobenzyl alcohol seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono- or bidentate ligand offering the possibility to create seven-membered chelate rings. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Information about the crystal structure of (3-(Hydroxymethyl)phenyl)-bis(diphenylphosphinomethyl)amine (Hursthouse et al., 2003) as well as 3-nitrobenzyl alcohol as a co-crystallizate with platinum-containing coordination compounds (Oskui et al., 1999) is available in the literature.

The hydroxymethyl group is not in plane with the aromatic system, the respective dihedral angle was found at 33.0 (2) °. Endocyclic C–C–C angles hardly deviate from the expected ideal values of 120 ° and range from 119.50 (12)–121.04 (12) °. The biggest angle is found on the C atom bearing the amino group (Fig. 1).

In the crystal structure, a cooperative set of hydrogen bonds involving all nitrogen- and oxygen-bonded hydrogen atoms is present. While the oxygen atom acts as twofold acceptor for hydrogen bonds exclusively stemming from the H atoms of the amino group, the nitrogen atom of the amino group serves as acceptor for a hydrogen bond originating from the hydroxyl group's O atom. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this hydrogen bonding system on the unitary level is C11(7)C11(7)C11(7). In the crystal the molecules are linked by N— H···O hydrogen-bond interactions, forming an extended two-dimensional framework parallel to the ab, Fig. 2. π-Stacking is not a prominent feature of the crystal structure with the shortest intercentroid distance between two aromatic systems measured at 5.5741 (10) Å .(Fig. 2).

Related literature top

For the crystal structure of (3-(hydroxymethyl)phenyl)-bis(diphenylphosphinomethyl)amine, see: Hursthouse et al. (2003). For the crystal structure of 3-nitrobenzyl alcohol as a co-crystallizate with platinum-containing coordination compounds, see: Oskui et al. (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the use of chelate ligands in coordination chemistry, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of a solution of the compound in acetonitrile at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.99-0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydrogen atoms of the hydroxyl group as well as of the amino group were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i x, y - 1, z; ii x - 1, y - 1, z; iii -x + 1, y - 1/2, -z + 1/2; iv -x + 1, y + 1/2, -z + 1/2; v x, y + 1, z; vi x + 1, y + 1, z.
(3-Aminophenyl)methanol top
Crystal data top
C7H9NOF(000) = 264
Mr = 123.15Dx = 1.252 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5183 reflections
a = 4.7977 (4) Åθ = 3.4–28.1°
b = 6.2954 (6) ŵ = 0.09 mm1
c = 21.6341 (18) ÅT = 200 K
V = 653.42 (10) Å3Platelet, brown
Z = 40.53 × 0.47 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
961 independent reflections
Radiation source: fine-focus sealed tube924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.869, Tmax = 1.000k = 78
6010 measured reflectionsl = 2328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.1019P]
where P = (Fo2 + 2Fc2)/3
961 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H9NOV = 653.42 (10) Å3
Mr = 123.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7977 (4) ŵ = 0.09 mm1
b = 6.2954 (6) ÅT = 200 K
c = 21.6341 (18) Å0.53 × 0.47 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
961 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
924 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 1.000Rint = 0.020
6010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.19 e Å3
961 reflectionsΔρmin = 0.16 e Å3
94 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (600 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3733 (2)0.37165 (17)0.18291 (4)0.0277 (3)
H810.524 (6)0.439 (4)0.1893 (9)0.049 (6)*
N10.8480 (3)0.35877 (19)0.19920 (6)0.0287 (3)
H711.002 (5)0.432 (3)0.1955 (9)0.040 (5)*
H720.811 (4)0.303 (3)0.2368 (9)0.035 (5)*
C10.3760 (3)0.2875 (2)0.12190 (6)0.0313 (3)
H1A0.18580.23830.11140.038*
H1B0.42500.40280.09270.038*
C20.5769 (3)0.1056 (2)0.11274 (6)0.0236 (3)
C30.6316 (3)0.0359 (2)0.16033 (6)0.0252 (3)
H30.54710.01470.19960.030*
C40.8087 (3)0.2089 (2)0.15151 (6)0.0237 (3)
C50.9317 (3)0.2381 (2)0.09359 (7)0.0303 (3)
H51.05270.35520.08670.036*
C60.8774 (3)0.0967 (2)0.04623 (7)0.0325 (3)
H60.96150.11770.00700.039*
C70.7016 (3)0.0758 (2)0.05529 (6)0.0278 (3)
H70.66670.17270.02250.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (5)0.0253 (5)0.0271 (5)0.0050 (5)0.0030 (4)0.0028 (4)
N10.0328 (6)0.0248 (6)0.0284 (6)0.0090 (5)0.0021 (5)0.0024 (5)
C10.0372 (7)0.0310 (7)0.0259 (6)0.0156 (7)0.0035 (6)0.0025 (5)
C20.0230 (6)0.0219 (6)0.0259 (6)0.0044 (5)0.0029 (5)0.0024 (5)
C30.0274 (6)0.0257 (6)0.0225 (5)0.0066 (6)0.0022 (5)0.0013 (5)
C40.0239 (6)0.0209 (6)0.0265 (6)0.0022 (6)0.0011 (5)0.0004 (5)
C50.0320 (7)0.0275 (7)0.0313 (7)0.0102 (6)0.0051 (6)0.0015 (6)
C60.0359 (7)0.0359 (7)0.0257 (6)0.0078 (7)0.0071 (6)0.0011 (6)
C70.0306 (6)0.0281 (7)0.0248 (6)0.0043 (6)0.0002 (6)0.0024 (5)
Geometric parameters (Å, º) top
O1—C11.4222 (16)C2—C71.3922 (19)
O1—H810.85 (3)C3—C41.3945 (19)
N1—C41.4105 (17)C3—H30.9500
N1—H710.87 (2)C4—C51.3972 (19)
N1—H720.904 (19)C5—C61.382 (2)
C1—C21.5100 (19)C5—H50.9500
C1—H1A0.9900C6—C71.389 (2)
C1—H1B0.9900C6—H60.9500
C2—C31.3865 (19)C7—H70.9500
C1—O1—H81109.2 (14)C2—C3—H3119.5
C4—N1—H71113.4 (13)C4—C3—H3119.5
C4—N1—H72111.9 (12)C3—C4—C5118.85 (12)
H71—N1—H72117.0 (16)C3—C4—N1120.24 (12)
O1—C1—C2114.20 (11)C5—C4—N1120.78 (12)
O1—C1—H1A108.7C6—C5—C4120.04 (13)
C2—C1—H1A108.7C6—C5—H5120.0
O1—C1—H1B108.7C4—C5—H5120.0
C2—C1—H1B108.7C5—C6—C7120.90 (13)
H1A—C1—H1B107.6C5—C6—H6119.6
C3—C2—C7119.66 (12)C7—C6—H6119.6
C3—C2—C1120.72 (12)C6—C7—C2119.50 (12)
C7—C2—C1119.58 (12)C6—C7—H7120.3
C2—C3—C4121.04 (12)C2—C7—H7120.3
O1—C1—C2—C333.0 (2)C3—C4—C5—C60.1 (2)
O1—C1—C2—C7149.06 (13)N1—C4—C5—C6176.05 (14)
C7—C2—C3—C40.4 (2)C4—C5—C6—C70.1 (2)
C1—C2—C3—C4177.54 (13)C5—C6—C7—C20.5 (2)
C2—C3—C4—C50.0 (2)C3—C2—C7—C60.6 (2)
C2—C3—C4—N1175.95 (13)C1—C2—C7—C6177.36 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H81···N1i0.85 (3)2.02 (3)2.8620 (18)171 (2)
N1—H71···O1ii0.87 (2)2.19 (2)3.0588 (16)177 (2)
N1—H72···O1iii0.904 (19)2.24 (2)3.1204 (16)165.3 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H9NO
Mr123.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)4.7977 (4), 6.2954 (6), 21.6341 (18)
V3)653.42 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.47 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.869, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6010, 961, 924
Rint0.020
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.11
No. of reflections961
No. of parameters94
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H81···N1i0.85 (3)2.02 (3)2.8620 (18)171 (2)
N1—H71···O1ii0.87 (2)2.19 (2)3.0588 (16)177 (2)
N1—H72···O1iii0.904 (19)2.24 (2)3.1204 (16)165.3 (16)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Ms Georgina Bräuer for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationHursthouse, M. B., Smith, M. B. & Coles, S. J. (2003). Private Communication (CCDC 662967, refcode CIRCIQ). CCDC, Cambridge, England.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOskui, B., Mintert, M. & Sheldrick, W. S. (1999). Inorg. Chim. Acta, 287, 72–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds