metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxido-bis­­[bis­­(penta­fluoro­phenolato)(η5-penta­methyl­cyclo­penta­dien­yl)titanium(IV)]

aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
*Correspondence e-mail: ykim@chungbuk.ac.kr

(Received 17 July 2011; accepted 20 July 2011; online 30 July 2011)

The dinuclear title complex, [Ti2(C10H15)2(C6F5O)4O], features two TiIV atoms bridged by an O atom, which lies on an inversion centre. The TiIV atom is bonded to a η5-penta­methyl­cyclo­penta­dienyl ring, two penta­fluoro­phenolate anions and to the bridging O atom. The environment around the TiIV atom can be considered as a distorted tetra­hedron. The cyclo­penta­dienyl ring is disordered over two sets of sites [site occupancy = 0.824 (8) for the major component].

Related literature

For the related titanium complexes, Cp*Ti(OCH2C6F5)3 and Cp*Ti(OC6F5)3, see: Lee et al. (2007[Lee, J., Do, Y. & Kim, Y. (2007). J. Organomet. Chem. 692, 3593-3598.]) and for [Ti2(η5-C5Me5)2(OCH2C6F5)4O], see: Lee & Kim (2011[Lee, J. & Kim, Y. (2011). Acta Cryst. E67, m1104.]). For the use of dinuclear titanium complexes with a cyclo­penta­dienyl ligand in organometallic catalysis, see: Noh et al. (2006[Noh, S. K., Jung, W., Oh, H., Lee, Y. R. & Lyoo, W. S. (2006). J. Organomet. Chem. 691, 5000-5006.]); Wu et al. (2007[Wu, Q.-L., Li, G.-H., Ye, L., Gao, W. & Mu, Y. (2007). Polyhedron, 26, 3063-3068.]); Yoon et al. (2011[Yoon, S.W., Kim, Y., Kim, S.K., Kim, S.Y., Do, Y. & Park, S. (2011). Macromol. Chem. Phys. 212, 785-789.]). For the Ti—O—Ti angle in related structures, see: Gowik et al. (1990[Gowik, P., Klaotke, T. & Pickardt, J. (1990). J. Organomet. Chem. 393, 343-348.]); Thewalt & Schomburg (1977[Thewalt, U. & Schomburg, D. (1977). J. Organomet. Chem. 127, 169-174.]); Wu et al. (2007[Wu, Q.-L., Li, G.-H., Ye, L., Gao, W. & Mu, Y. (2007). Polyhedron, 26, 3063-3068.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C10H15)2(C6F5O)4O]

  • Mr = 1114.48

  • Triclinic, [P \overline 1]

  • a = 8.7472 (17) Å

  • b = 11.823 (2) Å

  • c = 12.923 (3) Å

  • α = 112.00 (3)°

  • β = 109.24 (3)°

  • γ = 97.36 (3)°

  • V = 1120.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.96

  • 12962 measured reflections

  • 5069 independent reflections

  • 3892 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.03

  • 5069 reflections

  • 423 parameters

  • 49 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dinuclear titanium complexes containing a cyclopentadienyl ligand have attracted considerable attention in the fields of organometallic catalysis (Noh et al., 2006; Wu et al., 2007; Yoon et al., 2011). Recently, we have reported the facile synthesis of Cp*Ti(OCH2C6F5)3 and Cp*Ti(OC6F5)3 (Cp* = η5-pentamethylcyclopentadienyl) (Lee et al., 2007). We have also reported the X-ray structure of [Ti2(η5-C5Me5)2(OCH2C6F5)4O] (Lee & Kim 2011). In continuation of our systematic studies on bimetallic pentamethylcyclopentadienyltitanium derivative using previously synthesized Cp*Ti(OC6F5)3, the title complex (I) has been investigated.

The title compound (I) is the main product of the reaction of Cp*Ti(OC6F5)3 with water in dichloromethane solution. In (I) (Fig. 1), the dinuclear structure shows two Ti atoms bridged by an oxygen atom, which is lies on inversion centre, Fig. 2 , with approximately C2 symmetry. Ti atom bonded with bridging oxygen atom, a Cp ring and two pentafluorophenolate groups, having distorted tetrahedron geometry.

A disorder of Cp* rings was observed in a ratio of 0.824 (8) and 0.176 (8) for C1—C10 and C1A—C10A, respectively. The Ti—C and Ti—O distances are in the range of 2.337 (16) - 2.400 (11) Å and 1.8184 (11) - 1.854 (2) Å, respectively. The Ti—O—Ti angle is almost linear [180.00 (4) °], which falls within the observed range (154 - 180°) for the previous reported compounds (Wu et al., 2007; Thewalt & Schomburg, 1977; Gowik et al., 1990; Lee & Kim, 2011). Whereas Cp* and phenyl rings are almost perpendicular in [Ti2(η5-C5Me5)2(OCH2C6F5)4O], the Cp* ring and phenyl rings are almost parallel with the dihedral angles of 20.8 (6) ° and 10.2 (6) ° and there is π-π interaction between and Cp ring and phenyl ring (C17—C22) with the perpendicular distance of 3.396 Å.

Related literature top

For the related titanium complexes, Cp*Ti(OCH2C6F5)3 and Cp*Ti(OC6F5)3, see: Lee et al. (2007) and for [Ti2(η5-C5Me5)2(OCH2C6F5)4O], see: Lee & Kim (2011). For the use of dinuclear titanium complexes with a cyclopentadienyl ligand in organometallic catalysis, see: Noh et al. (2006); Wu et al. (2007); Yoon et al. (2011). For the Ti—O—Ti angle in related structures, see: Gowik et al. (1990); Thewalt & Schomburg (1977); Wu et al. (2007).

Experimental top

Complex (I) was synthesized by the hydrolysis of Cp*Ti(OC6F5)3. The crystal was obtained by slow evaporation of methylene chloride as a solvent in refrigerator.

Refinement top

The disordered Cp* ring was modeled by splitting the atoms into two components (C1 - C10 and C1A—C10A), the site occupation factors of which refined in a ratio of 0.824 (8):0.176 (8). H atoms were positioned geometrically and refined using a riding model, with C—H distances fixed to 0.96 (methyl CH3), 0.97 (methylene CH2)and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of the title compound (I). Displacement ellipsoids are drawn at the 20% probability level. H atoms are omitted for clarity.
µ-Oxido-bis[bis(pentafluorophenolato)(η5-pentamethylcyclopentadienyl)titanium(IV)] top
Crystal data top
[Ti2(C10H15)2(C6F5O)4O]Z = 1
Mr = 1114.48F(000) = 558
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7472 (17) ÅCell parameters from 5069 reflections
b = 11.823 (2) Åθ = 1.9–28.3°
c = 12.923 (3) ŵ = 0.49 mm1
α = 112.00 (3)°T = 293 K
β = 109.24 (3)°Block, yellow
γ = 97.36 (3)°0.12 × 0.10 × 0.08 mm
V = 1120.6 (4) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
5069 independent reflections
Radiation source: fine-focus sealed tube3892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
profile data from /ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.94, Tmax = 0.96k = 1515
12962 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.3233P]
where P = (Fo2 + 2Fc2)/3
5069 reflections(Δ/σ)max < 0.001
423 parametersΔρmax = 0.28 e Å3
49 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ti2(C10H15)2(C6F5O)4O]γ = 97.36 (3)°
Mr = 1114.48V = 1120.6 (4) Å3
Triclinic, P1Z = 1
a = 8.7472 (17) ÅMo Kα radiation
b = 11.823 (2) ŵ = 0.49 mm1
c = 12.923 (3) ÅT = 293 K
α = 112.00 (3)°0.12 × 0.10 × 0.08 mm
β = 109.24 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
5069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3892 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.96Rint = 0.033
12962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04949 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
5069 reflectionsΔρmin = 0.34 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.09529 (5)0.15447 (4)0.13341 (3)0.04162 (14)
O10.00000.00000.00000.0441 (5)
O20.1777 (3)0.1137 (2)0.26188 (17)0.0781 (6)
O30.2933 (2)0.22063 (19)0.1261 (2)0.0754 (6)
C10.0139 (11)0.3210 (8)0.2536 (4)0.0689 (19)0.824 (8)
C20.1240 (12)0.2120 (9)0.1862 (9)0.068 (2)0.824 (8)
C30.1767 (11)0.1821 (8)0.0620 (7)0.0561 (16)0.824 (8)
C40.0668 (9)0.2698 (6)0.0523 (5)0.0511 (10)0.824 (8)
C50.0508 (7)0.3587 (4)0.1715 (7)0.0576 (13)0.824 (8)
C60.1057 (11)0.3864 (8)0.3922 (4)0.143 (4)0.824 (8)
H6A0.05140.44710.42610.215*0.824 (8)
H6B0.22110.42940.41540.215*0.824 (8)
H6C0.10280.32390.42280.215*0.824 (8)
C70.2140 (9)0.1381 (8)0.2349 (8)0.125 (3)0.824 (8)
H7A0.14570.16470.31980.188*0.824 (8)
H7B0.23180.04860.18940.188*0.824 (8)
H7C0.32110.15470.22600.188*0.824 (8)
C80.3250 (6)0.0759 (5)0.0432 (6)0.095 (2)0.824 (8)
H8A0.42500.10380.05490.142*0.824 (8)
H8B0.34000.00400.02590.142*0.824 (8)
H8C0.30490.05180.11620.142*0.824 (8)
C90.0767 (9)0.2720 (7)0.0655 (5)0.0956 (19)0.824 (8)
H9A0.11910.18650.12980.143*0.824 (8)
H9B0.03390.31040.05560.143*0.824 (8)
H9C0.15130.32050.08620.143*0.824 (8)
C100.1810 (6)0.4768 (4)0.2046 (8)0.118 (3)0.824 (8)
H10A0.13430.54750.22040.177*0.824 (8)
H10B0.21360.46450.13800.177*0.824 (8)
H10C0.27820.49400.27650.177*0.824 (8)
C1A0.022 (4)0.282 (3)0.2591 (15)0.043 (5)0.176 (8)
C2A0.155 (4)0.189 (2)0.1539 (19)0.044 (9)0.176 (8)
C3A0.148 (4)0.201 (3)0.0513 (14)0.050 (11)0.176 (8)
C4A0.016 (3)0.309 (2)0.094 (2)0.037 (5)0.176 (8)
C5A0.061 (2)0.3606 (17)0.224 (2)0.047 (5)0.176 (8)
C6A0.006 (4)0.304 (3)0.3866 (18)0.105 (8)0.176 (8)
H6A10.08170.35100.40740.158*0.176 (8)
H6A20.10830.35200.44470.158*0.176 (8)
H6A30.03320.22380.38820.158*0.176 (8)
C7A0.288 (3)0.080 (2)0.139 (3)0.092 (7)0.176 (8)
H7A10.25060.06690.21110.138*0.176 (8)
H7A20.30350.00360.06930.138*0.176 (8)
H7A30.39290.10070.12670.138*0.176 (8)
C8A0.278 (3)0.122 (2)0.0793 (15)0.077 (7)0.176 (8)
H8A10.24240.14560.13310.115*0.176 (8)
H8A20.38500.13800.08560.115*0.176 (8)
H8A30.28940.03350.10190.115*0.176 (8)
C9A0.021 (3)0.357 (2)0.010 (2)0.076 (7)0.176 (8)
H9A10.03390.28950.05410.114*0.176 (8)
H9A20.12370.42620.05510.114*0.176 (8)
H9A30.07040.38660.02600.114*0.176 (8)
C10A0.204 (3)0.4821 (17)0.310 (2)0.092 (7)0.176 (8)
H10D0.16100.55420.31850.138*0.176 (8)
H10E0.28830.48590.27840.138*0.176 (8)
H10F0.25370.48320.38920.138*0.176 (8)
C110.2320 (4)0.0988 (3)0.3627 (2)0.0592 (7)
C120.3854 (4)0.1761 (3)0.4611 (3)0.0705 (8)
C130.4441 (4)0.1573 (3)0.5639 (3)0.0803 (9)
C140.3539 (5)0.0620 (4)0.5728 (3)0.0799 (9)
C150.2040 (5)0.0145 (3)0.4798 (3)0.0792 (9)
C160.1435 (4)0.0036 (3)0.3765 (3)0.0714 (8)
C170.4133 (3)0.2970 (2)0.1221 (3)0.0570 (6)
C180.5478 (3)0.3887 (3)0.2276 (3)0.0613 (7)
C190.6739 (3)0.4667 (3)0.2236 (3)0.0653 (7)
C200.6712 (3)0.4546 (3)0.1139 (3)0.0641 (7)
C210.5425 (4)0.3650 (3)0.0082 (3)0.0639 (7)
C220.4165 (3)0.2878 (3)0.0131 (3)0.0627 (7)
F10.0057 (3)0.0725 (2)0.2872 (2)0.1189 (8)
F20.1130 (3)0.1077 (3)0.4882 (3)0.1323 (10)
F30.4136 (3)0.0438 (3)0.6738 (2)0.1240 (9)
F40.5933 (3)0.2317 (3)0.6553 (2)0.1361 (11)
F50.4779 (3)0.2697 (2)0.4549 (2)0.1213 (9)
F60.5545 (3)0.4040 (2)0.33688 (18)0.0986 (7)
F70.7987 (3)0.5554 (2)0.32698 (19)0.1061 (7)
F80.7934 (3)0.5323 (2)0.1102 (2)0.0969 (7)
F90.5402 (3)0.3521 (2)0.09978 (19)0.1006 (7)
F100.2916 (2)0.20016 (19)0.09189 (18)0.0996 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0396 (2)0.0401 (2)0.0364 (2)0.00442 (16)0.00860 (16)0.01646 (17)
O10.0409 (11)0.0429 (11)0.0414 (11)0.0072 (9)0.0107 (9)0.0186 (9)
O20.0982 (16)0.0952 (16)0.0437 (10)0.0458 (13)0.0178 (10)0.0378 (11)
O30.0496 (10)0.0548 (11)0.1166 (17)0.0041 (9)0.0344 (11)0.0360 (12)
C10.094 (6)0.067 (5)0.042 (2)0.040 (4)0.025 (2)0.018 (2)
C20.079 (6)0.082 (6)0.087 (4)0.039 (4)0.054 (4)0.059 (4)
C30.042 (2)0.048 (2)0.074 (4)0.0132 (17)0.023 (3)0.024 (3)
C40.051 (3)0.054 (3)0.050 (3)0.018 (2)0.018 (2)0.026 (2)
C50.052 (2)0.039 (2)0.072 (4)0.0096 (17)0.016 (3)0.023 (3)
C60.190 (7)0.153 (6)0.040 (2)0.105 (6)0.020 (3)0.002 (3)
C70.142 (6)0.171 (7)0.207 (8)0.100 (5)0.139 (6)0.154 (7)
C80.047 (2)0.066 (3)0.124 (5)0.016 (2)0.005 (2)0.020 (3)
C90.113 (4)0.146 (6)0.083 (3)0.076 (4)0.056 (3)0.081 (4)
C100.068 (3)0.048 (2)0.217 (8)0.011 (2)0.042 (4)0.054 (3)
C1A0.046 (12)0.045 (14)0.033 (9)0.014 (9)0.006 (8)0.023 (9)
C2A0.019 (6)0.014 (6)0.064 (18)0.007 (5)0.005 (8)0.005 (8)
C3A0.039 (17)0.08 (3)0.016 (7)0.021 (15)0.005 (8)0.009 (9)
C4A0.035 (8)0.040 (9)0.040 (9)0.010 (6)0.012 (7)0.024 (7)
C5A0.045 (9)0.038 (8)0.049 (14)0.002 (6)0.006 (10)0.026 (10)
C6A0.123 (12)0.118 (12)0.082 (10)0.042 (9)0.046 (8)0.046 (8)
C7A0.091 (10)0.086 (10)0.113 (11)0.024 (7)0.053 (8)0.048 (8)
C8A0.065 (13)0.069 (14)0.045 (9)0.032 (11)0.010 (8)0.002 (8)
C9A0.097 (16)0.102 (17)0.086 (16)0.058 (14)0.062 (14)0.070 (14)
C10A0.086 (10)0.068 (9)0.103 (11)0.014 (7)0.034 (8)0.025 (7)
C110.0689 (17)0.0690 (17)0.0382 (12)0.0267 (14)0.0155 (12)0.0260 (12)
C120.0753 (19)0.0699 (18)0.0567 (16)0.0061 (15)0.0133 (14)0.0352 (15)
C130.076 (2)0.089 (2)0.0467 (15)0.0008 (17)0.0011 (14)0.0308 (15)
C140.090 (2)0.098 (2)0.0553 (17)0.0231 (19)0.0188 (16)0.0486 (18)
C150.081 (2)0.087 (2)0.079 (2)0.0182 (18)0.0290 (18)0.0514 (19)
C160.0598 (17)0.0742 (19)0.0582 (17)0.0108 (15)0.0066 (14)0.0254 (15)
C170.0430 (13)0.0470 (13)0.0771 (18)0.0104 (11)0.0218 (12)0.0270 (13)
C180.0543 (15)0.0652 (16)0.0599 (16)0.0041 (12)0.0187 (12)0.0315 (14)
C190.0480 (14)0.0640 (17)0.0682 (17)0.0019 (12)0.0115 (13)0.0301 (14)
C200.0533 (15)0.0662 (17)0.087 (2)0.0161 (13)0.0329 (15)0.0448 (16)
C210.0700 (18)0.0759 (19)0.0647 (17)0.0365 (16)0.0361 (15)0.0379 (15)
C220.0483 (14)0.0564 (15)0.0632 (17)0.0187 (12)0.0132 (12)0.0138 (13)
F10.0778 (14)0.1114 (18)0.0993 (16)0.0091 (12)0.0151 (12)0.0346 (14)
F20.1154 (19)0.140 (2)0.156 (2)0.0004 (17)0.0436 (18)0.102 (2)
F30.141 (2)0.163 (2)0.0812 (14)0.0342 (18)0.0237 (14)0.0898 (16)
F40.1177 (19)0.133 (2)0.0750 (13)0.0343 (15)0.0313 (13)0.0469 (14)
F50.1201 (19)0.1158 (18)0.1085 (17)0.0161 (14)0.0138 (14)0.0749 (15)
F60.0966 (14)0.1208 (17)0.0711 (12)0.0025 (12)0.0276 (11)0.0520 (12)
F70.0747 (12)0.1052 (16)0.0829 (13)0.0316 (11)0.0004 (10)0.0330 (12)
F80.0789 (12)0.1069 (15)0.1440 (19)0.0200 (11)0.0626 (13)0.0825 (15)
F90.1248 (17)0.1330 (19)0.0800 (13)0.0640 (15)0.0616 (13)0.0580 (13)
F100.0745 (12)0.0846 (13)0.0749 (12)0.0138 (10)0.0026 (10)0.0024 (10)
Geometric parameters (Å, º) top
Ti1—O11.8184 (11)C2A—C7A1.524 (16)
Ti1—O21.8464 (19)C3A—C4A1.395 (16)
Ti1—O31.854 (2)C3A—C8A1.516 (14)
Ti1—C3A2.28 (4)C4A—C5A1.421 (15)
Ti1—C4A2.320 (19)C4A—C9A1.510 (14)
Ti1—C22.336 (9)C5A—C10A1.515 (15)
Ti1—C42.356 (5)C6A—H6A10.9600
Ti1—C2A2.36 (4)C6A—H6A20.9600
Ti1—C12.365 (7)C6A—H6A30.9600
Ti1—C32.366 (10)C7A—H7A10.9600
Ti1—C1A2.37 (3)C7A—H7A20.9600
Ti1—C5A2.38 (2)C7A—H7A30.9600
O1—Ti1i1.8184 (11)C8A—H8A10.9600
O2—C111.318 (3)C8A—H8A20.9600
O3—C171.321 (3)C8A—H8A30.9600
C1—C21.394 (8)C9A—H9A10.9600
C1—C51.404 (7)C9A—H9A20.9600
C1—C61.518 (6)C9A—H9A30.9600
C2—C31.400 (7)C10A—H10D0.9600
C2—C71.529 (6)C10A—H10E0.9600
C3—C41.391 (7)C10A—H10F0.9600
C3—C81.500 (7)C11—C161.384 (4)
C4—C51.415 (6)C11—C121.394 (4)
C4—C91.506 (5)C12—F51.329 (3)
C5—C101.501 (6)C12—C131.370 (4)
C6—H6A0.9600C13—F41.335 (4)
C6—H6B0.9600C13—C141.355 (5)
C6—H6C0.9600C14—F31.347 (3)
C7—H7A0.9600C14—C151.350 (5)
C7—H7B0.9600C15—F21.335 (4)
C7—H7C0.9600C15—C161.373 (4)
C8—H8A0.9600C16—F11.332 (3)
C8—H8B0.9600C17—C221.382 (4)
C8—H8C0.9600C17—C181.389 (4)
C9—H9A0.9600C18—F61.335 (3)
C9—H9B0.9600C18—C191.372 (4)
C9—H9C0.9600C19—F71.331 (3)
C10—H10A0.9600C19—C201.362 (4)
C10—H10B0.9600C20—F81.343 (3)
C10—H10C0.9600C20—C211.361 (4)
C1A—C2A1.385 (16)C21—F91.340 (3)
C1A—C5A1.403 (16)C21—C221.371 (4)
C1A—C6A1.521 (16)C22—F101.337 (3)
C2A—C3A1.405 (16)
O1—Ti1—O2103.35 (8)C10—C5—Ti1125.5 (4)
O1—Ti1—O3104.10 (8)C2A—C1A—C5A107.1 (13)
O2—Ti1—O3101.46 (11)C2A—C1A—C6A122 (2)
O1—Ti1—C3A86.0 (7)C5A—C1A—C6A129 (2)
O2—Ti1—C3A132.7 (6)C2A—C1A—Ti172.5 (19)
O3—Ti1—C3A121.3 (6)C5A—C1A—Ti173.3 (16)
O1—Ti1—C4A111.5 (6)C6A—C1A—Ti1130 (2)
O2—Ti1—C4A139.0 (5)C1A—C2A—C3A109.5 (13)
O3—Ti1—C4A90.6 (4)C1A—C2A—C7A129.5 (19)
C3A—Ti1—C4A35.3 (5)C3A—C2A—C7A120.9 (18)
O1—Ti1—C2106.3 (3)C1A—C2A—Ti173.4 (19)
O2—Ti1—C292.3 (2)C3A—C2A—Ti169 (2)
O3—Ti1—C2142.6 (2)C7A—C2A—Ti1120 (2)
C3A—Ti1—C241.5 (6)C4A—C3A—C2A107.4 (12)
C4A—Ti1—C258.1 (4)C4A—C3A—C8A126.7 (19)
O1—Ti1—C498.28 (17)C2A—C3A—C8A125.2 (19)
O2—Ti1—C4146.91 (14)C4A—C3A—Ti173.9 (17)
O3—Ti1—C497.12 (18)C2A—C3A—Ti176 (2)
C3A—Ti1—C424.9 (6)C8A—C3A—Ti1124 (3)
C4A—Ti1—C413.6 (5)C3A—C4A—C5A107.4 (11)
C2—Ti1—C457.41 (19)C3A—C4A—C9A122.2 (18)
O1—Ti1—C2A97.6 (5)C5A—C4A—C9A130.3 (18)
O2—Ti1—C2A97.6 (6)C3A—C4A—Ti170.8 (19)
O3—Ti1—C2A146.7 (6)C5A—C4A—Ti174.9 (12)
C3A—Ti1—C2A35.2 (6)C9A—C4A—Ti1121.5 (13)
C4A—Ti1—C2A57.7 (7)C1A—C5A—C4A108.2 (12)
C2—Ti1—C2A9.2 (5)C1A—C5A—C10A125.5 (19)
C4—Ti1—C2A54.5 (6)C4A—C5A—C10A126.2 (19)
O1—Ti1—C1139.7 (2)C1A—C5A—Ti172.4 (17)
O2—Ti1—C190.41 (18)C4A—C5A—Ti170.0 (12)
O3—Ti1—C1110.0 (3)C10A—C5A—Ti1125.1 (16)
C3A—Ti1—C158.3 (7)C1A—C6A—H6A1109.5
C4A—Ti1—C148.8 (5)C1A—C6A—H6A2109.5
C2—Ti1—C134.5 (2)H6A1—C6A—H6A2109.5
C4—Ti1—C157.36 (18)C1A—C6A—H6A3109.5
C2A—Ti1—C142.5 (5)H6A1—C6A—H6A3109.5
O1—Ti1—C384.26 (19)H6A2—C6A—H6A3109.5
O2—Ti1—C3123.8 (3)C2A—C7A—H7A1109.5
O3—Ti1—C3131.0 (3)C2A—C7A—H7A2109.5
C3A—Ti1—C39.7 (5)H7A1—C7A—H7A2109.5
C4A—Ti1—C343.4 (5)C2A—C7A—H7A3109.5
C2—Ti1—C334.6 (2)H7A1—C7A—H7A3109.5
C4—Ti1—C334.26 (18)H7A2—C7A—H7A3109.5
C2A—Ti1—C327.1 (6)C3A—C8A—H8A1109.5
C1—Ti1—C357.3 (2)C3A—C8A—H8A2109.5
O1—Ti1—C1A130.9 (5)H8A1—C8A—H8A2109.5
O2—Ti1—C1A82.6 (5)C3A—C8A—H8A3109.5
O3—Ti1—C1A122.6 (5)H8A1—C8A—H8A3109.5
C3A—Ti1—C1A58.6 (8)H8A2—C8A—H8A3109.5
C4A—Ti1—C1A58.4 (6)C4A—C9A—H9A1109.5
C2—Ti1—C1A25.0 (5)C4A—C9A—H9A2109.5
C4—Ti1—C1A64.3 (6)H9A1—C9A—H9A2109.5
C2A—Ti1—C1A34.0 (5)C4A—C9A—H9A3109.5
C1—Ti1—C1A13.8 (4)H9A1—C9A—H9A3109.5
C3—Ti1—C1A54.9 (6)H9A2—C9A—H9A3109.5
O1—Ti1—C5A143.9 (5)C5A—C10A—H10D109.5
O2—Ti1—C5A104.6 (6)C5A—C10A—H10E109.5
O3—Ti1—C5A92.2 (5)H10D—C10A—H10E109.5
C3A—Ti1—C5A58.2 (8)C5A—C10A—H10F109.5
C4A—Ti1—C5A35.2 (4)H10D—C10A—H10F109.5
C2—Ti1—C5A50.5 (5)H10E—C10A—H10F109.5
C4—Ti1—C5A47.2 (5)O2—C11—C16122.5 (3)
C2A—Ti1—C5A56.4 (7)O2—C11—C12121.9 (3)
C1—Ti1—C5A20.7 (5)C16—C11—C12115.6 (2)
C3—Ti1—C5A61.3 (5)F5—C12—C13119.0 (3)
C1A—Ti1—C5A34.3 (5)F5—C12—C11119.3 (3)
Ti1—O1—Ti1i180.00 (4)C13—C12—C11121.7 (3)
C11—O2—Ti1172.0 (2)F4—C13—C14119.4 (3)
C17—O3—Ti1162.14 (19)F4—C13—C12120.0 (3)
C2—C1—C5108.2 (4)C14—C13—C12120.6 (3)
C2—C1—C6125.0 (9)F3—C14—C15120.3 (3)
C5—C1—C6126.7 (8)F3—C14—C13120.1 (3)
C2—C1—Ti171.6 (4)C15—C14—C13119.6 (3)
C5—C1—Ti173.7 (3)F2—C15—C14120.1 (3)
C6—C1—Ti1120.8 (5)F2—C15—C16119.5 (3)
C1—C2—C3108.5 (5)C14—C15—C16120.3 (3)
C1—C2—C7127.7 (9)F1—C16—C15118.8 (3)
C3—C2—C7123.7 (9)F1—C16—C11119.1 (3)
C1—C2—Ti173.9 (4)C15—C16—C11122.2 (3)
C3—C2—Ti173.9 (5)O3—C17—C22122.4 (3)
C7—C2—Ti1120.9 (5)O3—C17—C18121.9 (3)
C4—C3—C2107.7 (5)C22—C17—C18115.7 (2)
C4—C3—C8125.3 (8)F6—C18—C19118.4 (3)
C2—C3—C8127.0 (9)F6—C18—C17119.6 (2)
C4—C3—Ti172.5 (4)C19—C18—C17122.0 (3)
C2—C3—Ti171.5 (5)F7—C19—C20119.6 (3)
C8—C3—Ti1121.9 (6)F7—C19—C18120.2 (3)
C3—C4—C5108.5 (5)C20—C19—C18120.2 (3)
C3—C4—C9125.4 (7)F8—C20—C21120.2 (3)
C5—C4—C9126.1 (7)F8—C20—C19120.1 (3)
C3—C4—Ti173.2 (5)C21—C20—C19119.7 (3)
C5—C4—Ti173.9 (3)F9—C21—C20119.8 (3)
C9—C4—Ti1120.9 (3)F9—C21—C22120.4 (3)
C1—C5—C4107.0 (4)C20—C21—C22119.8 (3)
C1—C5—C10126.4 (7)F10—C22—C21118.7 (3)
C4—C5—C10126.5 (7)F10—C22—C17118.6 (3)
C1—C5—Ti171.9 (3)C21—C22—C17122.7 (3)
C4—C5—Ti171.4 (3)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ti2(C10H15)2(C6F5O)4O]
Mr1114.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7472 (17), 11.823 (2), 12.923 (3)
α, β, γ (°)112.00 (3), 109.24 (3), 97.36 (3)
V3)1120.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.94, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
12962, 5069, 3892
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.03
No. of reflections5069
No. of parameters423
No. of restraints49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a research grant from Chungbuk National University in 2011.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowik, P., Klaotke, T. & Pickardt, J. (1990). J. Organomet. Chem. 393, 343–348.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, J., Do, Y. & Kim, Y. (2007). J. Organomet. Chem. 692, 3593–3598.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J. & Kim, Y. (2011). Acta Cryst. E67, m1104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoh, S. K., Jung, W., Oh, H., Lee, Y. R. & Lyoo, W. S. (2006). J. Organomet. Chem. 691, 5000–5006.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThewalt, U. & Schomburg, D. (1977). J. Organomet. Chem. 127, 169–174.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, Q.-L., Li, G.-H., Ye, L., Gao, W. & Mu, Y. (2007). Polyhedron, 26, 3063–3068.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoon, S.W., Kim, Y., Kim, S.K., Kim, S.Y., Do, Y. & Park, S. (2011). Macromol. Chem. Phys. 212, 785–789.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds