metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­chloridobis­{μ2-2-(piperazin-1-yl)-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine}­trizinc dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 20 May 2011; accepted 8 July 2011; online 13 July 2011)

In the trinuclear title compound, [Zn3Cl6(C13H20N4)2]·2H2O, each terminal ZnII atom is coordinated by an N3 donor set from the Schiff base ligands and two Cl atoms in a distorted square-pyramidal geometry. The central ZnII atom is tetra­hedrally coordinated by two piperazine N atoms from two Schiff base ligands and two Cl atoms. The piperazine rings adopt chair conformations. In the crystal structure, adjacent complex mol­ecules are linked into a three-dimensional network via N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds. The structure includes two water mol­ecules, one of which is disordered over two positions with occupancies of 0.753 (15) and 0.247 (15).

Related literature

For related structures, see: Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]); Xu et al. (2008[Xu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306-3313.]). For a description of the geometry of complexes with five-coordinate metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3Cl6(C13H20N4)2]·2H2O

  • Mr = 909.50

  • Triclinic, [P \overline 1]

  • a = 7.6060 (3) Å

  • b = 14.8850 (5) Å

  • c = 16.7153 (5) Å

  • α = 72.570 (2)°

  • β = 86.834 (2)°

  • γ = 88.936 (2)°

  • V = 1802.78 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 100 K

  • 0.21 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.809

  • 16465 measured reflections

  • 7831 independent reflections

  • 6241 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.04

  • 7831 reflections

  • 424 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2i 0.91 (2) 2.05 (2) 2.953 (7) 170 (5)
N5—H5N⋯O1i 0.92 (2) 2.41 (2) 3.310 (6) 169 (5)
C3—H3⋯Cl6ii 0.95 2.78 3.563 (4) 140
C7—H7C⋯Cl6iii 0.98 2.79 3.634 (5) 144
C14—H14A⋯Cl3iv 0.99 2.78 3.493 (5) 130
C16—H16B⋯Cl6v 0.99 2.81 3.509 (5) 128
C19—H19A⋯Cl4vi 0.99 2.70 3.689 (6) 174
C11—H11A⋯Cl2 0.99 2.81 3.524 (5) 129
C13—H13B⋯Cl1 0.99 2.63 3.461 (5) 141
C17—H17A⋯Cl5 0.99 2.78 3.491 (5) 129
C14—H14A⋯O2i 0.99 2.59 3.331 (9) 131
C15—H15B⋯O1i 0.99 2.60 3.431 (7) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y+1, z-1; (iii) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) x-1, y, z; (vi) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It has been shown that ligands having piperazine ring, depending on the ring conformation (chair or boat), may display ambidentate ligation behavior (Mukhopadhyay et al., 2003; Xu et al., 2008). The title compound was obtained upon the reaction of the in situ prepared Schiff base, 2-piperazino-N-[1-(2-pyridyl)ethylidene]ethanamine, with zinc(II) chloride. As shown in Fig. 1, the compound contains three unique metal centers. One Schiff base ligand chelates each of the two terminal zinc atoms via three N atoms. The piperazine rings assume chair conformations and their nitrogen atoms, N4 and N5, which stay away from chelation, are coordinated to the central zinc atom. Within the resulting trinuclear zinc complex, the metal atoms are separated by 5.8498 (7) Å (Zn1···Zn2) and 7.0153 (7) Å (Zn2···Zn3). The coordination environment around each metal center is completed by two Cl atoms, resulting in a tetrahedral geometry for the central ZnII ion and square-pyramidal geometries for the terminal zinc atoms (τ = 0.39 and 0.26 for Zn1 and Zn3 centers, respectively, Addison et al., 1984). The crystal structure contains intra- and intermolecular C—H···Cl interactions (Table 1). The latter connect the adjacent metal complexes into a three-dimensional network. The complex is N—H···O and C—H···O hydrogen bonded to two molecules of water, one of which being disordered between two sites.

Related literature top

For related structures, see: Mukhopadhyay et al. (2003); Xu et al. (2008). For a description of the geometry of complexes with five-coordinate metal ions, see: Addison et al. (1984).

Experimental top

A mixture of 4-(2-aminoethyl) piperazine (0.2 g, 1.55 mmol) and 2-acetylpyridine (0.19 g, 1.55 mmol) in ethanol (20 ml) was refluxed for 2 h and then an ethanolic solution of zinc (II) chloride (0.21 g, 1.55 mmol) was added. The resulting solution was refluxed for 30 min and then set aside at room temperature for a few days whereupon the prismatic crystals of the title compound were obtained.

Refinement top

The C-bound H atoms were placed at calculated positions and refined as riding on their parent atoms, with C–H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The N-bound H atoms were located in a difference Fourier map and refined with a N–H distance restraint of 0.91 (2) Å. For all H atoms Uiso(H) were set to 1.2 (1.5 for methyl) times the Ueq(carrier atom). H atoms of the water molecules could not be reliably located and were omitted from the refinement. One of the water oxygen atoms (O2) is disordered over two positions with refined site occupancy factors of 0.753 (15) and 0.247 (15). An ISOR restraint (Sheldrick, 2008) was applied to the major component of the disordered water oxygen atom (O2).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (50% probability displacement ellipsoids). Only the major component of disordered O2 is shown.
Hexachloridobis{µ2-2-(piperazin-1-yl)-N-[1-(2-pyridyl) ethylidene]ethanamine}trizinc dihydrate top
Crystal data top
[Zn3Cl6(C13H20N4)2]·2H2OZ = 2
Mr = 909.50F(000) = 928
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6060 (3) ÅCell parameters from 5640 reflections
b = 14.8850 (5) Åθ = 2.6–29.0°
c = 16.7153 (5) ŵ = 2.46 mm1
α = 72.570 (2)°T = 100 K
β = 86.834 (2)°Prism, yellow
γ = 88.936 (2)°0.21 × 0.12 × 0.09 mm
V = 1802.78 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7831 independent reflections
Radiation source: fine-focus sealed tube6241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.626, Tmax = 0.809k = 1819
16465 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0573P)2 + 5.66P]
where P = (Fo2 + 2Fc2)/3
7831 reflections(Δ/σ)max = 0.001
424 parametersΔρmax = 0.92 e Å3
8 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Zn3Cl6(C13H20N4)2]·2H2Oγ = 88.936 (2)°
Mr = 909.50V = 1802.78 (11) Å3
Triclinic, P1Z = 2
a = 7.6060 (3) ÅMo Kα radiation
b = 14.8850 (5) ŵ = 2.46 mm1
c = 16.7153 (5) ÅT = 100 K
α = 72.570 (2)°0.21 × 0.12 × 0.09 mm
β = 86.834 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7831 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6241 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.809Rint = 0.024
16465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0468 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.92 e Å3
7831 reflectionsΔρmin = 1.31 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.60721 (6)0.60302 (3)0.15462 (3)0.01962 (12)
Zn20.54211 (8)0.26399 (4)0.44315 (3)0.03191 (15)
Zn30.96674 (6)0.03792 (3)0.78382 (3)0.01865 (12)
Cl10.32182 (14)0.57174 (8)0.20310 (7)0.0286 (2)
Cl20.76455 (14)0.49402 (7)0.11373 (6)0.0245 (2)
Cl30.25702 (18)0.28147 (10)0.47790 (9)0.0461 (3)
Cl40.6177 (2)0.18718 (10)0.35034 (8)0.0451 (3)
Cl50.82202 (14)0.06069 (7)0.84965 (6)0.0251 (2)
Cl61.24603 (14)0.01080 (8)0.74837 (7)0.0276 (2)
N10.5433 (4)0.6860 (2)0.0275 (2)0.0191 (7)
N20.6720 (5)0.7394 (2)0.1477 (2)0.0213 (7)
N30.7470 (5)0.5792 (2)0.2849 (2)0.0222 (7)
N40.6610 (5)0.3943 (3)0.4067 (2)0.0279 (8)
H4N0.724 (6)0.400 (4)0.450 (2)0.033*
N50.6552 (5)0.1858 (3)0.5515 (2)0.0302 (9)
H5N0.657 (7)0.210 (3)0.596 (2)0.036*
N60.8522 (5)0.0241 (3)0.6575 (2)0.0245 (8)
N70.9023 (5)0.1581 (2)0.7520 (2)0.0219 (7)
N81.0000 (4)0.1532 (2)0.8977 (2)0.0178 (7)
C10.4820 (6)0.6548 (3)0.0321 (3)0.0226 (9)
H10.46400.58910.02050.027*
C20.4431 (6)0.7137 (3)0.1103 (3)0.0236 (9)
H20.39800.68900.15120.028*
C30.4711 (6)0.8092 (3)0.1279 (3)0.0239 (9)
H30.44650.85150.18120.029*
C40.5359 (6)0.8422 (3)0.0658 (3)0.0217 (8)
H40.55660.90750.07620.026*
C50.5702 (5)0.7791 (3)0.0112 (2)0.0186 (8)
C60.6400 (5)0.8070 (3)0.0824 (3)0.0190 (8)
C70.6619 (7)0.9095 (3)0.0729 (3)0.0273 (10)
H7A0.54630.93770.07880.041*
H7B0.71660.94110.01740.041*
H7C0.73700.91670.11640.041*
C80.7424 (7)0.7540 (3)0.2227 (3)0.0275 (10)
H8A0.64480.76340.26120.033*
H8B0.81820.81060.20670.033*
C90.8485 (6)0.6676 (3)0.2656 (3)0.0273 (10)
H9A0.95310.66360.22880.033*
H9B0.89060.67450.31840.033*
C100.8763 (6)0.5001 (3)0.3062 (3)0.0265 (9)
H10A0.94820.50610.35190.032*
H10B0.95660.50420.25650.032*
C110.7864 (6)0.4050 (3)0.3335 (3)0.0266 (9)
H11A0.72240.39700.28610.032*
H11B0.87680.35490.34800.032*
C120.6261 (6)0.5688 (3)0.3592 (3)0.0274 (10)
H12A0.53620.61930.34590.033*
H12B0.69330.57620.40590.033*
C130.5352 (6)0.4741 (3)0.3870 (3)0.0286 (10)
H13A0.45730.47010.43730.034*
H13B0.46060.46890.34190.034*
C140.8469 (7)0.1730 (4)0.5366 (3)0.0367 (12)
H14A0.90340.23550.51420.044*
H14B0.86550.13940.49390.044*
C150.9338 (6)0.1179 (3)0.6160 (3)0.0321 (11)
H15A1.05980.10880.60200.039*
H15B0.92740.15530.65600.039*
C160.5725 (6)0.0910 (3)0.5870 (3)0.0304 (10)
H16A0.58460.05620.54490.036*
H16B0.44530.09850.59950.036*
C170.6584 (6)0.0347 (3)0.6668 (3)0.0271 (9)
H17A0.63170.06580.71080.033*
H17B0.60480.02880.68650.033*
C180.9066 (7)0.0458 (3)0.6135 (3)0.0340 (11)
H18A1.03590.04320.60250.041*
H18B0.85100.02980.55880.041*
C190.8535 (7)0.1444 (3)0.6655 (3)0.0319 (11)
H19A0.72490.15270.66410.038*
H19B0.91460.19130.64250.038*
C200.8598 (6)0.3303 (3)0.7939 (3)0.0281 (10)
H20A0.81950.31890.73710.042*
H20B0.76580.36080.83500.042*
H20C0.96380.37130.80130.042*
C210.9060 (5)0.2388 (3)0.8068 (3)0.0205 (8)
C220.9658 (5)0.2394 (3)0.8906 (2)0.0175 (8)
C230.9890 (5)0.3205 (3)0.9555 (3)0.0217 (8)
H230.96010.38010.94990.026*
C241.0555 (6)0.3137 (3)1.0295 (3)0.0243 (9)
H241.07550.36891.07460.029*
C251.0917 (5)0.2263 (3)1.0365 (3)0.0225 (9)
H251.13700.22011.08640.027*
C261.0607 (5)0.1473 (3)0.9690 (3)0.0216 (8)
H261.08380.08680.97420.026*
O10.2839 (6)0.7374 (3)0.2857 (3)0.0589 (12)
O20.1410 (14)0.6105 (5)0.4450 (5)0.087 (3)0.753 (15)
O2'0.007 (3)0.5754 (12)0.4953 (12)0.053 (8)0.247 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0219 (3)0.0135 (2)0.0220 (2)0.00288 (18)0.00124 (19)0.00282 (18)
Zn20.0386 (3)0.0274 (3)0.0255 (3)0.0038 (2)0.0047 (2)0.0007 (2)
Zn30.0221 (2)0.0161 (2)0.0160 (2)0.00138 (18)0.00034 (18)0.00237 (17)
Cl10.0213 (5)0.0296 (6)0.0287 (5)0.0036 (4)0.0022 (4)0.0009 (4)
Cl20.0298 (6)0.0179 (5)0.0266 (5)0.0028 (4)0.0043 (4)0.0074 (4)
Cl30.0356 (7)0.0509 (8)0.0476 (8)0.0113 (6)0.0041 (6)0.0075 (6)
Cl40.0651 (9)0.0370 (7)0.0349 (7)0.0077 (6)0.0039 (6)0.0127 (5)
Cl50.0317 (6)0.0201 (5)0.0239 (5)0.0007 (4)0.0017 (4)0.0079 (4)
Cl60.0233 (5)0.0270 (5)0.0275 (5)0.0015 (4)0.0008 (4)0.0009 (4)
N10.0188 (17)0.0145 (16)0.0227 (17)0.0017 (13)0.0006 (14)0.0034 (13)
N20.0224 (18)0.0176 (17)0.0236 (18)0.0029 (14)0.0039 (14)0.0050 (14)
N30.0266 (19)0.0172 (17)0.0217 (17)0.0053 (14)0.0024 (14)0.0035 (14)
N40.032 (2)0.025 (2)0.0221 (18)0.0021 (16)0.0055 (16)0.0000 (15)
N50.029 (2)0.031 (2)0.0248 (19)0.0015 (17)0.0018 (16)0.0010 (16)
N60.0255 (19)0.0244 (19)0.0184 (17)0.0008 (15)0.0018 (14)0.0008 (14)
N70.0265 (19)0.0231 (18)0.0180 (17)0.0014 (15)0.0047 (14)0.0084 (14)
N80.0173 (17)0.0176 (17)0.0172 (16)0.0018 (13)0.0001 (13)0.0032 (13)
C10.024 (2)0.020 (2)0.023 (2)0.0011 (17)0.0003 (17)0.0058 (16)
C20.020 (2)0.028 (2)0.024 (2)0.0028 (17)0.0017 (17)0.0084 (17)
C30.022 (2)0.022 (2)0.023 (2)0.0003 (17)0.0011 (17)0.0013 (17)
C40.023 (2)0.0137 (19)0.026 (2)0.0008 (16)0.0028 (17)0.0025 (16)
C50.0151 (19)0.0168 (19)0.022 (2)0.0001 (15)0.0036 (15)0.0040 (15)
C60.0170 (19)0.0138 (19)0.025 (2)0.0009 (15)0.0023 (16)0.0044 (15)
C70.041 (3)0.014 (2)0.026 (2)0.0017 (18)0.0008 (19)0.0035 (17)
C80.041 (3)0.016 (2)0.027 (2)0.0053 (18)0.0080 (19)0.0063 (17)
C90.029 (2)0.025 (2)0.028 (2)0.0038 (18)0.0091 (18)0.0055 (18)
C100.025 (2)0.024 (2)0.030 (2)0.0022 (18)0.0046 (18)0.0060 (18)
C110.030 (2)0.023 (2)0.025 (2)0.0012 (18)0.0010 (18)0.0049 (17)
C120.035 (3)0.026 (2)0.021 (2)0.0035 (19)0.0014 (18)0.0073 (17)
C130.029 (2)0.029 (2)0.024 (2)0.0008 (19)0.0014 (18)0.0037 (18)
C140.032 (3)0.036 (3)0.030 (2)0.001 (2)0.003 (2)0.006 (2)
C150.024 (2)0.034 (3)0.027 (2)0.0012 (19)0.0006 (18)0.0079 (19)
C160.031 (2)0.030 (2)0.025 (2)0.005 (2)0.0005 (19)0.0008 (19)
C170.025 (2)0.027 (2)0.024 (2)0.0038 (18)0.0009 (17)0.0003 (18)
C180.047 (3)0.036 (3)0.016 (2)0.009 (2)0.0018 (19)0.0036 (18)
C190.046 (3)0.034 (3)0.021 (2)0.008 (2)0.008 (2)0.0153 (19)
C200.031 (2)0.021 (2)0.036 (2)0.0013 (18)0.0056 (19)0.0131 (19)
C210.0155 (19)0.022 (2)0.024 (2)0.0014 (16)0.0010 (16)0.0082 (16)
C220.0154 (19)0.0169 (19)0.0194 (19)0.0000 (15)0.0011 (15)0.0045 (15)
C230.021 (2)0.0170 (19)0.026 (2)0.0000 (16)0.0019 (16)0.0043 (16)
C240.023 (2)0.022 (2)0.022 (2)0.0027 (17)0.0004 (17)0.0014 (17)
C250.019 (2)0.029 (2)0.018 (2)0.0014 (17)0.0002 (16)0.0044 (17)
C260.021 (2)0.022 (2)0.022 (2)0.0041 (16)0.0002 (16)0.0067 (16)
O10.061 (3)0.048 (3)0.072 (3)0.017 (2)0.023 (2)0.022 (2)
O20.139 (7)0.064 (4)0.064 (5)0.018 (4)0.060 (5)0.016 (3)
O2'0.082 (16)0.034 (10)0.048 (12)0.001 (9)0.041 (11)0.014 (8)
Geometric parameters (Å, º) top
Zn1—N22.066 (3)C7—H7B0.98
Zn1—N12.190 (3)C7—H7C0.98
Zn1—Cl22.2436 (11)C8—C91.514 (6)
Zn1—Cl12.2809 (11)C8—H8A0.99
Zn1—N32.404 (3)C8—H8B0.99
Zn2—N52.061 (4)C9—H9A0.99
Zn2—N42.061 (4)C9—H9B0.99
Zn2—Cl42.2325 (15)C10—C111.514 (6)
Zn2—Cl32.2445 (15)C10—H10A0.99
Zn3—N72.086 (3)C10—H10B0.99
Zn3—N82.170 (3)C11—H11A0.99
Zn3—Cl62.2473 (12)C11—H11B0.99
Zn3—N62.253 (3)C12—C131.513 (6)
Zn3—Cl52.3132 (11)C12—H12A0.99
N1—C11.328 (5)C12—H12B0.99
N1—C51.348 (5)C13—H13A0.99
N2—C61.276 (5)C13—H13B0.99
N2—C81.465 (5)C14—C151.514 (6)
N3—C121.475 (6)C14—H14A0.99
N3—C91.479 (5)C14—H14B0.99
N3—C101.492 (6)C15—H15A0.99
N4—C111.480 (6)C15—H15B0.99
N4—C131.481 (6)C16—C171.522 (6)
N4—H4N0.910 (19)C16—H16A0.99
N5—C141.484 (6)C16—H16B0.99
N5—C161.492 (6)C17—H17A0.99
N5—H5N0.916 (19)C17—H17B0.99
N6—C181.484 (6)C18—C191.514 (7)
N6—C171.484 (6)C18—H18A0.99
N6—C151.490 (6)C18—H18B0.99
N7—C211.275 (5)C19—H19A0.99
N7—C191.467 (5)C19—H19B0.99
N8—C261.331 (5)C20—C211.493 (6)
N8—C221.354 (5)C20—H20A0.98
C1—C21.383 (6)C20—H20B0.98
C1—H10.95C20—H20C0.98
C2—C31.381 (6)C21—C221.494 (6)
C2—H20.95C22—C231.376 (6)
C3—C41.389 (6)C23—C241.393 (6)
C3—H30.95C23—H230.95
C4—C51.381 (6)C24—C251.374 (6)
C4—H40.95C24—H240.95
C5—C61.499 (6)C25—C261.391 (6)
C6—C71.497 (5)C25—H250.95
C7—H7A0.98C26—H260.95
N2—Zn1—N175.73 (13)H8A—C8—H8B108.4
N2—Zn1—Cl2130.04 (11)N3—C9—C8113.1 (4)
N1—Zn1—Cl295.06 (9)N3—C9—H9A109.0
N2—Zn1—Cl1110.48 (11)C8—C9—H9A109.0
N1—Zn1—Cl195.26 (9)N3—C9—H9B109.0
Cl2—Zn1—Cl1119.30 (4)C8—C9—H9B109.0
N2—Zn1—N378.63 (13)H9A—C9—H9B107.8
N1—Zn1—N3153.39 (12)N3—C10—C11111.9 (4)
Cl2—Zn1—N395.99 (9)N3—C10—H10A109.2
Cl1—Zn1—N3100.26 (9)C11—C10—H10A109.2
N5—Zn2—N4107.07 (16)N3—C10—H10B109.2
N5—Zn2—Cl4103.95 (13)C11—C10—H10B109.2
N4—Zn2—Cl4109.56 (12)H10A—C10—H10B107.9
N5—Zn2—Cl3106.53 (12)N4—C11—C10112.4 (4)
N4—Zn2—Cl3108.81 (12)N4—C11—H11A109.1
Cl4—Zn2—Cl3120.10 (6)C10—C11—H11A109.1
N7—Zn3—N875.48 (13)N4—C11—H11B109.1
N7—Zn3—Cl6114.52 (11)C10—C11—H11B109.1
N8—Zn3—Cl6101.42 (9)H11A—C11—H11B107.9
N7—Zn3—N677.89 (13)N3—C12—C13112.1 (4)
N8—Zn3—N6151.58 (13)N3—C12—H12A109.2
Cl6—Zn3—N698.48 (10)C13—C12—H12A109.2
N7—Zn3—Cl5135.93 (11)N3—C12—H12B109.2
N8—Zn3—Cl595.60 (9)C13—C12—H12B109.2
Cl6—Zn3—Cl5109.54 (4)H12A—C12—H12B107.9
N6—Zn3—Cl596.62 (10)N4—C13—C12112.7 (4)
C1—N1—C5118.7 (3)N4—C13—H13A109.1
C1—N1—Zn1127.6 (3)C12—C13—H13A109.1
C5—N1—Zn1113.7 (3)N4—C13—H13B109.1
C6—N2—C8122.9 (4)C12—C13—H13B109.1
C6—N2—Zn1120.1 (3)H13A—C13—H13B107.8
C8—N2—Zn1116.9 (3)N5—C14—C15112.2 (4)
C12—N3—C9110.6 (3)N5—C14—H14A109.2
C12—N3—C10107.7 (3)C15—C14—H14A109.2
C9—N3—C10107.0 (3)N5—C14—H14B109.2
C12—N3—Zn1115.3 (3)C15—C14—H14B109.2
C9—N3—Zn1100.3 (2)H14A—C14—H14B107.9
C10—N3—Zn1115.5 (3)N6—C15—C14113.5 (4)
C11—N4—C13108.7 (3)N6—C15—H15A108.9
C11—N4—Zn2111.6 (3)C14—C15—H15A108.9
C13—N4—Zn2113.8 (3)N6—C15—H15B108.9
C11—N4—H4N107 (3)C14—C15—H15B108.9
C13—N4—H4N106 (3)H15A—C15—H15B107.7
Zn2—N4—H4N109 (3)N5—C16—C17111.1 (4)
C14—N5—C16108.5 (4)N5—C16—H16A109.4
C14—N5—Zn2111.3 (3)C17—C16—H16A109.4
C16—N5—Zn2112.2 (3)N5—C16—H16B109.4
C14—N5—H5N100 (4)C17—C16—H16B109.4
C16—N5—H5N105 (3)H16A—C16—H16B108.0
Zn2—N5—H5N118 (3)N6—C17—C16114.6 (4)
C18—N6—C17113.5 (4)N6—C17—H17A108.6
C18—N6—C15111.8 (4)C16—C17—H17A108.6
C17—N6—C15109.7 (3)N6—C17—H17B108.6
C18—N6—Zn3102.0 (3)C16—C17—H17B108.6
C17—N6—Zn3110.7 (2)H17A—C17—H17B107.6
C15—N6—Zn3108.9 (3)N6—C18—C19111.1 (4)
C21—N7—C19122.9 (4)N6—C18—H18A109.4
C21—N7—Zn3120.1 (3)C19—C18—H18A109.4
C19—N7—Zn3117.0 (3)N6—C18—H18B109.4
C26—N8—C22118.7 (3)C19—C18—H18B109.4
C26—N8—Zn3126.7 (3)H18A—C18—H18B108.0
C22—N8—Zn3114.4 (3)N7—C19—C18108.2 (4)
N1—C1—C2123.0 (4)N7—C19—H19A110.1
N1—C1—H1118.5C18—C19—H19A110.1
C2—C1—H1118.5N7—C19—H19B110.1
C3—C2—C1118.7 (4)C18—C19—H19B110.1
C3—C2—H2120.6H19A—C19—H19B108.4
C1—C2—H2120.6C21—C20—H20A109.5
C2—C3—C4118.5 (4)C21—C20—H20B109.5
C2—C3—H3120.7H20A—C20—H20B109.5
C4—C3—H3120.7C21—C20—H20C109.5
C5—C4—C3119.5 (4)H20A—C20—H20C109.5
C5—C4—H4120.3H20B—C20—H20C109.5
C3—C4—H4120.3N7—C21—C20126.1 (4)
N1—C5—C4121.6 (4)N7—C21—C22115.3 (4)
N1—C5—C6114.6 (3)C20—C21—C22118.5 (4)
C4—C5—C6123.8 (4)N8—C22—C23122.0 (4)
N2—C6—C7125.5 (4)N8—C22—C21114.6 (3)
N2—C6—C5115.7 (4)C23—C22—C21123.4 (4)
C7—C6—C5118.8 (3)C22—C23—C24118.9 (4)
C6—C7—H7A109.5C22—C23—H23120.6
C6—C7—H7B109.5C24—C23—H23120.6
H7A—C7—H7B109.5C25—C24—C23119.2 (4)
C6—C7—H7C109.5C25—C24—H24120.4
H7A—C7—H7C109.5C23—C24—H24120.4
H7B—C7—H7C109.5C24—C25—C26118.7 (4)
N2—C8—C9107.9 (4)C24—C25—H25120.6
N2—C8—H8A110.1C26—C25—H25120.6
C9—C8—H8A110.1N8—C26—C25122.4 (4)
N2—C8—H8B110.1N8—C26—H26118.8
C9—C8—H8B110.1C25—C26—H26118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.91 (2)2.05 (2)2.953 (7)170 (5)
N5—H5N···O1i0.92 (2)2.41 (2)3.310 (6)169 (5)
C3—H3···Cl6ii0.952.783.563 (4)140
C7—H7C···Cl6iii0.982.793.634 (5)144
C14—H14A···Cl3iv0.992.783.493 (5)130
C16—H16B···Cl6v0.992.813.509 (5)128
C19—H19A···Cl4vi0.992.703.689 (6)174
C11—H11A···Cl20.992.813.524 (5)129
C13—H13B···Cl10.992.633.461 (5)141
C17—H17A···Cl50.992.783.491 (5)129
C14—H14A···O2i0.992.593.331 (9)131
C15—H15B···O1i0.992.603.431 (7)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn3Cl6(C13H20N4)2]·2H2O
Mr909.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6060 (3), 14.8850 (5), 16.7153 (5)
α, β, γ (°)72.570 (2), 86.834 (2), 88.936 (2)
V3)1802.78 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.21 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.626, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
16465, 7831, 6241
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.04
No. of reflections7831
No. of parameters424
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 1.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.91 (2)2.05 (2)2.953 (7)170 (5)
N5—H5N···O1i0.92 (2)2.41 (2)3.310 (6)169 (5)
C3—H3···Cl6ii0.952.783.563 (4)140
C7—H7C···Cl6iii0.982.793.634 (5)144
C14—H14A···Cl3iv0.992.783.493 (5)130
C16—H16B···Cl6v0.992.813.509 (5)128
C19—H19A···Cl4vi0.992.703.689 (6)174
C11—H11A···Cl20.992.813.524 (5)129
C13—H13B···Cl10.992.633.461 (5)141
C17—H17A···Cl50.992.783.491 (5)129
C14—H14A···O2i0.992.593.331 (9)131
C15—H15B···O1i0.992.603.431 (7)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z1; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306–3313.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds