metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N-bromo-2-methyl­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 June 2011; accepted 26 June 2011; online 2 July 2011)

In the structure of the title compound, K+·C7H7BrNO2S·1.5H2O, the K+ ion is hepta­coordinated by three O atoms from water mol­ecules and by four sulfonyl O atoms of N-bromo-2-methyl­benzene­sulfonamide anions. The S—N distance of 1.577 (5) Å is consistent with an S=N double bond. The crystal structure comprises sheets in the ac plane which are further stabilized by O—H⋯Br and O—H⋯N hydrogen bonds.

Related literature

For the preparation of N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For our studies of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]); Gowda et al. (2009[Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.], 2011[Gowda, B. T., Foro, S. & Shakuntala, K. (2011). Acta Cryst. E67, m926.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For related structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C7H7BrNO2S·1.5H2O

  • Mr = 315.23

  • Orthorhombic, F d d 2

  • a = 12.271 (2) Å

  • b = 55.017 (6) Å

  • c = 6.904 (1) Å

  • V = 4661.0 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 4.05 mm−1

  • T = 293 K

  • 0.42 × 0.42 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.281, Tmax = 0.376

  • 7816 measured reflections

  • 2358 independent reflections

  • 2140 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.112

  • S = 1.13

  • 2358 reflections

  • 142 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1060 Friedel pairs

  • Flack parameter: −0.002 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯Br1i 0.81 (2) 2.79 (2) 3.600 (5) 173 (7)
O3—H32⋯N1ii 0.81 (2) 2.19 (4) 2.933 (7) 154 (7)
O4—H41⋯N1iii 0.80 (2) 2.28 (5) 2.993 (6) 149 (8)
Symmetry codes: (i) -x, -y, z; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To explore the substituent effects and the effect of replacing sodium ion by potassium ion on the solid state structures of N-halo-arylsulfonamidates (Gowda & Kumar, 2003; Gowda et al., 2009, 2011; Usha & Gowda, 2006), in the present work, the structure of potassium N-bromo-2-methyl-benzenesulfonamidate sesquihydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chloro-benzenesulfonamidate sesquihydrate (II) (Gowda et al., 2011), sodium N-chloro-2-methyl- benzenesulfonamidate sesquihydrate (III) (Gowda et al., 2009), and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the title compound, K+ ion is hepta coordinated by three O atoms from water molecules and by four sulfonyl O atoms of N-bromo-2-methyl- benzenesulfonamide anions. The replacement of Na+ ion by K+ ion changes co-ordination from hexa to hepta in the metal co-ordination (Gowda et al., 2009) and other parameters.

The S—N distance of 1.577 (5) Å is consistent with an S—N double bond and is in agreement with the observed values of 1.582 (4)Å in (II) and 1.590 (2) Å in (III).

The packing consists of two-dimensional polymeric layers running parallel to the ac plane (Fig. 2). The molecular packing is stabilized by O3—H31···Br1, O3—H32···N1 and O4—H41···N1 hydrogen bonds (Table 1).

Related literature top

For the preparation of N-bromoarylsulfonamides, see: Usha & Gowda (2006). For our studies of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda & Kumar (2003); Gowda et al. (2009, 2011); Usha & Gowda (2006). For related structures, see: George et al. (2000); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Usha & Gowda, 2006). The purity of the compound was checked by determining its melting point (176 °). It was characterized by recording its infrared and NMR spectra. Yellow prisms of the title compound used in X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

The O bound H atoms were located in a difference map and later restrained to O–H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with aromatic C–H = 0.93 Å and methyl C–H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+ cation. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii. Symmetry codes: (i) 1/2-x, -y, 1/2+z and (ii) -x,-y,z.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines.
Potassium N-bromo-2-methylbenzenesulfonamidate sesquihydrate top
Crystal data top
K+·C7H7BrNO2S·1.5H2OF(000) = 2512
Mr = 315.23Dx = 1.797 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 5298 reflections
a = 12.271 (2) Åθ = 2.8–27.9°
b = 55.017 (6) ŵ = 4.05 mm1
c = 6.904 (1) ÅT = 293 K
V = 4661.0 (11) Å3Prism, yellow
Z = 160.42 × 0.42 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2358 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1515
Tmin = 0.281, Tmax = 0.376k = 6168
7816 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0467P)2 + 17.9942P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
2358 reflectionsΔρmax = 0.68 e Å3
142 parametersΔρmin = 0.57 e Å3
4 restraintsAbsolute structure: Flack (1983), 1060 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (14)
Crystal data top
K+·C7H7BrNO2S·1.5H2OV = 4661.0 (11) Å3
Mr = 315.23Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 12.271 (2) ŵ = 4.05 mm1
b = 55.017 (6) ÅT = 293 K
c = 6.904 (1) Å0.42 × 0.42 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2358 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2140 reflections with I > 2σ(I)
Tmin = 0.281, Tmax = 0.376Rint = 0.047
7816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0467P)2 + 17.9942P]
where P = (Fo2 + 2Fc2)/3
S = 1.13Δρmax = 0.68 e Å3
2358 reflectionsΔρmin = 0.57 e Å3
142 parametersAbsolute structure: Flack (1983), 1060 Friedel pairs
4 restraintsAbsolute structure parameter: 0.002 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06968 (5)0.066623 (13)0.49885 (10)0.0532 (2)
K10.15329 (9)0.00653 (2)1.01716 (18)0.0354 (3)
S10.09151 (10)0.04335 (2)0.73436 (19)0.0285 (3)
O10.0096 (3)0.03331 (7)0.8626 (6)0.0411 (10)
O20.1906 (3)0.02885 (7)0.7241 (7)0.0395 (9)
O30.2761 (4)0.03137 (8)0.7404 (8)0.0441 (10)
H310.234 (5)0.0403 (11)0.683 (9)0.053*
H320.314 (5)0.0400 (11)0.807 (9)0.053*
O40.00000.00001.3142 (9)0.0507 (17)
H410.031 (6)0.0087 (12)1.388 (9)0.061*
N10.0555 (3)0.04649 (9)0.5166 (7)0.0361 (11)
C10.1275 (5)0.07197 (11)0.8363 (8)0.0334 (12)
C20.2037 (4)0.08730 (11)0.7475 (11)0.0401 (13)
C30.2281 (6)0.10908 (13)0.8424 (12)0.0561 (19)
H30.27860.11960.78770.067*
C40.1789 (6)0.11525 (14)1.0151 (14)0.070 (2)
H40.19680.12981.07600.084*
C50.1040 (7)0.10007 (15)1.0968 (12)0.064 (2)
H50.07000.10451.21200.077*
C60.0784 (5)0.07831 (11)1.0103 (10)0.0427 (14)
H60.02840.06791.06800.051*
C70.2617 (6)0.08176 (15)0.5606 (11)0.0579 (19)
H7A0.22250.08890.45460.070*
H7B0.26560.06450.54280.070*
H7C0.33410.08840.56510.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0458 (3)0.0596 (4)0.0542 (4)0.0077 (3)0.0059 (3)0.0155 (4)
K10.0369 (6)0.0350 (7)0.0342 (6)0.0050 (5)0.0057 (6)0.0007 (5)
S10.0349 (6)0.0215 (6)0.0292 (6)0.0011 (5)0.0023 (6)0.0019 (5)
O10.047 (2)0.035 (3)0.041 (2)0.0050 (19)0.0112 (18)0.0067 (19)
O20.044 (2)0.032 (2)0.043 (2)0.0123 (18)0.007 (2)0.008 (2)
O30.054 (2)0.036 (2)0.042 (2)0.0000 (19)0.003 (2)0.002 (2)
O40.078 (5)0.042 (4)0.032 (3)0.018 (3)0.0000.000
N10.041 (2)0.037 (3)0.031 (2)0.006 (2)0.006 (2)0.008 (2)
C10.038 (3)0.031 (3)0.031 (3)0.006 (2)0.009 (2)0.002 (2)
C20.040 (3)0.032 (3)0.048 (3)0.001 (2)0.009 (3)0.005 (3)
C30.063 (4)0.035 (4)0.070 (5)0.010 (3)0.023 (4)0.003 (4)
C40.084 (5)0.044 (5)0.081 (6)0.001 (4)0.030 (5)0.024 (4)
C50.089 (6)0.051 (5)0.053 (4)0.021 (4)0.011 (4)0.016 (4)
C60.054 (3)0.042 (3)0.032 (3)0.012 (3)0.007 (3)0.011 (3)
C70.065 (4)0.057 (5)0.051 (4)0.020 (4)0.001 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—N11.897 (4)O3—H310.81 (2)
K1—O2i2.687 (4)O3—H320.81 (2)
K1—O1ii2.703 (4)O4—K1ii2.806 (5)
K1—O3i2.734 (5)O4—H410.80 (2)
K1—O32.791 (5)C1—C61.388 (9)
K1—O42.806 (5)C1—C21.401 (8)
K1—O22.845 (4)C2—C31.398 (9)
K1—O13.009 (4)C2—C71.505 (10)
K1—S13.4522 (17)C3—C41.379 (12)
K1—H323.06 (7)C3—H30.93
K1—H413.08 (7)C4—C51.364 (12)
S1—O11.448 (4)C4—H40.93
S1—O21.456 (4)C5—C61.375 (10)
S1—N11.577 (5)C5—H50.93
S1—C11.780 (6)C6—H60.93
O1—K1ii2.703 (4)C7—H7A0.96
O2—K1iii2.687 (4)C7—H7B0.96
O3—K1iii2.734 (5)C7—H7C0.96
O2i—K1—O1ii119.23 (13)O1—S1—C1105.5 (3)
O2i—K1—O3i79.79 (13)O2—S1—C1107.3 (3)
O1ii—K1—O3i150.77 (14)N1—S1—C1110.4 (3)
O2i—K1—O375.84 (15)O1—S1—K160.24 (17)
O1ii—K1—O382.08 (13)O2—S1—K153.75 (17)
O3i—K1—O3126.03 (8)N1—S1—K1133.49 (18)
O2i—K1—O498.51 (14)C1—S1—K1115.16 (18)
O1ii—K1—O482.10 (12)S1—O1—K1ii164.2 (3)
O3i—K1—O472.71 (11)S1—O1—K195.1 (2)
O3—K1—O4157.69 (11)K1ii—O1—K184.04 (11)
O2i—K1—O2125.18 (8)S1—O2—K1iii150.7 (3)
O1ii—K1—O2102.19 (14)S1—O2—K1101.9 (2)
O3i—K1—O280.10 (15)K1iii—O2—K1100.39 (12)
O3—K1—O276.18 (13)K1iii—O3—K1100.59 (15)
O4—K1—O2122.68 (10)K1iii—O3—H31113 (5)
O2i—K1—O1159.94 (13)K1—O3—H31107 (5)
O1ii—K1—O179.85 (15)K1iii—O3—H32126 (5)
O3i—K1—O180.21 (13)K1—O3—H32102 (5)
O3—K1—O1115.48 (14)H31—O3—H32107 (7)
O4—K1—O176.89 (11)K1ii—O4—K186.09 (18)
O2—K1—O148.96 (11)K1ii—O4—H41135 (6)
O2i—K1—S1145.14 (11)K1—O4—H41103 (6)
O1ii—K1—S192.72 (10)S1—N1—Br1110.7 (3)
O3i—K1—S177.42 (11)C6—C1—C2121.1 (6)
O3—K1—S196.92 (11)C6—C1—S1117.2 (5)
O4—K1—S199.45 (7)C2—C1—S1121.7 (5)
O2—K1—S124.37 (8)C3—C2—C1117.0 (7)
O1—K1—S124.70 (8)C3—C2—C7118.3 (6)
O2i—K1—H3261.2 (8)C1—C2—C7124.7 (6)
O1ii—K1—H3287.8 (13)C4—C3—C2121.5 (7)
O3i—K1—H32121.4 (13)C4—C3—H3119.2
O3—K1—H3215.0 (7)C2—C3—H3119.2
O4—K1—H32148.7 (11)C5—C4—C3120.1 (7)
O2—K1—H3288.3 (10)C5—C4—H4119.9
O1—K1—H32130.3 (7)C3—C4—H4119.9
S1—K1—H32110.6 (9)C4—C5—C6120.5 (8)
O2i—K1—H4191.7 (14)C4—C5—H5119.7
O1ii—K1—H4196.7 (8)C6—C5—H5119.7
O3i—K1—H4158.6 (8)C5—C6—C1119.7 (7)
O3—K1—H41164.7 (15)C5—C6—H6120.1
O4—K1—H4114.6 (7)C1—C6—H6120.1
O2—K1—H41118.9 (14)C2—C7—H7A109.5
O1—K1—H4179.1 (15)C2—C7—H7B109.5
S1—K1—H4198.4 (15)H7A—C7—H7B109.5
H32—K1—H41150.4 (17)C2—C7—H7C109.5
O1—S1—O2113.6 (3)H7A—C7—H7C109.5
O1—S1—N1115.5 (3)H7B—C7—H7C109.5
O2—S1—N1104.4 (3)
O2i—K1—S1—O1144.3 (3)C1—S1—O2—K1108.9 (2)
O1ii—K1—S1—O158.28 (18)O2i—K1—O2—S1151.27 (18)
O3i—K1—S1—O193.9 (2)O1ii—K1—O2—S169.0 (3)
O3—K1—S1—O1140.6 (2)O3i—K1—O2—S181.3 (3)
O4—K1—S1—O124.2 (2)O3—K1—O2—S1147.5 (3)
O2—K1—S1—O1172.3 (3)O4—K1—O2—S119.4 (3)
O2i—K1—S1—O243.4 (2)O1—K1—O2—S14.25 (18)
O1ii—K1—S1—O2114.0 (3)O2i—K1—O2—K1iii48.0 (2)
O3i—K1—S1—O293.8 (3)O1ii—K1—O2—K1iii91.81 (15)
O3—K1—S1—O231.7 (3)O3i—K1—O2—K1iii117.89 (15)
O4—K1—S1—O2163.5 (3)O3—K1—O2—K1iii13.25 (13)
O1—K1—S1—O2172.3 (3)O4—K1—O2—K1iii179.83 (12)
O2i—K1—S1—N1117.7 (3)O1—K1—O2—K1iii156.5 (2)
O1ii—K1—S1—N139.8 (3)S1—K1—O2—K1iii160.8 (3)
O3i—K1—S1—N1168.0 (3)O2i—K1—O3—K1iii119.35 (16)
O3—K1—S1—N142.6 (3)O1ii—K1—O3—K1iii117.72 (16)
O4—K1—S1—N1122.2 (3)O3i—K1—O3—K1iii53.5 (3)
O2—K1—S1—N174.2 (3)O4—K1—O3—K1iii162.9 (3)
O1—K1—S1—N198.1 (3)O2—K1—O3—K1iii13.02 (13)
O2i—K1—S1—C150.1 (3)O1—K1—O3—K1iii42.99 (18)
O1ii—K1—S1—C1152.4 (2)S1—K1—O3—K1iii25.92 (13)
O3i—K1—S1—C10.2 (2)O2i—K1—O4—K1ii161.43 (10)
O3—K1—S1—C1125.3 (2)O1ii—K1—O4—K1ii42.89 (9)
O4—K1—S1—C170.0 (2)O3i—K1—O4—K1ii122.12 (11)
O2—K1—S1—C193.6 (3)O3—K1—O4—K1ii88.1 (4)
O1—K1—S1—C194.1 (3)O2—K1—O4—K1ii56.56 (13)
O2—S1—O1—K1ii79.2 (10)O1—K1—O4—K1ii38.46 (9)
N1—S1—O1—K1ii41.3 (10)S1—K1—O4—K1ii48.57 (3)
C1—S1—O1—K1ii163.5 (9)O1—S1—N1—Br157.7 (3)
K1—S1—O1—K1ii86.0 (9)O2—S1—N1—Br1176.9 (2)
O2—S1—O1—K16.8 (3)C1—S1—N1—Br161.9 (3)
N1—S1—O1—K1127.3 (2)K1—S1—N1—Br1129.90 (18)
C1—S1—O1—K1110.5 (2)O1—S1—C1—C62.8 (5)
O2i—K1—O1—S176.8 (5)O2—S1—C1—C6118.6 (5)
O1ii—K1—O1—S1120.32 (14)N1—S1—C1—C6128.3 (4)
O3i—K1—O1—S181.2 (2)K1—S1—C1—C661.2 (5)
O3—K1—O1—S144.2 (2)O1—S1—C1—C2178.5 (5)
O4—K1—O1—S1155.5 (2)O2—S1—C1—C260.1 (5)
O2—K1—O1—S14.20 (18)N1—S1—C1—C253.1 (5)
O2i—K1—O1—K1ii119.1 (4)K1—S1—C1—C2117.5 (4)
O1ii—K1—O1—K1ii43.81 (17)C6—C1—C2—C30.3 (8)
O3i—K1—O1—K1ii114.72 (14)S1—C1—C2—C3178.4 (5)
O3—K1—O1—K1ii119.90 (14)C6—C1—C2—C7179.3 (6)
O4—K1—O1—K1ii40.36 (9)S1—C1—C2—C70.6 (8)
O2—K1—O1—K1ii159.9 (2)C1—C2—C3—C40.3 (10)
S1—K1—O1—K1ii164.1 (3)C7—C2—C3—C4179.4 (7)
O1—S1—O2—K1iii131.3 (5)C2—C3—C4—C50.5 (11)
N1—S1—O2—K1iii4.7 (6)C3—C4—C5—C61.3 (12)
C1—S1—O2—K1iii112.5 (5)C4—C5—C6—C11.3 (11)
K1—S1—O2—K1iii138.6 (6)C2—C1—C6—C50.6 (9)
O1—S1—O2—K17.3 (3)S1—C1—C6—C5179.3 (5)
N1—S1—O2—K1133.9 (2)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z; (iii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1ii0.81 (2)2.79 (2)3.600 (5)173 (7)
O3—H32···N1i0.81 (2)2.19 (4)2.933 (7)154 (7)
O4—H41···N1iv0.80 (2)2.28 (5)2.993 (6)149 (8)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaK+·C7H7BrNO2S·1.5H2O
Mr315.23
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)12.271 (2), 55.017 (6), 6.904 (1)
V3)4661.0 (11)
Z16
Radiation typeMo Kα
µ (mm1)4.05
Crystal size (mm)0.42 × 0.42 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.281, 0.376
No. of measured, independent and
observed [I > 2σ(I)] reflections
7816, 2358, 2140
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.13
No. of reflections2358
No. of parameters142
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0467P)2 + 17.9942P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.68, 0.57
Absolute structureFlack (1983), 1060 Friedel pairs
Absolute structure parameter0.002 (14)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1i0.81 (2)2.79 (2)3.600 (5)173 (7)
O3—H32···N1ii0.81 (2)2.19 (4)2.933 (7)154 (7)
O4—H41···N1iii0.80 (2)2.28 (5)2.993 (6)149 (8)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011). Acta Cryst. E67, m926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds