organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2025-o2026

A second monoclinic polymorph of 6-amino-1,3-di­methyl-5-[(E)-2-(methyl­sulfan­yl)benzyl­­idene­amino]­pyrimidine-2,4(1H,3H)-dione

aUniversity of Kwazulu-Natal, School of Chemistry, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 16 June 2011; accepted 7 July 2011; online 13 July 2011)

A new monoclinic form of the title compound, C14H16N4O2S, has been identified unexpectedly during an attempt to synthesize a coordination compound. The heterocyclic ring is essentially planar (r.m.s. deviation = 0.005 Å) and makes a dihedral angle of 8.77 (5)° with the benzene ring. This is in contrast to 12.24 (7)° reported for the first monoclinic polymorph [Booysen et al. (2011[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1592.]). Acta Cryst. E67, o1592]. An intra­molecular N—H⋯S hydrogen bond is observed. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the b axis. The closest distance between the centroids of symmetry-related heterocyclic rings is 3.5161 (6) Å.

Related literature

For background to chelating ligands, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]). For the crystal structure of the title compound in the same space group but different cell parameters, see: Booysen et al. (2011[Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1592.]). For the crystal structures of other Schiff-bases derived from ortho-(thio­meth­yl)-benzaldehyde, see: Yan et al. (2007[Yan, G.-B., Zhang, C.-N. & Yang, M.-H. (2007). Acta Cryst. E63, o2663-o2664.]); Baidina et al. (1987[Baidina, I. A., Borisov, S. V. & Parigina, G. K. (1987). Zh. Strukt. Khim. 28, 172-175.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N4O2S

  • Mr = 304.37

  • Monoclinic, P 21 /c

  • a = 13.5230 (2) Å

  • b = 13.8520 (3) Å

  • c = 7.5180 (1) Å

  • β = 101.068 (1)°

  • V = 1382.08 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.46 × 0.29 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13030 measured reflections

  • 3420 independent reflections

  • 3112 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.02

  • 3420 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯S1 0.83 (2) 2.675 (17) 3.5060 (10) 176 (1)
N4—H742⋯O1i 0.86 (2) 2.058 (16) 2.8797 (12) 160 (1)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. Recently, we performed a coordination reaction applying the title compound as the ligand. A single-crystal X-ray analysis of the isolated reaction product did not show the expected compound but the organic starting material whose crystal structure had been determined earlier by us in the same space-group, however, with different cell constants (Booysen et al., 2011). Other crystal structures of Schiff-bases derived from ortho-(thiomethyl)-benzaldehyde are reported in the literature (Yan et al., 2007; Baidina et al. 1987).

The molecule is a Schiff-base featuring an ortho-(thiomethyl)phenyl moiety and a 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione moiety. The double-bond is (E)-configured. A conformational analysis of the non-aromatic six-membered ring (Cremer & Pople, 1975) fails due to the low puckering amplitude. The molecule is almost planar, the least-squares planes defined by the respective atoms of both six-membered ring systems intersect at an angle of only 8.77 (5) °. It is pertinent to emphasize that the plane of the non-aromatic ring is tilted in a different direction with respect to the molecular structure of the title compound determined earlier by us (Fig. 1 and Fig 2).

In the crystal structure, intra- as well as intermolecular hydrogen bonds can be observed, both supported by the amino group. While the intramolecular hydrogen bond is formed to the sulfur atom of the thiomethyl group, the intermolecular hydrogen bond uses one of the ketonic oxygen atoms as acceptor. The latter ones connect the molecules to zigzag chains along the crystallographic b axis. Unlike our earlier structure determination of the title compound, no C—H···O contacts are obvious. The descriptor for the hydrogen bonding system in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) is DC11(6) on the unitary level (Fig. 3). The shortest distance between the centroids of symmetry related heterocyclic rings was found to be 3.5161 (6) Å. The packing of the title compound is shown in Fig. 4.

Related literature top

For background to chelating ligands, see: Gade (1998). For the crystal structure of the title compound in the same space group but different cell parameters, see: Booysen et al. (2011). For the crystal structures of other Schiff-bases derived from ortho-(thiomethyl)-benzaldehyde, see: Yan et al. (2007); Baidina et al. (1987). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared as described in the literature (Booysen et al., 2011). Single crystals suitable for the X-ray analysis were obtained by reacting the title compound with ReOBr3(PPh3)2 in methanol and subsequent free evaporation of the solvent.

Refinement top

H atoms bonded to aromatic C atoms were placed in calculated positions (C–H = 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).
[Figure 2] Fig. 2. Comparison between the relative orientation of the planes of the non-aromatic six-membered ring with respect to the plane of the aromatic system in the molecular structure of the title compound determined earlier by us (Booysen et al., 2011, top) and in the present study (bottom). Hydrogen atoms were omitted for reasons of clarity.
[Figure 3] Fig. 3. Intermolecular contacts, viewed along [001]. Green dashed lines indicate intramolecular hydrogen bonds and blue dashed lines intermolecular hydrogen bonds. Symmetry operators: (i) 1-x, 1/2+y, 1/2-z; (ii) 1-x, y-1/2, 1/2-z.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [010] (anisotropic displacement ellipsoids drawn at the 50% probability level).
6-amino-1,3-dimethyl-5-[(E)-2- (methylsulfanyl)benzylideneamino]pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C14H16N4O2SF(000) = 640
Mr = 304.37Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 9061 reflections
a = 13.5230 (2) Åθ = 3.1–28.3°
b = 13.8520 (3) ŵ = 0.25 mm1
c = 7.5180 (1) ÅT = 100 K
β = 101.068 (1)°Rod, orange
V = 1382.08 (4) Å30.46 × 0.29 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3112 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.4°, θmin = 2.1°
ϕ and ω scansh = 1718
13030 measured reflectionsk = 1818
3420 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5901P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16N4O2SV = 1382.08 (4) Å3
Mr = 304.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5230 (2) ŵ = 0.25 mm1
b = 13.8520 (3) ÅT = 100 K
c = 7.5180 (1) Å0.46 × 0.29 × 0.14 mm
β = 101.068 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3112 reflections with I > 2σ(I)
13030 measured reflectionsRint = 0.029
3420 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
3420 reflectionsΔρmin = 0.24 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78695 (2)0.045540 (19)0.18639 (4)0.01558 (9)
O10.51894 (6)0.21801 (5)0.44986 (11)0.01675 (17)
O20.23379 (6)0.03778 (6)0.29316 (11)0.01758 (17)
N10.37683 (7)0.12677 (6)0.36962 (12)0.01399 (18)
N20.38044 (7)0.02607 (7)0.23551 (12)0.01352 (18)
N30.63701 (7)0.06360 (7)0.31269 (12)0.01372 (18)
N40.52995 (7)0.08772 (7)0.17260 (13)0.01549 (19)
H7410.5910 (12)0.0762 (11)0.181 (2)0.023 (4)*
H7420.5004 (12)0.1407 (12)0.134 (2)0.026 (4)*
C10.53409 (8)0.06569 (7)0.31391 (14)0.0131 (2)
C20.48115 (8)0.14156 (8)0.38191 (14)0.0131 (2)
C30.32410 (8)0.04571 (8)0.29933 (14)0.0140 (2)
C40.48168 (8)0.01659 (8)0.23983 (13)0.0128 (2)
C50.69984 (8)0.12764 (8)0.38818 (14)0.0144 (2)
H50.67510.18020.44810.017*
C60.80731 (8)0.12361 (8)0.38633 (14)0.0145 (2)
C70.85605 (8)0.05250 (8)0.29813 (14)0.0147 (2)
C80.95997 (9)0.06045 (8)0.30539 (16)0.0182 (2)
H80.99310.01370.24530.022*
C91.01545 (9)0.13518 (9)0.39841 (16)0.0203 (2)
H91.08580.13930.40060.024*
C100.96888 (9)0.20383 (9)0.48817 (16)0.0195 (2)
H101.00700.25450.55350.023*
C110.86603 (8)0.19752 (8)0.48140 (15)0.0170 (2)
H110.83420.24470.54300.020*
C120.31814 (9)0.20105 (8)0.44153 (16)0.0183 (2)
H1210.27630.23580.34080.027*
H1220.36400.24650.51590.027*
H1230.27480.17050.51600.027*
C130.32800 (8)0.11442 (8)0.16217 (15)0.0166 (2)
H1310.33290.12160.03450.025*
H1320.25690.11040.17220.025*
H1330.35910.17030.23090.025*
C140.87950 (9)0.10803 (9)0.08635 (16)0.0199 (2)
H1410.90710.06390.00630.030*
H1420.84780.16320.01600.030*
H1430.93400.13100.18230.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01406 (14)0.01421 (14)0.01947 (14)0.00057 (9)0.00576 (10)0.00138 (9)
O10.0172 (4)0.0118 (4)0.0220 (4)0.0002 (3)0.0056 (3)0.0008 (3)
O20.0121 (4)0.0204 (4)0.0200 (4)0.0009 (3)0.0026 (3)0.0007 (3)
N10.0130 (4)0.0124 (4)0.0173 (4)0.0021 (3)0.0048 (3)0.0002 (3)
N20.0126 (4)0.0124 (4)0.0154 (4)0.0001 (3)0.0024 (3)0.0008 (3)
N30.0132 (4)0.0141 (4)0.0145 (4)0.0015 (3)0.0042 (3)0.0026 (3)
N40.0138 (4)0.0127 (4)0.0203 (4)0.0006 (4)0.0041 (4)0.0022 (3)
C10.0129 (5)0.0127 (5)0.0140 (4)0.0013 (4)0.0035 (4)0.0017 (4)
C20.0136 (5)0.0130 (5)0.0131 (4)0.0017 (4)0.0036 (4)0.0030 (4)
C30.0144 (5)0.0147 (5)0.0127 (5)0.0025 (4)0.0018 (4)0.0024 (4)
C40.0138 (5)0.0132 (5)0.0114 (4)0.0026 (4)0.0026 (4)0.0026 (4)
C50.0151 (5)0.0133 (5)0.0156 (5)0.0013 (4)0.0049 (4)0.0016 (4)
C60.0148 (5)0.0137 (5)0.0152 (5)0.0004 (4)0.0041 (4)0.0036 (4)
C70.0149 (5)0.0139 (5)0.0157 (5)0.0001 (4)0.0038 (4)0.0032 (4)
C80.0156 (5)0.0189 (5)0.0214 (5)0.0011 (4)0.0066 (4)0.0034 (4)
C90.0135 (5)0.0243 (6)0.0235 (5)0.0030 (4)0.0044 (4)0.0054 (5)
C100.0181 (5)0.0198 (5)0.0200 (5)0.0058 (4)0.0019 (4)0.0023 (4)
C110.0171 (5)0.0152 (5)0.0192 (5)0.0011 (4)0.0045 (4)0.0005 (4)
C120.0178 (5)0.0158 (5)0.0233 (5)0.0044 (4)0.0088 (4)0.0008 (4)
C130.0147 (5)0.0141 (5)0.0205 (5)0.0019 (4)0.0021 (4)0.0022 (4)
C140.0185 (5)0.0208 (5)0.0216 (5)0.0046 (4)0.0065 (4)0.0021 (4)
Geometric parameters (Å, º) top
S1—C71.7669 (11)C6—C111.4041 (15)
S1—C141.8008 (11)C6—C71.4184 (15)
O1—C21.2423 (13)C7—C81.4003 (15)
O2—C31.2182 (13)C8—C91.3863 (17)
N1—C31.3799 (14)C8—H80.95
N1—C21.4108 (13)C9—C101.3856 (17)
N1—C121.4648 (13)C9—H90.95
N2—C41.3694 (13)C10—C111.3847 (15)
N2—C31.3927 (13)C10—H100.95
N2—C131.4679 (13)C11—H110.95
N3—C51.2829 (14)C12—H1210.98
N3—C11.3940 (13)C12—H1220.98
N4—C41.3339 (14)C12—H1230.98
N4—H7410.832 (16)C13—H1310.98
N4—H7420.859 (16)C13—H1320.98
C1—C41.3999 (14)C13—H1330.98
C1—C21.4209 (14)C14—H1410.98
C5—C61.4572 (15)C14—H1420.98
C5—H50.95C14—H1430.98
C7—S1—C14102.80 (5)C6—C7—S1120.35 (8)
C3—N1—C2125.45 (9)C9—C8—C7121.35 (10)
C3—N1—C12115.86 (9)C9—C8—H8119.3
C2—N1—C12118.66 (9)C7—C8—H8119.3
C4—N2—C3122.27 (9)C10—C9—C8120.37 (10)
C4—N2—C13119.84 (9)C10—C9—H9119.8
C3—N2—C13117.89 (9)C8—C9—H9119.8
C5—N3—C1124.05 (9)C11—C10—C9119.08 (11)
C4—N4—H741112.5 (11)C11—C10—H10120.5
C4—N4—H742122.0 (10)C9—C10—H10120.5
H741—N4—H742125.4 (15)C10—C11—C6122.05 (10)
N3—C1—C4114.23 (9)C10—C11—H11119.0
N3—C1—C2126.19 (10)C6—C11—H11119.0
C4—C1—C2119.58 (10)N1—C12—H121109.5
O1—C2—N1118.55 (9)N1—C12—H122109.5
O1—C2—C1125.63 (10)H121—C12—H122109.5
N1—C2—C1115.82 (9)N1—C12—H123109.5
O2—C3—N1121.91 (10)H121—C12—H123109.5
O2—C3—N2122.23 (10)H122—C12—H123109.5
N1—C3—N2115.86 (9)N2—C13—H131109.5
N4—C4—N2118.68 (10)N2—C13—H132109.5
N4—C4—C1120.32 (10)H131—C13—H132109.5
N2—C4—C1121.00 (9)N2—C13—H133109.5
N3—C5—C6123.11 (10)H131—C13—H133109.5
N3—C5—H5118.4H132—C13—H133109.5
C6—C5—H5118.4S1—C14—H141109.5
C11—C6—C7118.44 (10)S1—C14—H142109.5
C11—C6—C5115.77 (9)H141—C14—H142109.5
C7—C6—C5125.79 (10)S1—C14—H143109.5
C8—C7—C6118.69 (10)H141—C14—H143109.5
C8—C7—S1120.94 (8)H142—C14—H143109.5
C5—N3—C1—C4173.63 (10)C13—N2—C4—C1178.11 (9)
C5—N3—C1—C26.25 (17)N3—C1—C4—N41.25 (14)
C3—N1—C2—O1179.44 (9)C2—C1—C4—N4178.85 (9)
C12—N1—C2—O11.49 (14)N3—C1—C4—N2178.43 (9)
C3—N1—C2—C10.49 (15)C2—C1—C4—N21.47 (15)
C12—N1—C2—C1178.43 (9)C1—N3—C5—C6179.53 (9)
N3—C1—C2—O10.43 (17)N3—C5—C6—C11177.63 (10)
C4—C1—C2—O1179.68 (10)N3—C5—C6—C72.35 (17)
N3—C1—C2—N1179.49 (9)C11—C6—C7—C81.72 (15)
C4—C1—C2—N10.40 (14)C5—C6—C7—C8178.31 (10)
C2—N1—C3—O2179.92 (9)C11—C6—C7—S1176.75 (8)
C12—N1—C3—O21.93 (15)C5—C6—C7—S13.23 (15)
C2—N1—C3—N20.31 (15)C14—S1—C7—C85.40 (10)
C12—N1—C3—N2178.30 (9)C14—S1—C7—C6176.17 (9)
C4—N2—C3—O2178.97 (10)C6—C7—C8—C90.86 (16)
C13—N2—C3—O21.22 (15)S1—C7—C8—C9177.60 (9)
C4—N2—C3—N10.80 (14)C7—C8—C9—C100.49 (17)
C13—N2—C3—N1179.01 (9)C8—C9—C10—C110.93 (17)
C3—N2—C4—N4178.61 (9)C9—C10—C11—C60.01 (17)
C13—N2—C4—N41.58 (14)C7—C6—C11—C101.31 (16)
C3—N2—C4—C11.70 (15)C5—C6—C11—C10178.71 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···S10.83 (2)2.675 (17)3.5060 (10)176 (1)
N4—H742···O1i0.86 (2)2.058 (16)2.8797 (12)160 (1)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16N4O2S
Mr304.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5230 (2), 13.8520 (3), 7.5180 (1)
β (°) 101.068 (1)
V3)1382.08 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.46 × 0.29 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13030, 3420, 3112
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.02
No. of reflections3420
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H741···S10.83 (2)2.675 (17)3.5060 (10)176 (1)
N4—H742···O1i0.86 (2)2.058 (16)2.8797 (12)160 (1)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Ms Brogan Neil-Schutte for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaidina, I. A., Borisov, S. V. & Parigina, G. K. (1987). Zh. Strukt. Khim. 28, 172–175.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBooysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, G.-B., Zhang, C.-N. & Yang, M.-H. (2007). Acta Cryst. E63, o2663–o2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2025-o2026
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds