organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(4-Meth­­oxy­phen­yl)-2-oxoeth­yl]malono­nitrile

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bThe 61081 group of PLA, Beijing 100094, People's Republic of China
*Correspondence e-mail: lianmichem@gmail.com

(Received 15 May 2011; accepted 6 July 2011; online 13 July 2011)

The title compound, C12H10N2O2, was obtained unintentionally during the synthesis of 2-amino-5-(4-meth­oxy­phen­yl)furan-3-carbonitrile. In the crystal, weak inter­mol­ecular C—H⋯N and C—H⋯π inter­actions link the mol­ecules into columns propagating in [010].

Related literature

For the crystal structures of related compounds with a malononitrile fragment, see: Luo & Zhou (2006[Luo, Y.-P. & Zhou, H.-B. (2006). Acta Cryst. E62, o5369-o5370.]); Ohashi et al. (2008[Ohashi, M., Nakatani, K., Maeda, H. & Mizuno, K. (2008). Org. Lett. 10, 2741-2743.]); Oliva et al. (2010[Oliva, C. G., Silva, A. M. S., Resende, D. I. S. P., Paz, F. A. A. & Cavaleiro, J. A. S. (2010). Eur. J. Org. Chem. pp. 3449-3458.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2

  • Mr = 214.22

  • Monoclinic, P 21 /n

  • a = 11.9010 (13) Å

  • b = 6.4898 (7) Å

  • c = 14.4248 (16) Å

  • β = 100.141 (2)°

  • V = 1096.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 11044 measured reflections

  • 2148 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.07

  • 2148 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N1i 0.97 2.55 3.380 (2) 143
C10—H10⋯Cgii 0.98 2.56 3.411 (1) 145
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) has been unintentionally obtained in the process of synthesis of 2-amino-5-(4-methoxyphenyl)furan-3-carbonitrile.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in related compounds (Luo & Zhou, 2006; Ohashi et al., 2008; Oliva et al., 2010). In the crystal structure, weak intermolecular C—H···N and C—H···π interactions (Table 1) link the molecules into columns propagated in [010].

Related literature top

For the crystal structures of related compounds with malononitrile fragments, see: Luo & Zhou (2006); Ohashi et al. (2008); Oliva et al. (2010).

Experimental top

To a solution of K2CO3 (2.0 equiv) in MeOH,3-iodo-1-(4-methoxyphenyl)propan-1-one (1.0 equiv) and malononitrile (2.0 equiv) were separately added. The resulting mixture was then heated at reflux for several hours (TLC monitoring). After that, the solvent was removed under reduce pressure, and added 50 mL water to the residue, then extracted with EtOAc 3 times. The organic phase was washed with saturated saline solution. Then the organic phase was dried by anhydrous Na2SO4, and removed the EtOAc under reduce pressure. The final residue was purified by column chromatography on silica gel to afford the expected target compound as a white solid.

Refinement top

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.
2-[2-(4-Methoxyphenyl)-2-oxoethyl]malononitrile top
Crystal data top
C12H10N2O2F(000) = 448
Mr = 214.22Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.9010 (13) ÅCell parameters from 2694 reflections
b = 6.4898 (7) Åθ = 2.9–26.8°
c = 14.4248 (16) ŵ = 0.09 mm1
β = 100.141 (2)°T = 298 K
V = 1096.7 (2) Å3Block, colourless
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.123
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
phi and ω scansh = 1414
11044 measured reflectionsk = 77
2148 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.034P]
where P = (Fo2 + 2Fc2)/3
2148 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N2O2V = 1096.7 (2) Å3
Mr = 214.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9010 (13) ŵ = 0.09 mm1
b = 6.4898 (7) ÅT = 298 K
c = 14.4248 (16) Å0.16 × 0.12 × 0.10 mm
β = 100.141 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1693 reflections with I > 2σ(I)
11044 measured reflectionsRint = 0.123
2148 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2148 reflectionsΔρmin = 0.21 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03121 (14)0.6967 (3)0.89840 (11)0.0469 (4)
C20.05989 (14)0.5030 (3)0.86164 (11)0.0480 (4)
H20.13610.46450.84530.058*
C30.02602 (14)0.3670 (2)0.84951 (11)0.0448 (4)
H30.00680.23710.82450.054*
C40.14054 (13)0.4210 (2)0.87402 (10)0.0396 (4)
C50.16687 (14)0.6144 (2)0.91392 (11)0.0462 (4)
H50.24290.65140.93300.055*
C60.08248 (15)0.7514 (3)0.92565 (12)0.0509 (5)
H60.10150.88050.95180.061*
C70.22564 (17)0.8083 (3)0.87859 (16)0.0742 (6)
H7A0.23850.77570.81260.111*
H7B0.26860.92900.88870.111*
H7C0.24970.69470.91300.111*
C80.22937 (13)0.2781 (2)0.85246 (11)0.0406 (4)
C90.35302 (13)0.3417 (2)0.88084 (11)0.0427 (4)
H9A0.37370.33960.94900.051*
H9B0.36250.48150.85970.051*
C100.43241 (13)0.1983 (2)0.83864 (11)0.0434 (4)
H100.40240.18530.77110.052*
C110.54808 (15)0.2847 (3)0.84914 (13)0.0552 (5)
C120.44048 (14)0.0098 (3)0.87938 (12)0.0489 (4)
N10.45034 (15)0.1695 (2)0.91202 (13)0.0714 (5)
N20.63714 (16)0.3512 (3)0.85611 (16)0.0868 (6)
O10.10731 (11)0.84605 (18)0.91043 (10)0.0646 (4)
O20.20628 (10)0.11578 (17)0.81148 (9)0.0555 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (10)0.0516 (10)0.0465 (9)0.0042 (8)0.0132 (7)0.0010 (8)
C20.0366 (9)0.0558 (10)0.0517 (10)0.0036 (7)0.0078 (7)0.0008 (8)
C30.0408 (9)0.0429 (9)0.0509 (10)0.0045 (7)0.0085 (7)0.0012 (7)
C40.0362 (9)0.0451 (9)0.0375 (8)0.0014 (7)0.0062 (6)0.0034 (7)
C50.0373 (9)0.0540 (10)0.0466 (9)0.0056 (7)0.0052 (7)0.0037 (7)
C60.0493 (11)0.0499 (10)0.0545 (10)0.0035 (8)0.0118 (8)0.0097 (8)
C70.0472 (12)0.0813 (14)0.0951 (16)0.0128 (10)0.0147 (11)0.0016 (12)
C80.0404 (9)0.0410 (9)0.0393 (8)0.0038 (7)0.0046 (7)0.0044 (7)
C90.0385 (9)0.0424 (9)0.0467 (9)0.0003 (7)0.0058 (7)0.0007 (7)
C100.0386 (9)0.0489 (9)0.0425 (9)0.0050 (7)0.0067 (7)0.0049 (7)
C110.0448 (11)0.0574 (11)0.0650 (11)0.0034 (8)0.0141 (9)0.0071 (9)
C120.0408 (10)0.0476 (10)0.0561 (10)0.0033 (7)0.0025 (7)0.0117 (8)
N10.0717 (12)0.0465 (9)0.0902 (13)0.0040 (8)0.0018 (9)0.0014 (9)
N20.0493 (11)0.0921 (14)0.1221 (17)0.0202 (9)0.0236 (10)0.0177 (11)
O10.0473 (8)0.0633 (8)0.0844 (9)0.0092 (6)0.0145 (6)0.0115 (7)
O20.0450 (7)0.0497 (7)0.0704 (8)0.0058 (5)0.0065 (6)0.0134 (6)
Geometric parameters (Å, º) top
C1—O11.3585 (19)C7—H7A0.9600
C1—C21.383 (2)C7—H7B0.9600
C1—C61.387 (2)C7—H7C0.9600
C2—C31.385 (2)C8—O21.2153 (18)
C2—H20.9300C8—C91.514 (2)
C3—C41.391 (2)C9—C101.527 (2)
C3—H30.9300C9—H9A0.9700
C4—C51.393 (2)C9—H9B0.9700
C4—C81.480 (2)C10—C121.469 (2)
C5—C61.374 (2)C10—C111.469 (2)
C5—H50.9300C10—H100.9800
C6—H60.9300C11—N21.132 (2)
C7—O11.423 (2)C12—N11.136 (2)
O1—C1—C2124.91 (15)O1—C7—H7C109.5
O1—C1—C6114.83 (15)H7A—C7—H7C109.5
C2—C1—C6120.26 (15)H7B—C7—H7C109.5
C1—C2—C3119.30 (15)O2—C8—C4122.46 (14)
C1—C2—H2120.3O2—C8—C9119.58 (14)
C3—C2—H2120.3C4—C8—C9117.94 (13)
C2—C3—C4121.31 (15)C8—C9—C10111.48 (13)
C2—C3—H3119.3C8—C9—H9A109.3
C4—C3—H3119.3C10—C9—H9A109.3
C3—C4—C5118.08 (15)C8—C9—H9B109.3
C3—C4—C8119.53 (14)C10—C9—H9B109.3
C5—C4—C8122.30 (14)H9A—C9—H9B108.0
C6—C5—C4121.19 (15)C12—C10—C11108.40 (14)
C6—C5—H5119.4C12—C10—C9113.72 (13)
C4—C5—H5119.4C11—C10—C9111.12 (13)
C5—C6—C1119.79 (16)C12—C10—H10107.8
C5—C6—H6120.1C11—C10—H10107.8
C1—C6—H6120.1C9—C10—H10107.8
O1—C7—H7A109.5N2—C11—C10179.2 (2)
O1—C7—H7B109.5N1—C12—C10177.78 (18)
H7A—C7—H7B109.5C1—O1—C7118.68 (14)
O1—C1—C2—C3177.46 (15)C3—C4—C8—C9179.59 (14)
C6—C1—C2—C32.1 (2)C5—C4—C8—C93.9 (2)
C1—C2—C3—C40.4 (2)O2—C8—C9—C108.6 (2)
C2—C3—C4—C51.9 (2)C4—C8—C9—C10169.81 (12)
C2—C3—C4—C8174.84 (14)C8—C9—C10—C1269.54 (17)
C3—C4—C5—C62.4 (2)C8—C9—C10—C11167.82 (13)
C8—C4—C5—C6174.22 (14)C12—C10—C11—N2111 (14)
C4—C5—C6—C10.7 (3)C9—C10—C11—N2124 (14)
O1—C1—C6—C5178.01 (15)C11—C10—C12—N19 (5)
C2—C1—C6—C51.6 (3)C9—C10—C12—N1115 (5)
C3—C4—C8—O22.0 (2)C2—C1—O1—C73.7 (2)
C5—C4—C8—O2174.53 (15)C6—C1—O1—C7175.89 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.972.553.380 (2)143
C10—H10···Cgii0.982.563.411 (1)145
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O2
Mr214.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.9010 (13), 6.4898 (7), 14.4248 (16)
β (°) 100.141 (2)
V3)1096.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11044, 2148, 1693
Rint0.123
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.07
No. of reflections2148
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.972.553.380 (2)143
C10—H10···Cgii0.982.563.411 (1)145
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLuo, Y.-P. & Zhou, H.-B. (2006). Acta Cryst. E62, o5369–o5370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhashi, M., Nakatani, K., Maeda, H. & Mizuno, K. (2008). Org. Lett. 10, 2741–2743.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOliva, C. G., Silva, A. M. S., Resende, D. I. S. P., Paz, F. A. A. & Cavaleiro, J. A. S. (2010). Eur. J. Org. Chem. pp. 3449–3458.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds