metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1067-m1068

Poly[aqua­bis­­[μ3-4-(3-pyrid­yl)pyrimidine-2-sulfonato-κ4N4:N1,O:O][μ2-4-(3-pyrid­yl)pyrimidine-2-sulfonato-κ3N4:N1,O]tris­­ilver(I)]

aDepartment of City Science, Jiangsu City Vocation College, Nanjing 210003, People's Republic of China
*Correspondence e-mail: liuxia1107@hotmail.com

(Received 27 May 2011; accepted 4 July 2011; online 9 July 2011)

In the crystal structure of the title compound, [Ag3(C9H6N3O3S)3(H2O)2]n, the mol­ecules are linked into three-decked polymeric zigzag chains propagating in [100]. On the middle deck, the Ag atom is five-coordinated by three O atoms from three 4-(3-pyrid­yl)pyrimidine-2-sulfonate (L) ligands, one of which lies on a mirror plane with the sulfonate group disordered over two orientations in a 1:1 ratio, and two N atoms from two L ligands, which lie on the same mirror plane. On the upper and lower decks, the Ag atom is four-coordinated by an aqua ligand, one O and two N atoms from two L ligands with the pyridyl and pyrimidine rings twisted at 19.8 (2)°. In the polymeric chain, there are ππ inter­actions between six-membered rings of L ligands from different decks with centroid–centroid distances of 3.621 (7) and 3.721 (3) Å. In the crystal, inter­molecular O—H⋯O hydrogen bonds link further these three-decked chains into layers parallel to (010).

Related literature

For backgroud to coordination polymers with thio­ethers, see: Dong et al. (2009[Dong, H. Z., Bi, W. T. & Zhu, H. B. (2009). Asian J. Chem. 21, 5598-5602.]); Fang et al. (2010[Fang, X. B., Dong, H. Z. & Tian, D. B. (2010). Chin. J. Inorg. Chem. 25, 47-53.]). For the crystal structure of the related compound catena-poly[[μ-4-(2-pyrid­yl)-pyrim­idine-2-sulfonato)-silver(I)] monohydrate], see: Zhu (2010[Zhu, H.-B. (2010). Acta Cryst. E66, m514.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag3(C9H6N3O3S)3(H2O)2]

  • Mr = 1068.36

  • Orthorhombic, P n m a

  • a = 19.0738 (16) Å

  • b = 19.9598 (17) Å

  • c = 8.6372 (7) Å

  • V = 3288.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 291 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.56, Tmax = 0.64

  • 16896 measured reflections

  • 3327 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.119

  • S = 1.07

  • 3327 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯O2i 0.96 1.83 2.784 (6) 171
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Remarkable attention has been paid to the rational design and assembly of new coordination polymers with thioethers in recent years (Dong et al., 2009; Fang et al., 2010; Zhu, 2010). Herein we present the title compound, (I) - the newly synthesized compound derived from 4-(2-pyridinyl)pyrimidine-2-thiol.

The molecular structure of title compound with the atom-numbering scheme is shown in Fig. 1. It crystallizes in the centrosymmetric space group \'-P 2ac 2n'. Ag1 is tetracoordinated and Ag2 is pentacoordinate. Ag1 is coordinated by two N atom from two L ligands and one coordinated water molecule as well as one O atom from the SO3 group. The two N atoms from different ligands are in a slightly distorted linear geometry with an N—Ag—N bond angle of 160.8°. Ag2 is bound by two different N atoms located from two ligands, and thee O donors from the three different SO3 group.

In (I) (Fig. 1), each ligand L (L = 4-(2-pyridyl)-pyrimidine-2-sulfonato) exhibits a chelating-bridging tridentate mode. The molecules are linked into three-decked polymeric zigzag chains propagated in [100]. On the middle deck, which is situated on a mirror plane, the Ag centre is five-coordinated by three O atoms from three ligands L, one of which lies on a mirror plane with the disordered sulfonato group over two orientations in a 1:1 ratio, and two N atoms from two ligands L, which lie on the same mirror plane. On the upper and lower decks, each Ag centre is four-coordinated by aqua ligand, one O and two N atoms from two ligands L with the pyridyl and pyrimidine rings twisted at 19.8 (2)°. In the polymeric chain, there are ππ interactions between six-membered rings of ligands L from different decks (Table 1).

In the crystal structure, intermolecular O—H···O hydrogen bonds l(Table 2) ink further these three-decked chains into layers parallel to ac plane.

Related literature top

For backgroud to coordination polymers with thioethers, see: Dong et al. (2009); Fang et al. (2010). For the crystal structure of the related compound catena- poly[[µ-4-(2-pyridyl)-pyrimidine-2-sulfonato)-silver(I)] monohydrate], see: Zhu (2010).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure reported in the literature (Dong et al., 2009; Fang et al., 2010; Zhu, 2010). To a suspension of NaL2 (26.0 mg, 0.1 mmol) in water (5 ml) in a tube, a solution of AgNO3 (8.5 mg, 0.05 mmol) in acetonitrile (5 ml) was very slowly dropped. Crystal products formed after two weeks standing in a dark. Single crystals suitable for X-ray diffraction were grown from methanol solution by slow evaporation in air at room temperature.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93 Å; O—H 0.96 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (a) x, 0.5 - y, z]. For the disordered sulfonato group with the atoms O5, O6 and O7 only one orientation is shown.
Poly[aquabis[µ3-4-(3-pyridyl)pyrimidine-2-sulfonato- κ4N4:N1,O:O][µ2-4-(3-pyridyl)pyrimidine- 2-sulfonato-κ3N4:N1,O]trisilver(I)] top
Crystal data top
[Ag3(C9H6N3O3S)3(H2O)2]F(000) = 2096
Mr = 1068.36Dx = 2.158 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3327 reflections
a = 19.0738 (16) Åθ = 2.1–26.0°
b = 19.9598 (17) ŵ = 2.04 mm1
c = 8.6372 (7) ÅT = 291 K
V = 3288.3 (5) Å3Block, colourless
Z = 40.30 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3327 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scanθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1523
Tmin = 0.56, Tmax = 0.64k = 2424
16896 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.06P)2 + 1.55P]
where P = (Fo2 + 2Fc2)/3
3327 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Ag3(C9H6N3O3S)3(H2O)2]V = 3288.3 (5) Å3
Mr = 1068.36Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.0738 (16) ŵ = 2.04 mm1
b = 19.9598 (17) ÅT = 291 K
c = 8.6372 (7) Å0.30 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2555 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.64Rint = 0.062
16896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
3327 reflectionsΔρmin = 1.25 e Å3
274 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.13631 (3)0.41025 (2)0.94740 (6)0.03754 (16)
Ag20.17483 (3)0.25000.82162 (8)0.03481 (19)
C10.2943 (4)0.4436 (3)0.8566 (7)0.0408 (15)
H10.29860.45440.96090.049*
C20.3536 (4)0.4436 (3)0.7610 (7)0.0374 (14)
H20.39720.45460.80180.045*
C30.3474 (4)0.4272 (3)0.6065 (8)0.0381 (15)
C40.2242 (3)0.4108 (3)0.6403 (7)0.0335 (13)
C50.4053 (4)0.4241 (3)0.4987 (8)0.0384 (14)
C60.3956 (3)0.4261 (3)0.3385 (8)0.0396 (15)
H60.35070.42930.29710.047*
C70.4540 (3)0.4234 (3)0.2411 (7)0.0326 (13)
H70.44790.42520.13440.039*
C80.5201 (3)0.4181 (3)0.3014 (7)0.0392 (14)
H80.55870.41620.23570.047*
C90.4730 (3)0.4183 (3)0.5592 (7)0.0351 (14)
H90.47950.41630.66580.042*
C100.2727 (5)0.25000.5262 (11)0.044 (2)
H100.23160.25000.46830.053*
C110.3369 (4)0.25000.4532 (10)0.0311 (18)
H110.33900.25000.34560.037*
C120.3972 (4)0.25000.5375 (10)0.0330 (19)
C130.3317 (5)0.25000.7715 (10)0.0348 (19)
C140.4694 (4)0.25000.4665 (9)0.0329 (19)
C150.4792 (5)0.25000.3072 (11)0.041 (2)
H150.44070.25000.24100.049*
C160.5466 (5)0.25000.2474 (11)0.044 (2)
H160.55300.25000.14060.053*
C170.6043 (5)0.25000.3432 (9)0.0337 (19)
H170.64930.25000.30220.040*
C180.5278 (5)0.25000.5643 (11)0.0345 (19)
H180.52160.25000.67120.041*
N10.2295 (3)0.4278 (3)0.7962 (6)0.0409 (13)
N20.2817 (3)0.4101 (3)0.5462 (6)0.0421 (13)
N30.5297 (3)0.4155 (2)0.4619 (6)0.0323 (11)
N40.2698 (4)0.25000.6895 (8)0.0366 (17)
N50.3958 (4)0.25000.6979 (9)0.0358 (17)
N60.5937 (4)0.25000.5036 (9)0.0394 (18)
O10.1096 (2)0.4554 (2)0.5436 (5)0.0450 (12)
O20.1566 (3)0.3564 (2)0.4227 (5)0.0458 (11)
O30.1103 (2)0.3505 (2)0.6811 (5)0.0432 (11)
O40.2270 (2)0.3934 (2)1.1536 (5)0.0415 (11)
H4B0.25600.35601.12660.062*
H4C0.20410.38481.25060.062*
O50.2702 (5)0.2734 (5)1.0142 (10)0.045 (2)0.50
O60.3935 (6)0.2966 (6)1.0009 (12)0.048 (3)0.50
O70.3524 (6)0.1854 (5)1.0227 (10)0.039 (2)0.50
S10.14301 (9)0.39214 (9)0.5640 (2)0.0420 (4)
S20.33833 (12)0.25000.9713 (3)0.0387 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0395 (3)0.0334 (3)0.0398 (3)0.0030 (2)0.0070 (2)0.0051 (2)
Ag20.0272 (3)0.0338 (3)0.0434 (4)0.0000.0094 (3)0.000
C10.048 (4)0.038 (4)0.036 (3)0.009 (3)0.012 (3)0.004 (3)
C20.037 (4)0.042 (3)0.033 (3)0.000 (3)0.010 (3)0.005 (3)
C30.036 (4)0.037 (3)0.041 (3)0.004 (3)0.007 (3)0.004 (3)
C40.037 (3)0.029 (3)0.034 (3)0.001 (3)0.007 (3)0.007 (2)
C50.046 (4)0.029 (3)0.040 (3)0.001 (3)0.004 (3)0.005 (3)
C60.029 (3)0.051 (4)0.038 (3)0.003 (3)0.006 (3)0.002 (3)
C70.043 (4)0.029 (3)0.026 (3)0.002 (3)0.011 (3)0.003 (2)
C80.033 (3)0.047 (4)0.037 (3)0.004 (3)0.000 (3)0.002 (3)
C90.047 (4)0.027 (3)0.032 (3)0.003 (3)0.010 (3)0.001 (2)
C100.032 (5)0.063 (7)0.037 (5)0.0000.002 (4)0.000
C110.026 (4)0.030 (4)0.037 (5)0.0000.010 (3)0.000
C120.027 (5)0.040 (5)0.033 (5)0.0000.004 (3)0.000
C130.031 (5)0.034 (4)0.039 (5)0.0000.008 (4)0.000
C140.031 (5)0.036 (5)0.032 (4)0.0000.019 (3)0.000
C150.038 (5)0.035 (5)0.050 (6)0.0000.015 (4)0.000
C160.040 (6)0.058 (6)0.035 (5)0.0000.013 (4)0.000
C170.040 (5)0.040 (5)0.021 (4)0.0000.006 (3)0.000
C180.034 (5)0.030 (4)0.040 (5)0.0000.019 (4)0.000
N10.039 (3)0.048 (3)0.036 (3)0.001 (2)0.001 (2)0.010 (2)
N20.048 (3)0.045 (3)0.034 (3)0.008 (3)0.007 (2)0.003 (2)
N30.025 (3)0.028 (3)0.044 (3)0.002 (2)0.004 (2)0.002 (2)
N40.047 (5)0.034 (4)0.029 (4)0.0000.022 (3)0.000
N50.036 (4)0.034 (4)0.038 (4)0.0000.011 (3)0.000
N60.035 (4)0.049 (5)0.035 (4)0.0000.006 (3)0.000
O10.048 (3)0.050 (3)0.038 (2)0.016 (2)0.010 (2)0.011 (2)
O20.046 (3)0.042 (3)0.049 (3)0.007 (2)0.001 (2)0.014 (2)
O30.045 (3)0.049 (3)0.036 (2)0.019 (2)0.008 (2)0.017 (2)
O40.043 (3)0.053 (3)0.029 (2)0.005 (2)0.0050 (19)0.0173 (19)
O50.039 (5)0.051 (6)0.045 (5)0.013 (4)0.004 (4)0.009 (4)
O60.033 (6)0.069 (8)0.042 (6)0.016 (5)0.009 (5)0.010 (5)
O70.054 (7)0.039 (5)0.025 (5)0.004 (5)0.004 (4)0.003 (4)
S10.0421 (10)0.0402 (9)0.0438 (9)0.0010 (7)0.0005 (7)0.0014 (7)
S20.0260 (11)0.0504 (14)0.0396 (12)0.0000.0029 (9)0.000
Geometric parameters (Å, º) top
Ag1—N3i2.182 (5)C12—C141.508 (13)
Ag1—N12.234 (6)C13—N51.377 (12)
Ag1—O42.505 (4)C13—N41.377 (11)
Ag2—N42.140 (8)C13—S21.730 (9)
Ag2—N6i2.162 (8)C14—C151.389 (13)
Ag2—O52.508 (9)C14—C181.397 (11)
Ag2—O5ii2.508 (9)C15—C161.386 (14)
C1—N11.378 (8)C15—H150.9300
C1—C21.400 (9)C16—C171.376 (13)
C1—H10.9300C16—H160.9300
C2—C31.380 (9)C17—N61.400 (11)
C2—H20.9300C17—H170.9300
C3—N21.401 (9)C18—N61.363 (12)
C3—C51.445 (9)C18—H180.9300
C4—N21.364 (8)N3—Ag1iii2.182 (5)
C4—N11.392 (8)N6—Ag2iii2.162 (8)
C4—S11.724 (6)O1—S11.424 (5)
C5—C61.396 (9)O2—S11.438 (5)
C5—C91.397 (9)O3—S11.449 (4)
C6—C71.397 (9)O4—H4B0.9600
C6—H60.9300O4—H4C0.9600
C7—C81.368 (9)O5—O5ii0.934 (18)
C7—H70.9300O5—S21.431 (9)
C8—N31.399 (8)O5—O7ii1.773 (14)
C8—H80.9300O6—O7ii0.882 (12)
C9—N31.371 (8)O6—S21.428 (10)
C9—H90.9300O7—O6ii0.882 (12)
C10—C111.377 (12)O7—S21.389 (10)
C10—N41.412 (11)O7—O5ii1.773 (14)
C10—H100.9300S2—O7ii1.389 (10)
C11—C121.362 (11)S2—O6ii1.428 (10)
C11—H110.9300S2—O5ii1.431 (9)
C12—N51.386 (11)
Cg1···Cg1ii3.621 (7)Cg2···Cg2ii3.721 (3)
N3i—Ag1—N1160.8 (2)C16—C17—N6118.7 (8)
N3i—Ag1—O4113.25 (17)C16—C17—H17120.6
N1—Ag1—O483.53 (17)N6—C17—H17120.6
N4—Ag2—N6i167.9 (3)N6—C18—C14120.1 (8)
N4—Ag2—O574.9 (3)N6—C18—H18119.9
N6i—Ag2—O593.2 (3)C14—C18—H18119.9
N4—Ag2—O5ii74.9 (3)C1—N1—C4119.2 (5)
N6i—Ag2—O5ii93.2 (3)C1—N1—Ag1121.9 (4)
O5—Ag2—O5ii21.5 (4)C4—N1—Ag1118.0 (4)
N1—C1—C2120.0 (5)C4—N2—C3119.7 (5)
N1—C1—H1120.0C9—N3—C8120.2 (5)
C2—C1—H1120.0C9—N3—Ag1iii121.2 (4)
C3—C2—C1120.1 (6)C8—N3—Ag1iii118.6 (4)
C3—C2—H2119.9C13—N4—C10118.7 (8)
C1—C2—H2119.9C13—N4—Ag2116.8 (5)
C2—C3—N2119.6 (6)C10—N4—Ag2124.5 (6)
C2—C3—C5124.6 (6)C13—N5—C12118.7 (7)
N2—C3—C5115.7 (6)C18—N6—C17120.9 (8)
N2—C4—N1121.4 (6)C18—N6—Ag2iii113.0 (6)
N2—C4—S1119.5 (4)C17—N6—Ag2iii126.0 (6)
N1—C4—S1119.2 (5)Ag1—O4—H4B109.3
C6—C5—C9119.7 (6)Ag1—O4—H4C109.4
C6—C5—C3122.4 (6)H4B—O4—H4C109.5
C9—C5—C3117.9 (6)O5ii—O5—S270.9 (4)
C5—C6—C7119.3 (6)O5ii—O5—O7ii117.6 (4)
C5—C6—H6120.3S2—O5—O7ii50.0 (4)
C7—C6—H6120.3O5ii—O5—Ag279.3 (2)
C8—C7—C6120.6 (6)S2—O5—Ag2115.2 (5)
C8—C7—H7119.7O7ii—O5—Ag2139.1 (6)
C6—C7—H7119.7O7ii—O6—S269.4 (9)
C7—C8—N3120.0 (6)O6ii—O7—S274.2 (10)
C7—C8—H8120.0O6ii—O7—O5ii126.1 (12)
N3—C8—H8120.0S2—O7—O5ii52.1 (4)
N3—C9—C5120.2 (6)O1—S1—O2114.5 (3)
N3—C9—H9119.9O1—S1—O3113.7 (3)
C5—C9—H9119.9O2—S1—O3112.7 (3)
C11—C10—N4119.5 (9)O1—S1—C4104.9 (3)
C11—C10—H10120.2O2—S1—C4105.7 (3)
N4—C10—H10120.2O3—S1—C4104.1 (3)
C12—C11—C10120.4 (8)O7ii—S2—O7136.2 (8)
C12—C11—H11119.8O7—S2—O6113.9 (8)
C10—C11—H11119.8O7ii—S2—O6ii113.9 (8)
C11—C12—N5121.2 (8)O6—S2—O6ii81.3 (10)
C11—C12—C14123.7 (8)O7ii—S2—O5ii113.3 (6)
N5—C12—C14115.1 (7)O7—S2—O5ii77.9 (6)
N5—C13—N4121.5 (8)O6—S2—O5ii146.8 (6)
N5—C13—S2113.3 (7)O6ii—S2—O5ii114.3 (6)
N4—C13—S2125.1 (7)O7ii—S2—O577.9 (6)
C15—C14—C18119.5 (9)O7—S2—O5113.3 (6)
C15—C14—C12121.7 (7)O6—S2—O5114.3 (6)
C18—C14—C12118.8 (8)O6ii—S2—O5146.8 (6)
C16—C15—C14119.6 (8)O7ii—S2—C13109.4 (4)
C16—C15—H15120.2O7—S2—C13109.4 (4)
C14—C15—H15120.2O6—S2—C13103.4 (5)
C17—C16—C15121.1 (9)O6ii—S2—C13103.4 (5)
C17—C16—H16119.4O5ii—S2—C13101.1 (5)
C15—C16—H16119.4O5—S2—C13101.1 (5)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x, y+1/2, z; (iii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O2iv0.961.832.784 (6)171
Symmetry code: (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag3(C9H6N3O3S)3(H2O)2]
Mr1068.36
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)291
a, b, c (Å)19.0738 (16), 19.9598 (17), 8.6372 (7)
V3)3288.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.56, 0.64
No. of measured, independent and
observed [I > 2σ(I)] reflections
16896, 3327, 2555
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.119, 1.07
No. of reflections3327
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 1.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O2i0.961.832.784 (6)171
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors are indebted to the Cultivation Program of Undergraduate Practice Innovation for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Bi, W. T. & Zhu, H. B. (2009). Asian J. Chem. 21, 5598–5602.  CAS Google Scholar
First citationFang, X. B., Dong, H. Z. & Tian, D. B. (2010). Chin. J. Inorg. Chem. 25, 47–53.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-B. (2010). Acta Cryst. E66, m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1067-m1068
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds