organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Amino-3-ethyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl)-3-(2-chloro­phen­yl)-1-phenyl­propan-1-one

aSchool of Perfume and Aroma Technology, Shanghai Istitute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology LiaoNing, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 17 June 2011; accepted 30 June 2011; online 6 July 2011)

In the title mol­ecule, C19H19ClN4OS, the 1,2,4-triazole ring forms dihedral angles of 86.0 (2) and 65.6 (2)° with the phenyl and chloro­phenyl rings, respectively. In the crystal, inter­molecular N—H⋯S and N—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers, which are further linked into chains in [001] via weak C—H⋯π inter­actions.

Related literature

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivates, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Fun et al. (2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]); Gao et al. (2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]); Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]); Wang et al. (2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19ClN4OS

  • Mr = 386.89

  • Monoclinic, C 2/c

  • a = 29.023 (10) Å

  • b = 7.561 (2) Å

  • c = 18.286 (6) Å

  • β = 109.606 (6)°

  • V = 3780 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.937, Tmax = 0.962

  • 22962 measured reflections

  • 4441 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.02

  • 4441 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯S1 0.892 (18) 2.763 (16) 3.2239 (16) 113.5 (12)
N4—H4A⋯S1i 0.914 (18) 2.608 (18) 3.4773 (16) 159.2 (14)
N4—H4A⋯O1i 0.914 (18) 2.602 (18) 2.9123 (16) 100.6 (14)
N4—H4B⋯O1i 0.892 (18) 2.466 (15) 2.9123 (16) 111.3 (12)
C10—H10⋯Cgii 0.95 2.62 3.508 (2) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x, y, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of structural study of 1,2,4-triazole-5(4H)-thione derivatives in our group (Wang et al., 2011; Gao et al., 2011), we present here the crystal structure of the title compound, (I).

The bond lengths and angles in compound (I) are found to have normal values comparable with those reported in the related 1,2,4-triazole-5(4H)- thione derivatives (Al-Tamimi et al., 2010; Fun et al. (2009); Tan et al. (2010); Wang et al., 2011; Gao et al., 2011). The 1,2,4-triazole ring makes the dihedral angles of 94.0 (2) and 65.6 (2)Å with the phenyl ring and the chlorophenyl ring, respectively. The phenyl ring and the chlorophenyl ring form a dihedral angle of 81.8 (2) Å.

In the crystal structure, intermolecular N—H···S and N—H···O (Table 1) hydrogen bonds link molecules into centrosymmetric dimers, which are further linked into chains in [001] via the weak C—H···π interactions (Table 1).

Related literature top

For the crystal structures of related 1,2,4-triazole-5(4H)-thione derivates, see: Al-Tamimi et al. (2010); Fun et al. (2009); Gao et al. (2011); Tan et al. (2010); Wang et al. (2011).

Experimental top

The title compound was synthesized by the reaction of the 3-(2-chlorophenyl) -1-phenyl-2-propen-1-one (2.0 mmol) with 4-amino-3-ethyl-4H-1,2,4-triazole- 5-thiol (2.0 mmol) in ethanol. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as colorless solid in 74% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

The H atoms attached to N atoms were located in a different density map and the atomic coordinations allowed to refine freely. Other H atoms were positioned geometrically and refined as riding (C—H = 0.95–1.00 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5 Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 55% probability level.
3-(4-Amino-3-ethyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl)- 3-(2-chlorophenyl)-1-phenylpropan-1-one top
Crystal data top
C19H19ClN4OSF(000) = 1616
Mr = 386.89Dx = 1.360 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6659 reflections
a = 29.023 (10) Åθ = 1.5–27.9°
b = 7.561 (2) ŵ = 0.33 mm1
c = 18.286 (6) ÅT = 113 K
β = 109.606 (6)°Prism, colourless
V = 3780 (2) Å30.20 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4441 independent reflections
Radiation source: rotating anode3430 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.036
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 1.5°
ϕ and ω scansh = 3838
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 99
Tmin = 0.937, Tmax = 0.962l = 2323
22962 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
4441 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H19ClN4OSV = 3780 (2) Å3
Mr = 386.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.023 (10) ŵ = 0.33 mm1
b = 7.561 (2) ÅT = 113 K
c = 18.286 (6) Å0.20 × 0.18 × 0.12 mm
β = 109.606 (6)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4441 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3430 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.962Rint = 0.036
22962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
4441 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.190030 (13)0.38390 (4)0.542685 (19)0.02176 (10)
Cl10.019191 (13)0.34916 (5)0.39368 (3)0.03607 (12)
O10.15205 (3)0.13842 (11)0.34074 (5)0.0218 (2)
N10.16509 (4)0.51514 (13)0.39437 (6)0.0155 (2)
N20.18602 (4)0.59175 (14)0.34375 (6)0.0168 (2)
N30.24120 (4)0.53762 (13)0.45809 (6)0.0157 (2)
N40.28746 (4)0.53417 (16)0.51708 (7)0.0214 (3)
C10.19819 (5)0.47776 (16)0.46471 (7)0.0155 (3)
C20.23249 (5)0.60456 (15)0.38496 (7)0.0159 (3)
C30.11395 (4)0.45895 (16)0.36740 (7)0.0158 (3)
H30.11050.36190.40240.019*
C40.10039 (5)0.38305 (16)0.28491 (7)0.0175 (3)
H4C0.06470.36170.26430.021*
H4D0.10830.47160.25100.021*
C50.12692 (4)0.21139 (16)0.28159 (7)0.0159 (3)
C60.11887 (4)0.13029 (16)0.20350 (7)0.0159 (3)
C70.12856 (4)0.05123 (17)0.20020 (8)0.0188 (3)
H70.14050.11810.24680.023*
C80.12069 (5)0.13266 (17)0.12925 (8)0.0217 (3)
H80.12690.25570.12730.026*
C90.10383 (5)0.03574 (19)0.06100 (8)0.0255 (3)
H90.09850.09240.01250.031*
C100.09476 (5)0.14466 (19)0.06362 (8)0.0255 (3)
H100.08370.21150.01700.031*
C110.10196 (5)0.22674 (18)0.13465 (8)0.0206 (3)
H110.09530.34940.13630.025*
C120.07870 (5)0.60609 (16)0.36975 (7)0.0163 (3)
C130.03355 (5)0.56770 (17)0.37776 (8)0.0216 (3)
C140.00095 (5)0.69742 (19)0.37456 (9)0.0270 (3)
H140.03130.66670.38010.032*
C150.00937 (5)0.87208 (18)0.36319 (8)0.0249 (3)
H150.01410.96190.36020.030*
C160.05417 (5)0.91481 (18)0.35614 (8)0.0227 (3)
H160.06141.03450.34850.027*
C170.08856 (5)0.78348 (17)0.36023 (7)0.0196 (3)
H170.11940.81530.35650.024*
C180.27199 (5)0.67570 (18)0.35804 (8)0.0203 (3)
H18A0.29200.57600.35030.024*
H18B0.29360.75300.39900.024*
C190.25249 (5)0.7808 (2)0.28262 (9)0.0284 (3)
H19A0.23050.70600.24200.043*
H19B0.27990.81950.26660.043*
H19C0.23450.88450.29080.043*
H4A0.3003 (6)0.425 (2)0.5136 (10)0.040 (5)*
H4B0.2814 (6)0.522 (2)0.5616 (10)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02654 (19)0.02354 (19)0.01549 (17)0.00294 (14)0.00745 (13)0.00238 (13)
Cl10.02154 (19)0.01854 (19)0.0719 (3)0.00307 (14)0.02069 (19)0.00139 (18)
O10.0255 (5)0.0209 (5)0.0170 (5)0.0044 (4)0.0045 (4)0.0016 (4)
N10.0157 (5)0.0170 (5)0.0144 (5)0.0003 (4)0.0059 (4)0.0017 (4)
N20.0180 (5)0.0179 (6)0.0162 (5)0.0003 (4)0.0081 (4)0.0016 (4)
N30.0140 (5)0.0153 (5)0.0161 (5)0.0004 (4)0.0028 (4)0.0008 (4)
N40.0163 (6)0.0235 (7)0.0192 (6)0.0007 (5)0.0010 (5)0.0016 (5)
C10.0179 (6)0.0130 (6)0.0152 (6)0.0001 (5)0.0049 (5)0.0023 (5)
C20.0174 (6)0.0132 (6)0.0170 (6)0.0026 (5)0.0057 (5)0.0003 (5)
C30.0150 (6)0.0163 (6)0.0156 (6)0.0007 (5)0.0045 (5)0.0018 (5)
C40.0169 (6)0.0188 (7)0.0152 (6)0.0018 (5)0.0034 (5)0.0019 (5)
C50.0126 (6)0.0175 (6)0.0182 (6)0.0024 (5)0.0060 (5)0.0015 (5)
C60.0116 (6)0.0195 (7)0.0170 (6)0.0001 (5)0.0052 (5)0.0017 (5)
C70.0173 (7)0.0196 (7)0.0219 (7)0.0008 (5)0.0097 (5)0.0001 (5)
C80.0200 (7)0.0199 (7)0.0285 (7)0.0024 (5)0.0124 (6)0.0054 (6)
C90.0231 (7)0.0336 (8)0.0204 (7)0.0000 (6)0.0081 (6)0.0092 (6)
C100.0251 (7)0.0329 (8)0.0162 (6)0.0063 (6)0.0039 (6)0.0012 (6)
C110.0199 (7)0.0205 (7)0.0210 (7)0.0044 (5)0.0065 (5)0.0007 (5)
C120.0168 (6)0.0183 (7)0.0126 (6)0.0008 (5)0.0034 (5)0.0026 (5)
C130.0182 (7)0.0168 (7)0.0282 (7)0.0029 (5)0.0056 (6)0.0038 (6)
C140.0148 (7)0.0259 (8)0.0401 (9)0.0008 (6)0.0087 (6)0.0052 (7)
C150.0211 (7)0.0216 (7)0.0304 (8)0.0071 (6)0.0068 (6)0.0024 (6)
C160.0296 (8)0.0168 (7)0.0227 (7)0.0026 (6)0.0102 (6)0.0017 (6)
C170.0226 (7)0.0209 (7)0.0178 (6)0.0011 (5)0.0101 (5)0.0008 (5)
C180.0172 (6)0.0221 (7)0.0232 (7)0.0013 (5)0.0090 (5)0.0012 (6)
C190.0258 (8)0.0328 (8)0.0307 (8)0.0029 (6)0.0147 (6)0.0111 (7)
Geometric parameters (Å, º) top
S1—C11.6792 (14)C8—C91.387 (2)
Cl1—C131.7521 (14)C8—H80.9500
O1—C51.2151 (15)C9—C101.393 (2)
N1—C11.3519 (16)C9—H90.9500
N1—N21.3922 (14)C10—C111.3906 (19)
N1—C31.4613 (16)C10—H100.9500
N2—C21.3092 (16)C11—H110.9500
N3—C11.3709 (16)C12—C171.3945 (17)
N3—C21.3716 (16)C12—C131.3970 (19)
N3—N41.4123 (15)C13—C141.3886 (19)
N4—H4A0.914 (18)C14—C151.385 (2)
N4—H4B0.892 (18)C14—H140.9500
C2—C181.4916 (18)C15—C161.3873 (19)
C3—C121.5218 (17)C15—H150.9500
C3—C41.5366 (17)C16—C171.3920 (19)
C3—H31.0000C16—H160.9500
C4—C51.5207 (17)C17—H170.9500
C4—H4C0.9900C18—C191.5265 (19)
C4—H4D0.9900C18—H18A0.9900
C5—C61.4987 (17)C18—H18B0.9900
C6—C111.3939 (18)C19—H19A0.9800
C6—C71.4062 (18)C19—H19B0.9800
C7—C81.3840 (18)C19—H19C0.9800
C7—H70.9500
C1—N1—N2112.97 (10)C8—C9—C10120.00 (13)
C1—N1—C3125.26 (11)C8—C9—H9120.0
N2—N1—C3121.12 (10)C10—C9—H9120.0
C2—N2—N1104.06 (10)C11—C10—C9119.88 (13)
C1—N3—C2109.41 (10)C11—C10—H10120.1
C1—N3—N4125.93 (11)C9—C10—H10120.1
C2—N3—N4124.65 (11)C10—C11—C6120.47 (12)
N3—N4—H4A105.6 (10)C10—C11—H11119.8
N3—N4—H4B105.7 (10)C6—C11—H11119.8
H4A—N4—H4B100.5 (14)C17—C12—C13116.87 (11)
N1—C1—N3102.97 (11)C17—C12—C3122.10 (12)
N1—C1—S1129.69 (10)C13—C12—C3120.95 (11)
N3—C1—S1127.34 (10)C14—C13—C12122.49 (13)
N2—C2—N3110.57 (11)C14—C13—Cl1117.70 (11)
N2—C2—C18126.44 (12)C12—C13—Cl1119.81 (10)
N3—C2—C18122.97 (11)C15—C14—C13119.38 (13)
N1—C3—C12113.22 (10)C15—C14—H14120.3
N1—C3—C4109.66 (10)C13—C14—H14120.3
C12—C3—C4110.33 (10)C14—C15—C16119.51 (12)
N1—C3—H3107.8C14—C15—H15120.2
C12—C3—H3107.8C16—C15—H15120.2
C4—C3—H3107.8C15—C16—C17120.43 (13)
C5—C4—C3113.05 (10)C15—C16—H16119.8
C5—C4—H4C109.0C17—C16—H16119.8
C3—C4—H4C109.0C16—C17—C12121.28 (13)
C5—C4—H4D109.0C16—C17—H17119.4
C3—C4—H4D109.0C12—C17—H17119.4
H4C—C4—H4D107.8C2—C18—C19113.14 (11)
O1—C5—C6121.16 (11)C2—C18—H18A108.9
O1—C5—C4120.85 (11)C19—C18—H18A108.9
C6—C5—C4117.91 (10)C2—C18—H18B109.0
C11—C6—C7119.13 (12)C19—C18—H18B108.9
C11—C6—C5122.79 (11)H18A—C18—H18B107.8
C7—C6—C5118.08 (11)C18—C19—H19A109.5
C8—C7—C6120.12 (12)C18—C19—H19B109.5
C8—C7—H7119.9H19A—C19—H19B109.5
C6—C7—H7119.9C18—C19—H19C109.5
C7—C8—C9120.39 (13)H19A—C19—H19C109.5
C7—C8—H8119.8H19B—C19—H19C109.5
C9—C8—H8119.8
C1—N1—N2—C21.44 (13)C4—C5—C6—C7158.52 (11)
C3—N1—N2—C2172.66 (10)C11—C6—C7—C80.87 (18)
N2—N1—C1—N31.50 (13)C5—C6—C7—C8178.65 (11)
C3—N1—C1—N3172.29 (10)C6—C7—C8—C90.85 (19)
N2—N1—C1—S1179.21 (9)C7—C8—C9—C100.1 (2)
C3—N1—C1—S18.41 (19)C8—C9—C10—C110.9 (2)
C2—N3—C1—N10.99 (13)C9—C10—C11—C60.9 (2)
N4—N3—C1—N1178.19 (11)C7—C6—C11—C100.01 (19)
C2—N3—C1—S1179.70 (9)C5—C6—C11—C10179.51 (12)
N4—N3—C1—S11.12 (18)N1—C3—C12—C1729.90 (17)
N1—N2—C2—N30.73 (13)C4—C3—C12—C1793.44 (14)
N1—N2—C2—C18178.95 (11)N1—C3—C12—C13153.36 (12)
C1—N3—C2—N20.16 (14)C4—C3—C12—C1383.30 (15)
N4—N3—C2—N2179.04 (11)C17—C12—C13—C141.6 (2)
C1—N3—C2—C18178.13 (11)C3—C12—C13—C14175.28 (12)
N4—N3—C2—C182.68 (18)C17—C12—C13—Cl1177.57 (10)
C1—N1—C3—C12102.95 (14)C3—C12—C13—Cl15.53 (17)
N2—N1—C3—C1286.96 (13)C12—C13—C14—C150.1 (2)
C1—N1—C3—C4133.35 (12)Cl1—C13—C14—C15179.07 (11)
N2—N1—C3—C436.74 (14)C13—C14—C15—C160.8 (2)
N1—C3—C4—C566.84 (13)C14—C15—C16—C170.2 (2)
C12—C3—C4—C5167.78 (10)C15—C16—C17—C121.4 (2)
C3—C4—C5—O16.81 (17)C13—C12—C17—C162.24 (19)
C3—C4—C5—C6176.50 (10)C3—C12—C17—C16174.63 (12)
O1—C5—C6—C11162.34 (12)N2—C2—C18—C1915.46 (18)
C4—C5—C6—C1120.98 (17)N3—C2—C18—C19166.53 (12)
O1—C5—C6—C718.16 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4B···S10.892 (18)2.763 (16)3.2239 (16)113.5 (12)
N4—H4A···S1i0.914 (18)2.608 (18)3.4773 (16)159.2 (14)
N4—H4A···O1i0.914 (18)2.602 (18)2.9123 (16)100.6 (14)
N4—H4B···O1i0.892 (18)2.466 (15)2.9123 (16)111.3 (12)
C10—H10···Cgii0.952.623.508 (2)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H19ClN4OS
Mr386.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)29.023 (10), 7.561 (2), 18.286 (6)
β (°) 109.606 (6)
V3)3780 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.937, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
22962, 4441, 3430
Rint0.036
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.02
No. of reflections4441
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4B···S10.892 (18)2.763 (16)3.2239 (16)113.5 (12)
N4—H4A···S1i0.914 (18)2.608 (18)3.4773 (16)159.2 (14)
N4—H4A···O1i0.914 (18)2.602 (18)2.9123 (16)100.6 (14)
N4—H4B···O1i0.892 (18)2.466 (15)2.9123 (16)111.3 (12)
C10—H10···Cgii0.952.623.508 (2)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+3/2.
 

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds