organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl [(benzyl­aza­nium­yl)(2-hy­dr­oxy­phen­yl)meth­yl]phospho­nate

aCollege of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn

(Received 21 June 2011; accepted 3 July 2011; online 9 July 2011)

The title compound, C16H20NO4P, crystallizes as a zwitterion. In the mol­ecule, the two aromatic rings form a dihedral angle of 55.2 (1)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into columns propagating in [010].

Related literature

For related structures, see: Zhang et al. (2005[Zhang, X.-D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, o2952-o2954.], 2007[Zhang, X., Ge, C., Zhang, X. & Liu, Q. (2007). Acta Cryst. E63, o4778.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20NO4P

  • Mr = 321.30

  • Monoclinic, C 2/c

  • a = 28.069 (3) Å

  • b = 6.0927 (7) Å

  • c = 22.333 (3) Å

  • β = 124.464 (2)°

  • V = 3149.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.969

  • 8453 measured reflections

  • 3104 independent reflections

  • 1918 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.00

  • 3104 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1i 0.97 (3) 1.77 (3) 2.738 (3) 179 (2)
N1—H1NB⋯O4 0.86 (3) 2.50 (3) 2.982 (3) 116 (2)
N1—H1NB⋯O2ii 0.86 (3) 2.08 (3) 2.915 (3) 164 (2)
O4—H4A⋯O1 0.82 1.94 2.738 (3) 164
O4—H4A⋯O2ii 0.82 2.58 2.925 (3) 107
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a continuation of our structural study of (2-hydroxyphenyl)methylphosphonate derivatives (Zhang et al., 2005; 2007), we present here the crystal structure of the title compound, (I), which crystallizes as a zwitterion.

In the title molecule (Fig. 1), two aromatic rings form a dihedral angle of 55.2 (1)°. In the crystal structure, intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link molecules into columns propagated in [010].

Related literature top

For related structures, see: Zhang et al. (2005, 2007).

Experimental top

The title compound was synthesized following the reported method (Zhang et al., 2005). Diethyl phosphonate (0.02 mol) was dissolved in 80 ml of ethanol. The solution was added dropwise to a mixture of salicylaldehyde (0.02 mol) and benzylamine (0.02 mol) in 30 ml e thanol which was refluxed for 4 h. The resulting solution was refluxed until solid appeared. The product was filtered and washed with ethanol. Yield 43%.

Refinement top

H atoms attached to C atoms were positioned geometrically and refined using a riding model, with Csp3—H = 0.96–0.98 Å or Csp2—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atom attached to O atom was O—H = 0.82 Å and with Uiso(H)=1.5Ueq(O). H atoms attached to N atom were located by difference Fourier synthesis with the range 0.86–0.97 Å and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Ethyl [(benzylazaniumyl)(2-hydroxyphenyl)methyl]phosphonate top
Crystal data top
C16H20NO4PF(000) = 1360
Mr = 321.30Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 187 reflections
a = 28.069 (3) Åθ = 2.6–22.5°
b = 6.0927 (7) ŵ = 0.19 mm1
c = 22.333 (3) ÅT = 296 K
β = 124.464 (2)°Block, colourless
V = 3149.0 (6) Å30.28 × 0.25 × 0.19 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3104 independent reflections
Radiation source: fine-focus sealed tube1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3433
Tmin = 0.955, Tmax = 0.969k = 77
8453 measured reflectionsl = 1927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
3104 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H20NO4PV = 3149.0 (6) Å3
Mr = 321.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.069 (3) ŵ = 0.19 mm1
b = 6.0927 (7) ÅT = 296 K
c = 22.333 (3) Å0.28 × 0.25 × 0.19 mm
β = 124.464 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1918 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.969Rint = 0.057
8453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
3104 reflectionsΔρmin = 0.28 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.17738 (3)0.87761 (11)0.22830 (4)0.0315 (2)
O30.11541 (7)0.8149 (3)0.20942 (10)0.0399 (5)
N10.23047 (10)0.8251 (4)0.15689 (12)0.0303 (5)
O20.22470 (8)0.7684 (3)0.29547 (9)0.0393 (5)
C180.17490 (11)0.7697 (4)0.14969 (13)0.0301 (6)
H180.17350.60940.15200.036*
C80.12149 (11)0.8387 (4)0.07710 (13)0.0315 (6)
O10.17840 (8)1.1221 (3)0.22305 (10)0.0376 (5)
O40.15309 (10)1.2130 (3)0.08789 (11)0.0586 (6)
H4A0.16521.20470.13090.088*
C20.28397 (12)0.7998 (5)0.09779 (14)0.0378 (7)
C100.06502 (13)1.1018 (5)0.01849 (15)0.0448 (7)
H100.06101.24150.03760.054*
C10.23072 (12)0.7379 (5)0.09411 (15)0.0424 (7)
H1A0.22770.57910.09320.051*
H1B0.19710.79360.04920.051*
C130.07828 (12)0.6856 (5)0.03567 (15)0.0399 (7)
H130.08260.54380.05350.048*
C90.11301 (12)1.0518 (4)0.04989 (15)0.0375 (7)
C110.02300 (13)0.9456 (5)0.05861 (16)0.0474 (8)
H110.00950.98120.10420.057*
C70.32831 (13)0.6516 (5)0.12183 (16)0.0505 (8)
H70.32590.51440.13820.061*
C120.02899 (12)0.7382 (5)0.03144 (16)0.0451 (8)
H120.00020.63390.05780.054*
C50.38007 (15)0.9030 (7)0.09799 (19)0.0648 (10)
H50.41220.93750.09780.078*
C30.28884 (14)1.0027 (5)0.07376 (17)0.0511 (8)
H3A0.25951.10560.05720.061*
C140.10333 (14)0.5962 (5)0.2229 (2)0.0629 (10)
H14A0.13350.55060.27180.075*
H14B0.10240.49340.18900.075*
C150.04702 (15)0.5964 (7)0.2139 (2)0.0851 (13)
H15A0.04850.69560.24830.128*
H15B0.03860.45110.22200.128*
H15C0.01730.64260.16550.128*
C40.33690 (16)1.0534 (6)0.07413 (19)0.0635 (10)
H40.33991.19030.05810.076*
C60.37635 (15)0.7037 (6)0.12200 (19)0.0648 (10)
H60.40600.60210.13860.078*
H1NA0.2628 (13)0.754 (4)0.1997 (16)0.050 (9)*
H1NB0.2378 (11)0.963 (4)0.1627 (14)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0278 (4)0.0342 (4)0.0320 (4)0.0001 (3)0.0167 (3)0.0020 (3)
O30.0304 (11)0.0432 (12)0.0473 (12)0.0015 (9)0.0227 (10)0.0046 (9)
N10.0311 (14)0.0301 (14)0.0293 (13)0.0002 (11)0.0169 (12)0.0005 (11)
O20.0338 (11)0.0488 (12)0.0306 (10)0.0068 (9)0.0155 (9)0.0055 (9)
C180.0285 (15)0.0256 (14)0.0321 (15)0.0010 (11)0.0147 (13)0.0016 (11)
C80.0306 (15)0.0350 (16)0.0265 (14)0.0032 (12)0.0147 (12)0.0019 (12)
O10.0369 (11)0.0333 (11)0.0418 (11)0.0045 (9)0.0218 (10)0.0078 (9)
O40.0591 (15)0.0372 (12)0.0452 (13)0.0073 (11)0.0090 (12)0.0035 (10)
C20.0379 (17)0.0472 (18)0.0300 (15)0.0016 (14)0.0202 (14)0.0071 (13)
C100.0451 (19)0.0437 (18)0.0351 (16)0.0101 (15)0.0164 (15)0.0067 (14)
C10.0429 (18)0.0532 (19)0.0337 (16)0.0061 (14)0.0232 (15)0.0111 (14)
C130.0319 (17)0.0465 (18)0.0390 (16)0.0002 (14)0.0187 (14)0.0035 (14)
C90.0333 (17)0.0368 (17)0.0346 (15)0.0021 (13)0.0145 (13)0.0016 (13)
C110.0347 (18)0.066 (2)0.0312 (16)0.0105 (16)0.0126 (14)0.0002 (16)
C70.058 (2)0.055 (2)0.0491 (19)0.0096 (17)0.0372 (18)0.0018 (16)
C120.0272 (17)0.060 (2)0.0375 (17)0.0078 (14)0.0117 (14)0.0112 (15)
C50.054 (2)0.096 (3)0.061 (2)0.021 (2)0.043 (2)0.016 (2)
C30.057 (2)0.0476 (19)0.0494 (19)0.0017 (16)0.0301 (17)0.0012 (16)
C140.054 (2)0.068 (2)0.064 (2)0.0147 (18)0.0314 (19)0.0084 (19)
C150.046 (2)0.119 (3)0.081 (3)0.016 (2)0.031 (2)0.024 (2)
C40.078 (3)0.068 (2)0.062 (2)0.020 (2)0.049 (2)0.0062 (19)
C60.054 (2)0.087 (3)0.066 (2)0.016 (2)0.042 (2)0.001 (2)
Geometric parameters (Å, º) top
P1—O21.4841 (18)C1—H1B0.9700
P1—O11.4961 (18)C13—C121.384 (4)
P1—O31.5874 (18)C13—H130.9300
P1—C181.839 (3)C11—C121.370 (4)
O3—C141.448 (3)C11—H110.9300
N1—C11.503 (3)C7—C61.383 (4)
N1—C181.513 (3)C7—H70.9300
N1—H1NA0.97 (3)C12—H120.9300
N1—H1NB0.86 (3)C5—C61.355 (5)
C18—C81.517 (3)C5—C41.364 (5)
C18—H180.9800C5—H50.9300
C8—C131.388 (3)C3—C41.380 (4)
C8—C91.396 (4)C3—H3A0.9300
O4—C91.367 (3)C14—C151.477 (4)
O4—H4A0.8200C14—H14A0.9700
C2—C71.377 (4)C14—H14B0.9700
C2—C31.384 (4)C15—H15A0.9600
C2—C11.498 (4)C15—H15B0.9600
C10—C111.380 (4)C15—H15C0.9600
C10—C91.382 (4)C4—H40.9300
C10—H100.9300C6—H60.9300
C1—H1A0.9700
O2—P1—O1118.69 (11)C8—C13—H13119.1
O2—P1—O3112.33 (10)O4—C9—C10118.2 (3)
O1—P1—O3106.60 (10)O4—C9—C8121.3 (2)
O2—P1—C18109.48 (11)C10—C9—C8120.4 (3)
O1—P1—C18105.86 (11)C12—C11—C10120.2 (3)
O3—P1—C18102.51 (11)C12—C11—H11119.9
C14—O3—P1121.11 (18)C10—C11—H11119.9
C1—N1—C18111.8 (2)C2—C7—C6121.0 (3)
C1—N1—H1NA105.4 (16)C2—C7—H7119.5
C18—N1—H1NA109.7 (16)C6—C7—H7119.5
C1—N1—H1NB111.2 (17)C11—C12—C13119.3 (3)
C18—N1—H1NB112.3 (17)C11—C12—H12120.3
H1NA—N1—H1NB106 (2)C13—C12—H12120.3
N1—C18—C8112.8 (2)C6—C5—C4120.4 (3)
N1—C18—P1109.82 (16)C6—C5—H5119.8
C8—C18—P1113.68 (17)C4—C5—H5119.8
N1—C18—H18106.7C4—C3—C2120.6 (3)
C8—C18—H18106.7C4—C3—H3A119.7
P1—C18—H18106.7C2—C3—H3A119.7
C13—C8—C9117.7 (2)O3—C14—C15109.2 (3)
C13—C8—C18119.2 (2)O3—C14—H14A109.8
C9—C8—C18123.0 (2)C15—C14—H14A109.8
C9—O4—H4A109.5O3—C14—H14B109.8
C7—C2—C3118.1 (3)C15—C14—H14B109.8
C7—C2—C1120.6 (3)H14A—C14—H14B108.3
C3—C2—C1121.2 (3)C14—C15—H15A109.5
C11—C10—C9120.4 (3)C14—C15—H15B109.5
C11—C10—H10119.8H15A—C15—H15B109.5
C9—C10—H10119.8C14—C15—H15C109.5
C2—C1—N1113.0 (2)H15A—C15—H15C109.5
C2—C1—H1A109.0H15B—C15—H15C109.5
N1—C1—H1A109.0C5—C4—C3120.1 (3)
C2—C1—H1B109.0C5—C4—H4120.0
N1—C1—H1B109.0C3—C4—H4120.0
H1A—C1—H1B107.8C5—C6—C7119.8 (3)
C12—C13—C8121.8 (3)C5—C6—H6120.1
C12—C13—H13119.1C7—C6—H6120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1i0.97 (3)1.77 (3)2.738 (3)179 (2)
N1—H1NB···O40.86 (3)2.50 (3)2.982 (3)116 (2)
N1—H1NB···O2ii0.86 (3)2.08 (3)2.915 (3)164 (2)
O4—H4A···O10.821.942.738 (3)164
O4—H4A···O2ii0.822.582.925 (3)107
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H20NO4P
Mr321.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.069 (3), 6.0927 (7), 22.333 (3)
β (°) 124.464 (2)
V3)3149.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.955, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
8453, 3104, 1918
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.00
No. of reflections3104
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1i0.97 (3)1.77 (3)2.738 (3)179 (2)
N1—H1NB···O40.86 (3)2.50 (3)2.982 (3)116 (2)
N1—H1NB···O2ii0.86 (3)2.08 (3)2.915 (3)164 (2)
O4—H4A···O10.821.942.738 (3)164
O4—H4A···O2ii0.822.582.925 (3)107
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971062/B010303), the Project for Provincial Key Laboratory of Liaoning Province, China (grant No. 2008S104).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Ge, C., Zhang, X. & Liu, Q. (2007). Acta Cryst. E63, o4778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, o2952–o2954.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds