organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-3-[(E)-3-phenyl­prop-2-eno­yl]-2H-chromen-2-one

aUnité de chimie des Matériaux, ISSBAT, Université de Tunis-ElManar, 9 Avenue Dr Zoheir SAFI, 1006 Tunis, Tunisia
*Correspondence e-mail: rached.benhassen@fss.rnu.tn

(Received 21 June 2011; accepted 22 July 2011; online 30 July 2011)

In the title mol­ecule, C18H12O4, the phenyl ring is twisted by 23.2 (1)° from the mean plane of the chromene system. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into zigzag chains extending in the [010] direction. An intra­molecular O—H⋯O hydrogen bond is also present.

Related literature

For related structures, see: Traven et al. (2000[Traven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Russ. J. Gen. Chem. 70, 798-808.]); Sun & Cui (2008[Sun, Y. F. & Cui, Y. P. (2008). Dyes Pigments, 78, 65-76.]); Mechi et al. (2009[Mechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652-o1653.]); Hamdi et al. (2010[Hamdi, N., Bouabdallah, F., Romerosa, A. & Ben Hassen, R. (2010). C. R. Chim. 13, 1261-1268.]); Asad et al. (2010[Asad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o3022-o3023.]). For the synthesis of coumarin chalcones, see: Claisen & Claparede (1881[Claisen, L. & Claparede, A. (1881). Ber. Dtsch. Chem. Ges. 14, 2460-2468.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12O4

  • Mr = 292.28

  • Monoclinic, P 21 /c

  • a = 11.8040 (5) Å

  • b = 3.8860 (5) Å

  • c = 29.7190 (5) Å

  • β = 97.164 (5)°

  • V = 1352.58 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.3 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.865

  • 11154 measured reflections

  • 2983 independent reflections

  • 1404 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.300

  • S = 1.04

  • 2983 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.57 3.350 (5) 142
O1—H2⋯O2 0.99 (7) 1.51 (7) 2.413 (4) 149 (6)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our structural and biological studies of coumarin derivatives (Mechi et al., 2009; Hamdi et al., 2010), we present the crystal structure of the title compound (I) - a new chalcone of the coumarin.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related structures (Mechi et al., 2009; Asad et al., 2010). The presence of α, β-unsaturated ketone is indicated by the short O2–C10 and C11–C12 bond lengths of 1.289 (5)Å and 1.327 (5) Å, respectively, and the O2–C10–C11 and C10–C11–C12 bond angles of 118.2 (4) ° and 121.8 (4) °, respectively. The structure exhibits intramolecular hydrogen bonding between the hydroxyl oxygen and the ketonic oxygen in the coumarin group (Table 1). The chromen-2-one is twisted out of the plane of the phenyl ring (C13– C14) at 23.2 (1) °. The linkage between the coumarin system and phenyl ring is quite conjugated with bond lengths C10–C11 = 1.457 (5) Å, C11–C12 = 1.327 (5) Å, and C12–C13 = 1.440 (5) Å, suggesting that all non-hydrogen atoms between the electron-donors and acceptors are highly conjugated, leading to a π-bridge for the charge transfer from phenyl ring to coumarin system. Similar geometry has been observed in coumarin chalcone analogues (Mechi et al., 2009; Sun & Cui, 2008). Consequently, the C10–O2 = 1.289 (5) Å is elongated as compared with its mean value found in 3-acetyl-4hydroxycoumarin (1.253 Å) (Traven et al., 2000) owing to the localization of the hydroxyl hydrogen (H2) between the O2 ketonic oxygen and the hydroxyl oxygen O1. The O1–H2 distance (0.99 (7) Å) in (I) is shorter than that in related compounds - C18H10O7 (1.22 (7) Å) (Mechi et al., 2009) and C18H10Cl2O4 (1.27 (2) Å) (Asad et al., 2010). It should be noted that the C9–O4 bond length (1.198 (5) Å) is less than that (1.210 Å) observed in 3-acetyl-4hydroxycoumarin (Traven et al., 2000). It was concluded that it was a substantial difference for stabilizing the H atom of the hydroxyl group when we changed the nature of the substituted R group (from H to Cl and to OCH3).

In the crystal structure, weak intermolecular C– H···O hydrogen bonds (Table 1) link molecules into zigzag chains extended in [010].

Related literature top

For related structures, see: Traven et al. (2000); Sun & Cui (2008); Mechi et al. (2009); Hamdi et al. (2010); Asad et al. (2010). For the synthesis of coumarin chalcone, see: Claisen & Claparede (1881).

Experimental top

The new chalcone (I) was synthesized using the Claisen Schmidt reaction (Claisen & Claparede, 1881), by the condensation of 3-acetyl-4hydroxycoumarin (1g, 4.9 mmol) and aromatic benzaldehyde (6.4 mmol, 0.5 ml) in chloroform (5 ml) in the presence of one drop of piperidine. The mixture was refluxed in a water bath for 2 h. After cooling at room temperature, a yellow solid was obtained in good yield, filtered, washed with ethanol, and dried in air. Yellow block-shaped single crystals of the title compound, suitable for X-ray structure determination, were recrystalized by slow evaporation of dichloromethane (CH2Cl2) at room temperature after several days. Yield: 1.1 g (80%). mp= 499K. IR: ν 3468 (OH), 1690(s) (>C=O), 1578 (C= C), 1272(s) (sym) (C-O-C); 1HNMR: δppm: 7.4-8.1 (m, 10H, Ar-H+ Hethyl), 16.1(s,1H,OH). 13C NMR (ppm): 192.6(CO); 181.56 (C2); 160.22 (C9); 100.8 (C8), 116.32-147.368 (C arom); 124.39 (Cethyl1), 154.79 (Cethyl2),

Refinement top

H2 atom was located on a difference map and refined isotropically. The remaining H atoms were positioned geometrically (C–H 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering. Dashed line denotes hydrogen bond.
4-Hydroxy-3-[(E)-3-phenylprop-2-enoyl]-2H-chromen-2-one top
Crystal data top
C18H12O4F(000) = 608
Mr = 292.28Dx = 1.435 Mg m3
Monoclinic, P21/cMelting point: 489 K
Hall symbol: -P2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.8040 (5) ÅCell parameters from 203 reflections
b = 3.8860 (5) ŵ = 0.10 mm1
c = 29.7190 (5) ÅT = 296 K
β = 97.164 (5)°Plate, yellow
V = 1352.58 (18) Å30.3 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube1404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 27.2°, θmin = 1.4°
Absorption correction: numerical
(SADABS; Bruker, 2003)
h = 1514
Tmin = 0.861, Tmax = 0.865k = 44
11154 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.300H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1616P)2]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C18H12O4V = 1352.58 (18) Å3
Mr = 292.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8040 (5) ŵ = 0.10 mm1
b = 3.8860 (5) ÅT = 296 K
c = 29.7190 (5) Å0.3 × 0.14 × 0.06 mm
β = 97.164 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2003)
1404 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.865Rint = 0.070
11154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.300H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
2983 reflectionsΔρmin = 0.69 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0403 (2)0.2994 (9)0.14926 (11)0.0562 (9)
O20.0632 (2)0.0415 (9)0.07711 (9)0.0559 (9)
C10.1298 (4)0.5245 (10)0.23674 (14)0.0449 (11)
H10.05260.56670.22810.054*
C20.1481 (3)0.2566 (10)0.16162 (13)0.0372 (9)
C100.1719 (3)0.0080 (10)0.08756 (13)0.0403 (10)
C30.1795 (4)0.6154 (11)0.27952 (14)0.0531 (12)
H30.13570.71620.29990.064*
C140.1811 (4)0.5082 (11)0.06124 (13)0.0473 (11)
H120.10310.54130.06100.057*
C120.1891 (4)0.2364 (10)0.01330 (13)0.0418 (10)
H60.10980.24280.00930.050*
C70.1950 (3)0.3694 (9)0.20651 (12)0.0362 (9)
C80.2206 (3)0.1046 (10)0.13289 (12)0.0363 (9)
C150.2328 (4)0.6146 (11)0.09835 (14)0.0546 (13)
H110.18950.72140.12270.065*
C110.2385 (4)0.1217 (10)0.05304 (13)0.0421 (10)
H70.31770.12410.05900.050*
C40.2948 (4)0.5566 (11)0.29212 (14)0.0532 (12)
H40.32820.62080.32090.064*
C60.3095 (3)0.3138 (10)0.22020 (12)0.0379 (9)
C90.3401 (4)0.0457 (11)0.14931 (13)0.0445 (10)
C160.3483 (4)0.5624 (11)0.09925 (14)0.0536 (12)
H100.38240.63080.12440.064*
C50.3595 (4)0.4068 (11)0.26304 (14)0.0507 (11)
H50.43680.36690.27180.061*
O30.3791 (2)0.1608 (8)0.19242 (9)0.0485 (8)
C170.4132 (4)0.4082 (12)0.06275 (15)0.0538 (12)
H90.49120.37590.06300.065*
O40.4098 (3)0.0973 (11)0.12993 (11)0.0753 (12)
C180.3610 (4)0.3021 (11)0.02576 (13)0.0471 (11)
H80.40460.19540.00150.057*
C130.2453 (4)0.3519 (10)0.02429 (13)0.0386 (9)
H20.022 (6)0.181 (17)0.120 (2)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (18)0.085 (2)0.0422 (18)0.0068 (16)0.0031 (14)0.0133 (17)
O20.0428 (18)0.083 (2)0.0404 (17)0.0022 (16)0.0005 (14)0.0144 (16)
C10.056 (3)0.040 (2)0.041 (2)0.0013 (19)0.017 (2)0.0005 (18)
C20.040 (2)0.038 (2)0.034 (2)0.0007 (17)0.0080 (17)0.0014 (17)
C100.045 (2)0.040 (2)0.037 (2)0.0008 (18)0.0070 (19)0.0017 (18)
C30.086 (4)0.044 (2)0.034 (2)0.002 (2)0.021 (2)0.0042 (18)
C140.053 (3)0.049 (2)0.038 (2)0.005 (2)0.001 (2)0.0004 (19)
C120.048 (2)0.044 (2)0.034 (2)0.0010 (19)0.0072 (19)0.0007 (18)
C70.045 (2)0.036 (2)0.028 (2)0.0032 (17)0.0103 (17)0.0047 (16)
C80.042 (2)0.038 (2)0.029 (2)0.0014 (17)0.0038 (17)0.0021 (16)
C150.084 (4)0.047 (3)0.030 (2)0.011 (2)0.001 (2)0.0057 (19)
C110.046 (2)0.047 (2)0.033 (2)0.0025 (19)0.0059 (18)0.0005 (18)
C40.076 (3)0.050 (3)0.032 (2)0.010 (2)0.000 (2)0.0010 (19)
C60.043 (2)0.041 (2)0.030 (2)0.0036 (18)0.0080 (17)0.0012 (17)
C90.043 (2)0.056 (3)0.034 (2)0.008 (2)0.0060 (19)0.0003 (19)
C160.078 (4)0.052 (3)0.034 (2)0.018 (2)0.016 (2)0.003 (2)
C50.055 (3)0.055 (3)0.041 (2)0.009 (2)0.002 (2)0.000 (2)
O30.0369 (16)0.072 (2)0.0357 (16)0.0048 (15)0.0014 (12)0.0042 (14)
C170.060 (3)0.056 (3)0.047 (3)0.007 (2)0.014 (2)0.003 (2)
O40.053 (2)0.123 (3)0.050 (2)0.032 (2)0.0068 (17)0.021 (2)
C180.060 (3)0.047 (2)0.033 (2)0.001 (2)0.005 (2)0.0004 (18)
C130.052 (2)0.035 (2)0.029 (2)0.0043 (18)0.0049 (18)0.0029 (16)
Geometric parameters (Å, º) top
O1—C21.290 (5)C7—C61.379 (5)
O1—H20.99 (7)C8—C91.452 (5)
O2—C101.289 (5)C15—C161.383 (7)
C1—C31.378 (6)C15—H110.9300
C1—C71.391 (5)C11—H70.9300
C1—H10.9300C4—C51.354 (6)
C2—C81.411 (5)C4—H40.9300
C2—C71.447 (5)C6—O31.371 (4)
C10—C81.447 (5)C6—C51.383 (5)
C10—C111.457 (5)C9—O41.198 (5)
C3—C41.385 (7)C9—O31.381 (5)
C3—H30.9300C16—C171.384 (6)
C14—C151.388 (6)C16—H100.9300
C14—C131.394 (6)C5—H50.9300
C14—H120.9300C17—C181.388 (6)
C12—C111.327 (5)C17—H90.9300
C12—C131.440 (5)C18—C131.385 (6)
C12—H60.9300C18—H80.9300
C2—O1—H2107 (4)C12—C11—C10121.8 (4)
C3—C1—C7120.0 (4)C12—C11—H7119.1
C3—C1—H1120.0C10—C11—H7119.1
C7—C1—H1120.0C5—C4—C3120.8 (4)
O1—C2—C8122.2 (4)C5—C4—H4119.6
O1—C2—C7118.3 (3)C3—C4—H4119.6
C8—C2—C7119.5 (4)O3—C6—C7122.0 (3)
O2—C10—C8117.8 (4)O3—C6—C5116.7 (4)
O2—C10—C11118.2 (4)C7—C6—C5121.4 (4)
C8—C10—C11124.0 (4)O4—C9—O3115.3 (4)
C1—C3—C4119.9 (4)O4—C9—C8127.5 (4)
C1—C3—H3120.1O3—C9—C8117.3 (3)
C4—C3—H3120.1C15—C16—C17120.0 (4)
C15—C14—C13120.4 (4)C15—C16—H10120.0
C15—C14—H12119.8C17—C16—H10120.0
C13—C14—H12119.8C4—C5—C6119.4 (4)
C11—C12—C13127.0 (4)C4—C5—H5120.3
C11—C12—H6116.5C6—C5—H5120.3
C13—C12—H6116.5C6—O3—C9122.9 (3)
C6—C7—C1118.6 (4)C16—C17—C18119.5 (5)
C6—C7—C2118.2 (3)C16—C17—H9120.3
C1—C7—C2123.2 (4)C18—C17—H9120.3
C2—C8—C10118.1 (4)C13—C18—C17121.4 (4)
C2—C8—C9120.0 (3)C13—C18—H8119.3
C10—C8—C9121.9 (3)C17—C18—H8119.3
C16—C15—C14120.3 (4)C18—C13—C14118.5 (4)
C16—C15—H11119.9C18—C13—C12122.1 (4)
C14—C15—H11119.9C14—C13—C12119.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.573.350 (5)142
O1—H2···O20.99 (7)1.51 (7)2.413 (4)149 (6)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12O4
Mr292.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8040 (5), 3.8860 (5), 29.7190 (5)
β (°) 97.164 (5)
V3)1352.58 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2003)
Tmin, Tmax0.861, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
11154, 2983, 1404
Rint0.070
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.300, 1.04
No. of reflections2983
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.69

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.573.350 (5)142.4
O1—H2···O20.99 (7)1.51 (7)2.413 (4)149 (6)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

Professor A. Ben Salah is acknowledged for his contribution to the X-ray diffraction data collection at the Laboratory of Materials Science and the Environment, University of Sfax, Tunisia.

References

First citationAsad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o3022–o3023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaisen, L. & Claparede, A. (1881). Ber. Dtsch. Chem. Ges. 14, 2460–2468.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHamdi, N., Bouabdallah, F., Romerosa, A. & Ben Hassen, R. (2010). C. R. Chim. 13, 1261–1268.  Web of Science CrossRef CAS Google Scholar
First citationMechi, L., Chtiba, S., Hamdi, N. & Ben Hassen, R. (2009). Acta Cryst. E65, o1652–o1653.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. F. & Cui, Y. P. (2008). Dyes Pigments, 78, 65–76.  CrossRef CAS Google Scholar
First citationTraven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Russ. J. Gen. Chem. 70, 798–808.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds