organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-(Disulfanedi­yl)bis­­(1-methyl-1H-tetra­zole)

aFaculty of Chemistry, Northeast Normal University, 130024 Changchun, Jilin, People's Republic of China, bInstitute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, Jiangsu, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, 028042 Tongliao, Inner Mongolia, People's Republic of China
*Correspondence e-mail: liujinglin@imun.edu.cn

(Received 7 July 2011; accepted 23 July 2011; online 30 July 2011)

In the title mol­ecule, C4H6N8S2, two tetra­zole rings linked by a disulfide bridge form a dihedral angle of 71.32 (7)° [C—S—S—C torsion angle = −80.51 (10)°]. In the crystal, strong inter­molecular ππ inter­actions between the tetra­zole rings [centroid–centroid distance = 3.285 (3) Å] link pairs of mol­ecules into centrosymmetric dimers. Weak inter­molecular C—H⋯N hydrogen bonds further link these dimers, related by translation in the [100] direction, into columns.

Related literature

For related structures, see: Kim et al. (2003[Kim, Y. J., Han, J. T., Kang, S., Han, W. S. & Lee, S. J. (2003). Dalton Trans. pp. 3357-3364.]); Brito et al. (2007[Brito, I., Cárdenas, A., Mundaca, A., Villalobos, H. & López-Rodríguez, M. (2007). Acta Cryst. E63, o2581-o2583.]); Tamilselvi & Mugesh (2010[Tamilselvi, A. & Mugesh, G. (2010). Bioorg. Med. Chem. Lett. 20, 3692-3697.]). For their use as ligands in transition-metal coordination chemistry, see: She et al. (2006[She, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402-o404.]); Carballo et al. (2009[Carballo, R., Covelo, B., Fernandez-Hermida, N., Lago, A. B. & Vazquez-Lopez, M. (2009). CrystEngComm, 11, 817-826.]); Wang et al. (2010[Wang, X. L., Hu, H. L., Tian, A. X., Lin, H. Y. & Li, J. (2010). Inorg. Chem. 49, 10299-10306.]); Aromi et al. (2011[Aromi, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N8S2

  • Mr = 230.29

  • Monoclinic, P 21 /n

  • a = 6.3232 (3) Å

  • b = 8.1625 (3) Å

  • c = 18.3623 (7) Å

  • β = 98.906 (2)°

  • V = 936.31 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.899

  • 8223 measured reflections

  • 1606 independent reflections

  • 1527 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.09

  • 1606 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4C⋯N6i 0.96 2.61 3.518 (4) 158
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the interesting coordination chemistry and increasingly biomedical properties of complexes derived from bis(1-methyl-1H-tetrazol) disulfide ligand have received much attention (Kim et al., 2003; She et al., 2006; Brito et al., 2007; Carballo et al., 2009; Tamilselvi & Mugesh, 2010; Wang et al., 2010). Herein we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in the related compounds (Kim et al., 2003; Brito et al., 2007; Tamilselvi & Mugesh, 2010) The dihedral angle between the two tetrazol rings is 71.32 (7) °. The S—S bond length is 2.0474 (8) Å. The C—S—S—C torsion angle of -80.51 (10) ° compares well with that of -79.71 (10) ° reported by Tamilselvi & Mugesh (2010). The C—S—S—C torsion angle in two bis-tetrazol disulfides reported by Kim et al. (2003) and Brito et al. (2007) are 81.54 (5) ° and 80.42 (6) °, respectively.

In the crystal structure, strong intermolecular ππ interaction between the tetrazole rings [centroid-centroid distance of 3.285 (3) Å] link two molecules into centrosymmetric dimer. Weak intermolecular C—H···N hydrogen bonds (Table 1) link further these dimers related by translation in [100] into columns.

Related literature top

For related structures, see: Kim et al. (2003); Brito et al. (2007); Tamilselvi & Mugesh (2010). For their use as ligands in transition-metal coordination chemistry, see: She et al. (2006); Carballo et al. (2009); Wang et al. (2010); Aromi et al. (2011).

Experimental top

A water solution (5 ml) of Fe(NO3)3 (0.25 mmol) was added slowly to the water solution (15 ml) of 1-methyl-5-mercaptotetrazole (0.10 mmol). The reaction mixture was stirred at room temperature for 3 h. The solvent was removed and the solid product recrystallized from ethanol. After six days, the colourless crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in idealized positions and refined using a riding model (C—H = 0.96 Å) with Uiso(H) = 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic labeling and 30% probability displacement ellipsoids.
5,5'-(Disulfanediyl)bis(1-methyl-1H-tetrazole) top
Crystal data top
C4H6N8S2F(000) = 472
Mr = 230.29Dx = 1.634 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9988 reflections
a = 6.3232 (3) Åθ = 2.5–40.5°
b = 8.1625 (3) ŵ = 0.54 mm1
c = 18.3623 (7) ÅT = 296 K
β = 98.906 (2)°Block, colourless
V = 936.31 (7) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1606 independent reflections
Radiation source: fine-focus sealed tube1527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 75
Tmin = 0.812, Tmax = 0.899k = 99
8223 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6856P]
where P = (Fo2 + 2Fc2)/3
1606 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C4H6N8S2V = 936.31 (7) Å3
Mr = 230.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3232 (3) ŵ = 0.54 mm1
b = 8.1625 (3) ÅT = 296 K
c = 18.3623 (7) Å0.40 × 0.20 × 0.20 mm
β = 98.906 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1527 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.899Rint = 0.019
8223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.38 e Å3
1606 reflectionsΔρmin = 0.35 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21952 (9)0.05034 (7)0.39949 (3)0.0367 (2)
S20.13427 (9)0.20613 (8)0.47738 (3)0.0427 (2)
N20.2328 (4)0.3565 (3)0.24114 (12)0.0461 (5)
N10.1217 (3)0.2818 (2)0.28933 (11)0.0393 (5)
C10.2630 (3)0.1878 (2)0.32986 (11)0.0296 (4)
N40.4531 (3)0.2035 (2)0.30732 (10)0.0348 (4)
N60.7056 (3)0.3555 (3)0.55018 (13)0.0484 (5)
N50.5698 (3)0.2755 (3)0.49736 (12)0.0448 (5)
C30.3824 (4)0.2790 (3)0.52098 (12)0.0351 (5)
N80.4035 (3)0.3574 (2)0.58550 (10)0.0386 (4)
N30.4312 (3)0.3089 (3)0.25086 (11)0.0430 (5)
C20.6534 (4)0.1195 (4)0.33142 (15)0.0503 (6)
H2B0.63820.04910.37220.075*
H2C0.76400.19850.34650.075*
H2A0.69080.05510.29150.075*
N70.6092 (3)0.4054 (3)0.60292 (12)0.0485 (5)
C40.2441 (5)0.3978 (4)0.63164 (16)0.0627 (8)
H4C0.10800.35350.61010.094*
H4A0.23300.51460.63550.094*
H4B0.28580.35180.67990.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0401 (4)0.0366 (3)0.0343 (3)0.0056 (2)0.0089 (2)0.0033 (2)
S20.0329 (3)0.0600 (4)0.0367 (3)0.0085 (2)0.0095 (2)0.0078 (2)
N20.0515 (12)0.0450 (11)0.0406 (11)0.0020 (9)0.0028 (9)0.0106 (9)
N10.0344 (10)0.0417 (10)0.0408 (11)0.0010 (8)0.0024 (8)0.0035 (8)
C10.0268 (10)0.0327 (10)0.0293 (10)0.0033 (8)0.0041 (8)0.0015 (8)
N40.0300 (9)0.0411 (10)0.0337 (10)0.0034 (7)0.0065 (8)0.0021 (7)
N60.0352 (11)0.0539 (12)0.0547 (13)0.0054 (9)0.0024 (10)0.0047 (10)
N50.0364 (11)0.0549 (12)0.0439 (11)0.0038 (9)0.0088 (9)0.0025 (9)
C30.0346 (12)0.0382 (12)0.0326 (11)0.0034 (9)0.0051 (9)0.0065 (9)
N80.0379 (10)0.0422 (10)0.0348 (10)0.0049 (8)0.0028 (8)0.0005 (8)
N30.0453 (12)0.0498 (11)0.0348 (10)0.0081 (9)0.0090 (9)0.0071 (8)
C20.0261 (11)0.0749 (18)0.0508 (14)0.0049 (11)0.0086 (10)0.0060 (13)
N70.0397 (11)0.0527 (12)0.0503 (12)0.0071 (9)0.0023 (10)0.0009 (10)
C40.0513 (16)0.092 (2)0.0472 (15)0.0110 (16)0.0141 (13)0.0212 (15)
Geometric parameters (Å, º) top
S1—C11.754 (2)N5—C31.324 (3)
S1—S22.0474 (8)C3—N81.335 (3)
S2—C31.752 (2)N8—N71.349 (3)
N2—N31.299 (3)N8—C41.452 (3)
N2—N11.357 (3)C2—H2B0.9600
N1—C11.317 (3)C2—H2C0.9600
C1—N41.337 (3)C2—H2A0.9600
N4—N31.338 (3)C4—H4C0.9600
N4—C21.448 (3)C4—H4A0.9600
N6—N71.287 (3)C4—H4B0.9600
N6—N51.359 (3)
C1—S1—S2101.53 (7)C3—N8—C4130.1 (2)
C3—S2—S1102.49 (8)N7—N8—C4121.8 (2)
N3—N2—N1111.26 (18)N2—N3—N4106.28 (18)
C1—N1—N2104.84 (19)N4—C2—H2B109.5
N1—C1—N4109.43 (19)N4—C2—H2C109.5
N1—C1—S1127.98 (17)H2B—C2—H2C109.5
N4—C1—S1122.48 (16)N4—C2—H2A109.5
C1—N4—N3108.17 (18)H2B—C2—H2A109.5
C1—N4—C2130.23 (19)H2C—C2—H2A109.5
N3—N4—C2121.46 (19)N6—N7—N8106.3 (2)
N7—N6—N5111.64 (19)N8—C4—H4C109.5
C3—N5—N6104.7 (2)N8—C4—H4A109.5
N5—C3—N8109.2 (2)H4C—C4—H4A109.5
N5—C3—S2128.82 (19)N8—C4—H4B109.5
N8—C3—S2121.87 (17)H4C—C4—H4B109.5
C3—N8—N7108.06 (19)H4A—C4—H4B109.5
C1—S1—S2—C380.51 (10)S1—S2—C3—N517.9 (2)
N3—N2—N1—C10.9 (3)S1—S2—C3—N8165.44 (17)
N2—N1—C1—N40.2 (2)N5—C3—N8—N70.3 (3)
N2—N1—C1—S1176.46 (16)S2—C3—N8—N7176.89 (16)
S2—S1—C1—N165.6 (2)N5—C3—N8—C4177.5 (3)
S2—S1—C1—N4118.62 (17)S2—C3—N8—C40.3 (4)
N1—C1—N4—N30.5 (2)N1—N2—N3—N41.2 (3)
S1—C1—N4—N3175.98 (15)C1—N4—N3—N21.0 (2)
N1—C1—N4—C2176.1 (2)C2—N4—N3—N2177.1 (2)
S1—C1—N4—C20.4 (3)N5—N6—N7—N80.3 (3)
N7—N6—N5—C30.1 (3)C3—N8—N7—N60.4 (3)
N6—N5—C3—N80.2 (3)C4—N8—N7—N6177.8 (2)
N6—N5—C3—S2176.80 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4C···N6i0.962.613.518 (4)158
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H6N8S2
Mr230.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.3232 (3), 8.1625 (3), 18.3623 (7)
β (°) 98.906 (2)
V3)936.31 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.812, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
8223, 1606, 1527
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.09
No. of reflections1606
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4C···N6i0.962.613.518 (4)157.5
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (grant No. 20080431049) and the Scientific Research Foundation for Doctors, Inner Mongolia University for the Nationalities (grant No. BS214).

References

First citationAromi, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  CAS Google Scholar
First citationBrito, I., Cárdenas, A., Mundaca, A., Villalobos, H. & López-Rodríguez, M. (2007). Acta Cryst. E63, o2581–o2583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarballo, R., Covelo, B., Fernandez-Hermida, N., Lago, A. B. & Vazquez-Lopez, M. (2009). CrystEngComm, 11, 817–826.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, Y. J., Han, J. T., Kang, S., Han, W. S. & Lee, S. J. (2003). Dalton Trans. pp. 3357–3364.  Web of Science CSD CrossRef Google Scholar
First citationShe, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402–o404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamilselvi, A. & Mugesh, G. (2010). Bioorg. Med. Chem. Lett. 20, 3692–3697.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, X. L., Hu, H. L., Tian, A. X., Lin, H. Y. & Li, J. (2010). Inorg. Chem. 49, 10299–10306.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds