organic compounds
5,5′-(Disulfanediyl)bis(1-methyl-1H-tetrazole)
aFaculty of Chemistry, Northeast Normal University, 130024 Changchun, Jilin, People's Republic of China, bInstitute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, Jiangsu, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, 028042 Tongliao, Inner Mongolia, People's Republic of China
*Correspondence e-mail: liujinglin@imun.edu.cn
In the title molecule, C4H6N8S2, two tetrazole rings linked by a disulfide bridge form a dihedral angle of 71.32 (7)° [C—S—S—C torsion angle = −80.51 (10)°]. In the crystal, strong intermolecular π–π interactions between the tetrazole rings [centroid–centroid distance = 3.285 (3) Å] link pairs of molecules into centrosymmetric dimers. Weak intermolecular C—H⋯N hydrogen bonds further link these dimers, related by translation in the [100] direction, into columns.
Related literature
For related structures, see: Kim et al. (2003); Brito et al. (2007); Tamilselvi & Mugesh (2010). For their use as ligands in transition-metal coordination chemistry, see: She et al. (2006); Carballo et al. (2009); Wang et al. (2010); Aromi et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811029862/cv5132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811029862/cv5132Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811029862/cv5132Isup3.cml
A water solution (5 ml) of Fe(NO3)3 (0.25 mmol) was added slowly to the water solution (15 ml) of 1-methyl-5-mercaptotetrazole (0.10 mmol). The reaction mixture was stirred at room temperature for 3 h. The solvent was removed and the solid product recrystallized from ethanol. After six days, the colourless crystals suitable for X-ray diffraction were obtained.
All H atoms were placed in idealized positions and refined using a riding model (C—H = 0.96 Å) with Uiso(H) = 1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of (I) showing the atomic labeling and 30% probability displacement ellipsoids. |
C4H6N8S2 | F(000) = 472 |
Mr = 230.29 | Dx = 1.634 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9988 reflections |
a = 6.3232 (3) Å | θ = 2.5–40.5° |
b = 8.1625 (3) Å | µ = 0.54 mm−1 |
c = 18.3623 (7) Å | T = 296 K |
β = 98.906 (2)° | Block, colourless |
V = 936.31 (7) Å3 | 0.40 × 0.20 × 0.20 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 1606 independent reflections |
Radiation source: fine-focus sealed tube | 1527 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
phi and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→5 |
Tmin = 0.812, Tmax = 0.899 | k = −9→9 |
8223 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6856P] where P = (Fo2 + 2Fc2)/3 |
1606 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C4H6N8S2 | V = 936.31 (7) Å3 |
Mr = 230.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.3232 (3) Å | µ = 0.54 mm−1 |
b = 8.1625 (3) Å | T = 296 K |
c = 18.3623 (7) Å | 0.40 × 0.20 × 0.20 mm |
β = 98.906 (2)° |
Bruker APEXII CCD area-detector diffractometer | 1606 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1527 reflections with I > 2σ(I) |
Tmin = 0.812, Tmax = 0.899 | Rint = 0.019 |
8223 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.38 e Å−3 |
1606 reflections | Δρmin = −0.35 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.21952 (9) | 0.05034 (7) | 0.39949 (3) | 0.0367 (2) | |
S2 | 0.13427 (9) | 0.20613 (8) | 0.47738 (3) | 0.0427 (2) | |
N2 | 0.2328 (4) | 0.3565 (3) | 0.24114 (12) | 0.0461 (5) | |
N1 | 0.1217 (3) | 0.2818 (2) | 0.28933 (11) | 0.0393 (5) | |
C1 | 0.2630 (3) | 0.1878 (2) | 0.32986 (11) | 0.0296 (4) | |
N4 | 0.4531 (3) | 0.2035 (2) | 0.30732 (10) | 0.0348 (4) | |
N6 | 0.7056 (3) | 0.3555 (3) | 0.55018 (13) | 0.0484 (5) | |
N5 | 0.5698 (3) | 0.2755 (3) | 0.49736 (12) | 0.0448 (5) | |
C3 | 0.3824 (4) | 0.2790 (3) | 0.52098 (12) | 0.0351 (5) | |
N8 | 0.4035 (3) | 0.3574 (2) | 0.58550 (10) | 0.0386 (4) | |
N3 | 0.4312 (3) | 0.3089 (3) | 0.25086 (11) | 0.0430 (5) | |
C2 | 0.6534 (4) | 0.1195 (4) | 0.33142 (15) | 0.0503 (6) | |
H2B | 0.6382 | 0.0491 | 0.3722 | 0.075* | |
H2C | 0.7640 | 0.1985 | 0.3465 | 0.075* | |
H2A | 0.6908 | 0.0551 | 0.2915 | 0.075* | |
N7 | 0.6092 (3) | 0.4054 (3) | 0.60292 (12) | 0.0485 (5) | |
C4 | 0.2441 (5) | 0.3978 (4) | 0.63164 (16) | 0.0627 (8) | |
H4C | 0.1080 | 0.3535 | 0.6101 | 0.094* | |
H4A | 0.2330 | 0.5146 | 0.6355 | 0.094* | |
H4B | 0.2858 | 0.3518 | 0.6799 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0401 (4) | 0.0366 (3) | 0.0343 (3) | −0.0056 (2) | 0.0089 (2) | 0.0033 (2) |
S2 | 0.0329 (3) | 0.0600 (4) | 0.0367 (3) | −0.0085 (2) | 0.0095 (2) | −0.0078 (2) |
N2 | 0.0515 (12) | 0.0450 (11) | 0.0406 (11) | −0.0020 (9) | 0.0028 (9) | 0.0106 (9) |
N1 | 0.0344 (10) | 0.0417 (10) | 0.0408 (11) | 0.0010 (8) | 0.0024 (8) | 0.0035 (8) |
C1 | 0.0268 (10) | 0.0327 (10) | 0.0293 (10) | −0.0033 (8) | 0.0041 (8) | −0.0015 (8) |
N4 | 0.0300 (9) | 0.0411 (10) | 0.0337 (10) | −0.0034 (7) | 0.0065 (8) | 0.0021 (7) |
N6 | 0.0352 (11) | 0.0539 (12) | 0.0547 (13) | −0.0054 (9) | 0.0024 (10) | 0.0047 (10) |
N5 | 0.0364 (11) | 0.0549 (12) | 0.0439 (11) | −0.0038 (9) | 0.0088 (9) | 0.0025 (9) |
C3 | 0.0346 (12) | 0.0382 (12) | 0.0326 (11) | −0.0034 (9) | 0.0051 (9) | 0.0065 (9) |
N8 | 0.0379 (10) | 0.0422 (10) | 0.0348 (10) | −0.0049 (8) | 0.0028 (8) | 0.0005 (8) |
N3 | 0.0453 (12) | 0.0498 (11) | 0.0348 (10) | −0.0081 (9) | 0.0090 (9) | 0.0071 (8) |
C2 | 0.0261 (11) | 0.0749 (18) | 0.0508 (14) | 0.0049 (11) | 0.0086 (10) | 0.0060 (13) |
N7 | 0.0397 (11) | 0.0527 (12) | 0.0503 (12) | −0.0071 (9) | −0.0023 (10) | 0.0009 (10) |
C4 | 0.0513 (16) | 0.092 (2) | 0.0472 (15) | −0.0110 (16) | 0.0141 (13) | −0.0212 (15) |
S1—C1 | 1.754 (2) | N5—C3 | 1.324 (3) |
S1—S2 | 2.0474 (8) | C3—N8 | 1.335 (3) |
S2—C3 | 1.752 (2) | N8—N7 | 1.349 (3) |
N2—N3 | 1.299 (3) | N8—C4 | 1.452 (3) |
N2—N1 | 1.357 (3) | C2—H2B | 0.9600 |
N1—C1 | 1.317 (3) | C2—H2C | 0.9600 |
C1—N4 | 1.337 (3) | C2—H2A | 0.9600 |
N4—N3 | 1.338 (3) | C4—H4C | 0.9600 |
N4—C2 | 1.448 (3) | C4—H4A | 0.9600 |
N6—N7 | 1.287 (3) | C4—H4B | 0.9600 |
N6—N5 | 1.359 (3) | ||
C1—S1—S2 | 101.53 (7) | C3—N8—C4 | 130.1 (2) |
C3—S2—S1 | 102.49 (8) | N7—N8—C4 | 121.8 (2) |
N3—N2—N1 | 111.26 (18) | N2—N3—N4 | 106.28 (18) |
C1—N1—N2 | 104.84 (19) | N4—C2—H2B | 109.5 |
N1—C1—N4 | 109.43 (19) | N4—C2—H2C | 109.5 |
N1—C1—S1 | 127.98 (17) | H2B—C2—H2C | 109.5 |
N4—C1—S1 | 122.48 (16) | N4—C2—H2A | 109.5 |
C1—N4—N3 | 108.17 (18) | H2B—C2—H2A | 109.5 |
C1—N4—C2 | 130.23 (19) | H2C—C2—H2A | 109.5 |
N3—N4—C2 | 121.46 (19) | N6—N7—N8 | 106.3 (2) |
N7—N6—N5 | 111.64 (19) | N8—C4—H4C | 109.5 |
C3—N5—N6 | 104.7 (2) | N8—C4—H4A | 109.5 |
N5—C3—N8 | 109.2 (2) | H4C—C4—H4A | 109.5 |
N5—C3—S2 | 128.82 (19) | N8—C4—H4B | 109.5 |
N8—C3—S2 | 121.87 (17) | H4C—C4—H4B | 109.5 |
C3—N8—N7 | 108.06 (19) | H4A—C4—H4B | 109.5 |
C1—S1—S2—C3 | −80.51 (10) | S1—S2—C3—N5 | 17.9 (2) |
N3—N2—N1—C1 | 0.9 (3) | S1—S2—C3—N8 | −165.44 (17) |
N2—N1—C1—N4 | −0.2 (2) | N5—C3—N8—N7 | 0.3 (3) |
N2—N1—C1—S1 | −176.46 (16) | S2—C3—N8—N7 | −176.89 (16) |
S2—S1—C1—N1 | −65.6 (2) | N5—C3—N8—C4 | 177.5 (3) |
S2—S1—C1—N4 | 118.62 (17) | S2—C3—N8—C4 | 0.3 (4) |
N1—C1—N4—N3 | −0.5 (2) | N1—N2—N3—N4 | −1.2 (3) |
S1—C1—N4—N3 | 175.98 (15) | C1—N4—N3—N2 | 1.0 (2) |
N1—C1—N4—C2 | −176.1 (2) | C2—N4—N3—N2 | 177.1 (2) |
S1—C1—N4—C2 | 0.4 (3) | N5—N6—N7—N8 | 0.3 (3) |
N7—N6—N5—C3 | −0.1 (3) | C3—N8—N7—N6 | −0.4 (3) |
N6—N5—C3—N8 | −0.2 (3) | C4—N8—N7—N6 | −177.8 (2) |
N6—N5—C3—S2 | 176.80 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···N6i | 0.96 | 2.61 | 3.518 (4) | 158 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C4H6N8S2 |
Mr | 230.29 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 6.3232 (3), 8.1625 (3), 18.3623 (7) |
β (°) | 98.906 (2) |
V (Å3) | 936.31 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.54 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.812, 0.899 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8223, 1606, 1527 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.106, 1.09 |
No. of reflections | 1606 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.35 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···N6i | 0.96 | 2.61 | 3.518 (4) | 157.5 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
This work was supported by the China Postdoctoral Science Foundation (grant No. 20080431049) and the Scientific Research Foundation for Doctors, Inner Mongolia University for the Nationalities (grant No. BS214).
References
Aromi, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546. CAS Google Scholar
Brito, I., Cárdenas, A., Mundaca, A., Villalobos, H. & López-Rodríguez, M. (2007). Acta Cryst. E63, o2581–o2583. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carballo, R., Covelo, B., Fernandez-Hermida, N., Lago, A. B. & Vazquez-Lopez, M. (2009). CrystEngComm, 11, 817–826. Web of Science CSD CrossRef CAS Google Scholar
Kim, Y. J., Han, J. T., Kang, S., Han, W. S. & Lee, S. J. (2003). Dalton Trans. pp. 3357–3364. Web of Science CSD CrossRef Google Scholar
She, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402–o404. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamilselvi, A. & Mugesh, G. (2010). Bioorg. Med. Chem. Lett. 20, 3692–3697. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, X. L., Hu, H. L., Tian, A. X., Lin, H. Y. & Li, J. (2010). Inorg. Chem. 49, 10299–10306. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the interesting coordination chemistry and increasingly biomedical properties of complexes derived from bis(1-methyl-1H-tetrazol) disulfide ligand have received much attention (Kim et al., 2003; She et al., 2006; Brito et al., 2007; Carballo et al., 2009; Tamilselvi & Mugesh, 2010; Wang et al., 2010). Herein we report the synthesis and crystal structure of the title compound, (I).
In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in the related compounds (Kim et al., 2003; Brito et al., 2007; Tamilselvi & Mugesh, 2010) The dihedral angle between the two tetrazol rings is 71.32 (7) °. The S—S bond length is 2.0474 (8) Å. The C—S—S—C torsion angle of -80.51 (10) ° compares well with that of -79.71 (10) ° reported by Tamilselvi & Mugesh (2010). The C—S—S—C torsion angle in two bis-tetrazol disulfides reported by Kim et al. (2003) and Brito et al. (2007) are 81.54 (5) ° and 80.42 (6) °, respectively.
In the crystal structure, strong intermolecular π—π interaction between the tetrazole rings [centroid-centroid distance of 3.285 (3) Å] link two molecules into centrosymmetric dimer. Weak intermolecular C—H···N hydrogen bonds (Table 1) link further these dimers related by translation in [100] into columns.