metal-organic compounds
trans-Diaquabis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole]nickel(II) bis(tetrafluoridoborate)
aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, ENSCL, BP 90108, F-59652 Villeneuve d'Ascq Cedex, France, Université Lille Nord de France, F-59000 Lille, France, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr
The bidentate 1,3,4-thiadiazole ligand, namely, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (denoted L), untested as a polydentate ligand, has been found to form the monomeric title complex, [Ni(C12H8N4S)2(H2O)2](BF4)2. The complex shows an octahedral environment of the nickel cation in which the Ni2+ ion is located on a center of symmetry, linked to two ligands and two water molecules. In this 1:2 complex (one metal for two organic ligands) each thiadiazole ligand uses one pyridyl and one thiadiazole N atom for chelate binding. In the second pyridyl substituent, the N atom is oriented towards the same direction as the S atom of the 1,3,4-thiadiazole ring. The mean plane of the thiadiazole and pyridyl rings linked to the nickel cation forms a dihedral angle with the other pyridine ring of 18.63 (8)°. The tetrafluoridoborate ions can be regarded as free anions in the Nevertheless, they are involved in an infinite two-dimensional network parallel to (01) through O—H⋯F hydrogen bonds.
Related literature
For NiII and CuII complexes containing a five azide ring, see: Keij et al. (1984). For background to similar structures, see: Bentiss et al. (2002, 2004, 2011); Zheng et al. (2006). For an improved synthesis of the ligand, see: Lebrini et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811026420/dn2703sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026420/dn2703Isup2.hkl
2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al., 2005. Ni(BF4)26H2O (1.5 mmol, 0.51 g) in 8 ml of water was added to (0.42 mmol, 0.1 g) of L (bptd ligand) dissolved in 8 ml of ethanol. The solution was filtered and after 24 h, the colorless compound crystallized at room temperature. Crystals were washed with water and dried under vacuum. Yield: 51%. Anal. Calc. for C24H20B2F8N8NiO2S2: C, 38.44; H, 2.67; N, 14.95; S, 8.56; F, 20.29%. Found: C, 38.52; H, 2.75; N, 14.90; S, 8.53; F, 20.27%.
H atoms attached to carbon were located in a difference map but introduced in calculated position and treated as riding with C—H = 0.95 Å for the aromatic CH, with Uiso(H) = 1.2 Ueq (aromatic). The O-bound H atom were initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In the the last cycles of
they are treated as riding on their parent O atoms with Uiso(H) set to 1.2Ueq(O).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C12H8N4S)2(H2O)2](BF4)2 | F(000) = 756 |
Mr = 748.93 | Dx = 1.610 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3120 reflections |
a = 10.8164 (15) Å | θ = 2.7–26.3° |
b = 11.0126 (13) Å | µ = 0.85 mm−1 |
c = 13.2333 (16) Å | T = 100 K |
β = 101.455 (6)° | Prism, colourless |
V = 1544.9 (3) Å3 | 0.26 × 0.21 × 0.13 mm |
Z = 2 |
Bruker X8 APEXII CCD area-detector diffractometer | 3120 independent reflections |
Radiation source: fine-focus sealed tube | 2729 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scans | θmax = 26.3°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→13 |
Tmin = 0.809, Tmax = 0.898 | k = −13→13 |
28021 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0302P)2 + 1.3259P] where P = (Fo2 + 2Fc2)/3 |
3120 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Ni(C12H8N4S)2(H2O)2](BF4)2 | V = 1544.9 (3) Å3 |
Mr = 748.93 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.8164 (15) Å | µ = 0.85 mm−1 |
b = 11.0126 (13) Å | T = 100 K |
c = 13.2333 (16) Å | 0.26 × 0.21 × 0.13 mm |
β = 101.455 (6)° |
Bruker X8 APEXII CCD area-detector diffractometer | 3120 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2729 reflections with I > 2σ(I) |
Tmin = 0.809, Tmax = 0.898 | Rint = 0.035 |
28021 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.60 e Å−3 |
3120 reflections | Δρmin = −0.40 e Å−3 |
214 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.5722 (2) | 0.6450 (2) | 0.25602 (17) | 0.0236 (4) | |
F1 | 0.67390 (15) | 0.59474 (18) | 0.32316 (11) | 0.0707 (6) | |
F2 | 0.58436 (11) | 0.62341 (12) | 0.15219 (9) | 0.0362 (3) | |
F3 | 0.46260 (14) | 0.59379 (14) | 0.27433 (14) | 0.0583 (4) | |
F4 | 0.56853 (15) | 0.77036 (12) | 0.27479 (11) | 0.0494 (4) | |
C1 | 0.40875 (16) | 0.75569 (16) | −0.02295 (14) | 0.0202 (4) | |
C2 | 0.47768 (16) | 1.25248 (17) | 0.06948 (13) | 0.0200 (4) | |
C3 | 0.43547 (18) | 1.35965 (17) | 0.10676 (14) | 0.0236 (4) | |
H3 | 0.4806 | 1.4333 | 0.1048 | 0.028* | |
C4 | 0.32542 (18) | 1.35711 (18) | 0.14729 (15) | 0.0258 (4) | |
H4 | 0.2940 | 1.4292 | 0.1726 | 0.031* | |
C5 | 0.26311 (18) | 1.24770 (18) | 0.14982 (15) | 0.0265 (4) | |
H5 | 0.1883 | 1.2433 | 0.1770 | 0.032* | |
C6 | 0.31231 (18) | 1.14360 (18) | 0.11167 (15) | 0.0248 (4) | |
H6 | 0.2696 | 1.0686 | 0.1144 | 0.030* | |
C7 | 0.22180 (17) | 0.74859 (17) | 0.04687 (14) | 0.0210 (4) | |
C8 | 0.10347 (17) | 0.71642 (18) | 0.08024 (14) | 0.0222 (4) | |
C9 | 0.01756 (18) | 0.80507 (19) | 0.09554 (16) | 0.0296 (4) | |
H9 | 0.0335 | 0.8887 | 0.0859 | 0.036* | |
C10 | −0.09264 (19) | 0.7670 (2) | 0.12544 (17) | 0.0342 (5) | |
H10 | −0.1541 | 0.8246 | 0.1364 | 0.041* | |
C11 | −0.11154 (19) | 0.6445 (2) | 0.13902 (16) | 0.0329 (5) | |
H11 | −0.1862 | 0.6166 | 0.1591 | 0.040* | |
C12 | −0.0195 (2) | 0.5627 (2) | 0.12282 (16) | 0.0310 (5) | |
H12 | −0.0326 | 0.4787 | 0.1334 | 0.037* | |
Ni1 | 0.5000 | 1.0000 | 0.0000 | 0.01936 (10) | |
N1 | 0.41765 (14) | 1.14452 (14) | 0.07112 (12) | 0.0218 (3) | |
N2 | 0.38061 (14) | 0.85992 (14) | 0.01661 (12) | 0.0210 (3) | |
N3 | 0.27253 (14) | 0.85652 (14) | 0.05732 (12) | 0.0226 (3) | |
N4 | 0.08724 (15) | 0.59655 (15) | 0.09286 (13) | 0.0260 (4) | |
O1 | 0.61598 (13) | 0.95553 (13) | 0.14395 (11) | 0.0307 (3) | |
H1W | 0.6844 | 0.9932 | 0.1692 | 0.037* | |
H2W | 0.6090 | 0.9007 | 0.1886 | 0.037* | |
S1 | 0.30384 (4) | 0.64191 (4) | −0.01275 (4) | 0.02147 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0194 (10) | 0.0233 (11) | 0.0268 (11) | 0.0023 (8) | 0.0017 (8) | 0.0008 (9) |
F1 | 0.0620 (10) | 0.1029 (14) | 0.0388 (8) | 0.0561 (10) | −0.0106 (7) | −0.0066 (9) |
F2 | 0.0351 (7) | 0.0440 (8) | 0.0285 (6) | −0.0059 (6) | 0.0039 (5) | −0.0035 (6) |
F3 | 0.0514 (9) | 0.0459 (9) | 0.0907 (12) | −0.0177 (7) | 0.0457 (9) | −0.0236 (8) |
F4 | 0.0759 (10) | 0.0240 (7) | 0.0503 (8) | −0.0093 (7) | 0.0178 (7) | −0.0030 (6) |
C1 | 0.0189 (9) | 0.0170 (9) | 0.0231 (9) | −0.0021 (7) | 0.0004 (7) | 0.0028 (7) |
C2 | 0.0188 (9) | 0.0196 (9) | 0.0203 (8) | −0.0010 (7) | 0.0005 (7) | 0.0021 (7) |
C3 | 0.0248 (10) | 0.0184 (9) | 0.0270 (10) | −0.0014 (7) | 0.0034 (8) | 0.0006 (8) |
C4 | 0.0283 (10) | 0.0214 (10) | 0.0283 (10) | 0.0025 (8) | 0.0073 (8) | −0.0018 (8) |
C5 | 0.0248 (10) | 0.0258 (10) | 0.0302 (10) | −0.0003 (8) | 0.0090 (8) | 0.0004 (8) |
C6 | 0.0243 (9) | 0.0213 (10) | 0.0297 (10) | −0.0038 (8) | 0.0078 (8) | 0.0001 (8) |
C7 | 0.0197 (9) | 0.0197 (9) | 0.0226 (9) | 0.0002 (7) | 0.0015 (7) | 0.0009 (7) |
C8 | 0.0194 (9) | 0.0246 (10) | 0.0218 (9) | −0.0032 (8) | 0.0020 (7) | −0.0011 (8) |
C9 | 0.0247 (10) | 0.0270 (11) | 0.0362 (11) | 0.0009 (8) | 0.0040 (8) | −0.0007 (9) |
C10 | 0.0246 (10) | 0.0425 (13) | 0.0365 (11) | 0.0058 (9) | 0.0086 (9) | −0.0034 (10) |
C11 | 0.0244 (10) | 0.0476 (14) | 0.0295 (10) | −0.0075 (9) | 0.0116 (8) | −0.0016 (10) |
C12 | 0.0337 (11) | 0.0290 (11) | 0.0331 (11) | −0.0092 (9) | 0.0131 (9) | 0.0009 (9) |
Ni1 | 0.01766 (17) | 0.01400 (17) | 0.02659 (18) | −0.00261 (13) | 0.00479 (13) | −0.00057 (13) |
N1 | 0.0205 (8) | 0.0182 (8) | 0.0264 (8) | −0.0019 (6) | 0.0039 (6) | 0.0009 (6) |
N2 | 0.0186 (7) | 0.0179 (8) | 0.0267 (8) | −0.0013 (6) | 0.0048 (6) | 0.0000 (6) |
N3 | 0.0193 (8) | 0.0208 (8) | 0.0282 (8) | −0.0032 (6) | 0.0056 (6) | 0.0012 (7) |
N4 | 0.0267 (8) | 0.0233 (9) | 0.0299 (8) | −0.0047 (7) | 0.0099 (7) | −0.0014 (7) |
O1 | 0.0270 (7) | 0.0276 (8) | 0.0337 (8) | −0.0075 (6) | −0.0030 (6) | 0.0064 (6) |
S1 | 0.0188 (2) | 0.0158 (2) | 0.0299 (2) | −0.00252 (17) | 0.00479 (18) | 0.00033 (18) |
B1—F3 | 1.377 (3) | C7—S1 | 1.7517 (19) |
B1—F1 | 1.385 (3) | C8—N4 | 1.346 (3) |
B1—F4 | 1.404 (3) | C8—C9 | 1.390 (3) |
B1—F2 | 1.426 (2) | C9—C10 | 1.393 (3) |
C1—N2 | 1.322 (2) | C9—H9 | 0.9500 |
C1—C2i | 1.482 (2) | C10—C11 | 1.382 (3) |
C1—S1 | 1.7137 (18) | C10—H10 | 0.9500 |
C2—N1 | 1.357 (2) | C11—C12 | 1.391 (3) |
C2—C3 | 1.391 (3) | C11—H11 | 0.9500 |
C2—C1i | 1.482 (2) | C12—N4 | 1.345 (2) |
C3—C4 | 1.400 (3) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | Ni1—N2 | 2.0515 (15) |
C4—C5 | 1.384 (3) | Ni1—N2i | 2.0515 (15) |
C4—H4 | 0.9500 | Ni1—O1i | 2.1197 (14) |
C5—C6 | 1.400 (3) | Ni1—O1 | 2.1197 (14) |
C5—H5 | 0.9500 | Ni1—N1i | 2.1320 (16) |
C6—N1 | 1.352 (2) | Ni1—N1 | 2.1320 (16) |
C6—H6 | 0.9500 | N2—N3 | 1.381 (2) |
C7—N3 | 1.305 (2) | O1—H1W | 0.8564 |
C7—C8 | 1.478 (2) | O1—H2W | 0.8588 |
F3—B1—F1 | 108.98 (19) | C9—C10—H10 | 120.4 |
F3—B1—F4 | 108.44 (17) | C10—C11—C12 | 118.91 (18) |
F1—B1—F4 | 109.02 (18) | C10—C11—H11 | 120.5 |
F3—B1—F2 | 110.41 (17) | C12—C11—H11 | 120.5 |
F1—B1—F2 | 109.73 (17) | N4—C12—C11 | 123.3 (2) |
F4—B1—F2 | 110.22 (17) | N4—C12—H12 | 118.4 |
N2—C1—C2i | 119.49 (16) | C11—C12—H12 | 118.4 |
N2—C1—S1 | 113.30 (13) | N2—Ni1—N2i | 180.00 (9) |
C2i—C1—S1 | 127.21 (14) | N2—Ni1—O1i | 89.84 (6) |
N1—C2—C3 | 123.10 (16) | N2i—Ni1—O1i | 90.16 (6) |
N1—C2—C1i | 113.09 (16) | N2—Ni1—O1 | 90.16 (6) |
C3—C2—C1i | 123.81 (16) | N2i—Ni1—O1 | 89.84 (6) |
C2—C3—C4 | 118.89 (17) | O1i—Ni1—O1 | 180.00 (8) |
C2—C3—H3 | 120.6 | N2—Ni1—N1i | 79.22 (6) |
C4—C3—H3 | 120.6 | N2i—Ni1—N1i | 100.78 (6) |
C5—C4—C3 | 118.81 (18) | O1i—Ni1—N1i | 90.02 (6) |
C5—C4—H4 | 120.6 | O1—Ni1—N1i | 89.98 (6) |
C3—C4—H4 | 120.6 | N2—Ni1—N1 | 100.78 (6) |
C4—C5—C6 | 118.84 (17) | N2i—Ni1—N1 | 79.22 (6) |
C4—C5—H5 | 120.6 | O1i—Ni1—N1 | 89.98 (6) |
C6—C5—H5 | 120.6 | O1—Ni1—N1 | 90.02 (6) |
N1—C6—C5 | 123.20 (17) | N1i—Ni1—N1 | 180.0 |
N1—C6—H6 | 118.4 | C6—N1—C2 | 117.16 (16) |
C5—C6—H6 | 118.4 | C6—N1—Ni1 | 128.93 (13) |
N3—C7—C8 | 123.90 (17) | C2—N1—Ni1 | 113.82 (12) |
N3—C7—S1 | 114.75 (13) | C1—N2—N3 | 114.22 (15) |
C8—C7—S1 | 121.34 (14) | C1—N2—Ni1 | 114.28 (12) |
N4—C8—C9 | 124.27 (17) | N3—N2—Ni1 | 131.42 (12) |
N4—C8—C7 | 114.47 (16) | C7—N3—N2 | 110.73 (15) |
C9—C8—C7 | 121.26 (17) | C12—N4—C8 | 116.68 (17) |
C8—C9—C10 | 117.7 (2) | Ni1—O1—H1W | 123.4 |
C8—C9—H9 | 121.2 | Ni1—O1—H2W | 131.6 |
C10—C9—H9 | 121.2 | H1W—O1—H2W | 105.0 |
C11—C10—C9 | 119.2 (2) | C1—S1—C7 | 87.00 (9) |
C11—C10—H10 | 120.4 | ||
N1—C2—C3—C4 | −0.5 (3) | C3—C2—N1—Ni1 | 176.49 (14) |
C1i—C2—C3—C4 | 178.72 (17) | C1i—C2—N1—Ni1 | −2.83 (19) |
C2—C3—C4—C5 | 0.7 (3) | C2i—C1—N2—N3 | 179.76 (15) |
C3—C4—C5—C6 | −0.1 (3) | S1—C1—N2—N3 | −0.4 (2) |
C4—C5—C6—N1 | −0.7 (3) | C2i—C1—N2—Ni1 | 2.7 (2) |
N3—C7—C8—N4 | −160.31 (18) | S1—C1—N2—Ni1 | −177.46 (8) |
S1—C7—C8—N4 | 20.7 (2) | C8—C7—N3—N2 | −178.38 (16) |
N3—C7—C8—C9 | 20.3 (3) | S1—C7—N3—N2 | 0.6 (2) |
S1—C7—C8—C9 | −158.62 (15) | C1—N2—N3—C7 | −0.1 (2) |
N4—C8—C9—C10 | −0.3 (3) | Ni1—N2—N3—C7 | 176.26 (13) |
C7—C8—C9—C10 | 179.01 (18) | C11—C12—N4—C8 | 1.1 (3) |
C8—C9—C10—C11 | 0.3 (3) | C9—C8—N4—C12 | −0.4 (3) |
C9—C10—C11—C12 | 0.3 (3) | C7—C8—N4—C12 | −179.74 (17) |
C10—C11—C12—N4 | −1.0 (3) | N2—C1—S1—C7 | 0.63 (14) |
C5—C6—N1—C2 | 0.9 (3) | C2i—C1—S1—C7 | −179.58 (17) |
C5—C6—N1—Ni1 | −175.27 (14) | N3—C7—S1—C1 | −0.72 (15) |
C3—C2—N1—C6 | −0.2 (3) | C8—C7—S1—C1 | 178.31 (16) |
C1i—C2—N1—C6 | −179.56 (16) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···F1ii | 0.86 | 1.88 | 2.704 (2) | 160 |
O1—H2W···F4 | 0.86 | 1.94 | 2.7880 (19) | 171 |
Symmetry code: (ii) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H8N4S)2(H2O)2](BF4)2 |
Mr | 748.93 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 10.8164 (15), 11.0126 (13), 13.2333 (16) |
β (°) | 101.455 (6) |
V (Å3) | 1544.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.26 × 0.21 × 0.13 |
Data collection | |
Diffractometer | Bruker X8 APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.809, 0.898 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28021, 3120, 2729 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.622 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.073, 1.05 |
No. of reflections | 3120 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.40 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···F1i | 0.86 | 1.88 | 2.704 (2) | 160.0 |
O1—H2W···F4 | 0.86 | 1.94 | 2.7880 (19) | 170.9 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
References
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011). Acta Cryst. E67, m834–m835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903–1907. Web of Science CSD CrossRef CAS Google Scholar
Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403–408. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097. CSD CrossRef Web of Science Google Scholar
Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543–544. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
With ligands containing a five azide ring, 3 d transition metals such as NiII and CuII have a tendency to form mono or polynuclear species (Keij et al., 1984). The dinuclear species are of interest due to their potential magnetic coupling. The unpaired 3 d electrons being potentially coupled via the intermediary of the bridging azide ligands. The ligands related to the 1,2-diazoles with o-pyridine substitution at the 3 and 5 positions, such as 2,5-bis(2-pyridyl)-1,3,4 oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl) -1,3,4-thiadiazole can be used as a molecular architect with transition metals in association with anionic Ni-ligands. In the resulting di and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the monoclear (N`,N`)2 coordination mode are the most common and the most important ones (Scheme 1), the latter mode, the trans type is exclusively observed for featuring octahedral complexes.
The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1, 3,4-thiadiazole derivative with divalent Zn (tetrachloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al.,2004; Zheng et al. 2006; Bentiss et al., 2011). We report here the synthesis and the single-crystal structure of the new monomeric complexe formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with nickel tetrafluoroborate as counter ions.
The complexe shows an almost regular octahedral environment of the nickel cation in wich Ni2+ is located at a center of symmetry, and linked to two ligand and two water molecules as shown in Fig.1. As a matter of fact, the nickel coordination sphere is achieved by interaction with the nitrogen atom of a single pyridyl ring and with the near nitrogen of the azide group with Ni—N distances in the range of 2.052 (2)—2.132 (2) Å. Moreover, the water molecules are found in axial positions at distances and angles of Ni—O 2.120 (2) Å and all N—Ni—O angles being close to 90 °.
The dihedral angle between the thiadiazole and the pyridyl rings linked to the nickel cation is in the range of 4.16 (9)°. The mean plane of the two preceding cycles forms a dihedral angle with the (N4—C8—C9—C10—C11—C12) other pyridine ring of 18.63 (8)°. The counter ion, BF4- is involved in an infinite two-dimensional network of O—H···F hydrogen bonds parallel to the (-1 0 1) plane (Table 1, Fig.1).