metal-organic compounds
Homopiperazine-1,4-diium bis[hexaaquacobalt(II)] trisulfate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr
In the title compound, (C5H14N2)[Co(H2O)6]2(SO4)3, the cationic framework is built up of mixed organic–inorganic fragments, namely [Co(H2O)6]2+ and [C5H14N2]2+. The [Co(H2O)6]2+ cations form unconnected octahedra. Sulfate anions intercalated between cationic species connect them via N—H⋯O and O—H⋯O hydrogen bonds and electrostatic interactions.
Related literature
For sulfate chemistry with , 2004); Xing et al. (2003); Morimoto & Lingafelter (1970). For related structures, see: Hemissi et al. (2010); Rekik et al. (2009); Wilkinson & Harrison (2006); Pan et al. (2003).
see: Bataille & Louer (2002Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811027012/dn2704sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027012/dn2704Isup2.hkl
Single crystals of the title compound, (C5H14N2)(Co(H2O)6)2(SO4)3, were prepared by adding ethanolic solution (5 ml) of homopiperazine (5 mmol) dropwise to an aqueous solution of cobalt sulfate Co(SO4).7H2O (10 mmol, 10 ml). The obtained mixture was added to an aqueous solution of sulfuric acid (15 mmol, 20 ml). The clear solution were slowly stirred for 20 min and allowed to stand at room temperature (293 K) untill single pink crystals were formed.
The aqua H atoms were located in a difference map. H atoms bonded to C and N atoms were positioned geometrically were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The assymetric unit of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Connection of the different entities via H-bonds into supramolecular network. Hydrogen bonds are shown as dashed lines. |
(C5H14N2)[Co(H2O)6]2(SO4)3 | F(000) = 1504 |
Mr = 724.41 | Dx = 1.818 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 14.109 (2) Å | θ = 9–11° |
b = 11.730 (3) Å | µ = 0.83 mm−1 |
c = 16.696 (5) Å | T = 293 K |
β = 106.65 (2)° | Block, pink |
V = 2647.2 (11) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 4 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.044 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.0° |
Graphite monochromator | h = −23→22 |
Non–profiled ω scans | k = −2→19 |
16044 measured reflections | l = −1→27 |
12932 independent reflections | 2 standard reflections every 120 min |
6008 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0669P)2] where P = (Fo2 + 2Fc2)/3 |
12932 reflections | (Δ/σ)max = 0.001 |
325 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −1.08 e Å−3 |
(C5H14N2)[Co(H2O)6]2(SO4)3 | V = 2647.2 (11) Å3 |
Mr = 724.41 | Z = 4 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
a = 14.109 (2) Å | µ = 0.83 mm−1 |
b = 11.730 (3) Å | T = 293 K |
c = 16.696 (5) Å | 0.30 × 0.25 × 0.20 mm |
β = 106.65 (2)° |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.044 |
16044 measured reflections | 2 standard reflections every 120 min |
12932 independent reflections | intensity decay: 5% |
6008 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.99 e Å−3 |
12932 reflections | Δρmin = −1.08 e Å−3 |
325 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6475 (3) | 0.7803 (3) | 0.1987 (3) | 0.0438 (9) | |
H1A | 0.6081 | 0.8003 | 0.2357 | 0.053* | |
H1B | 0.6124 | 0.8077 | 0.1434 | 0.053* | |
C2 | 0.6837 (3) | 0.5952 (4) | 0.2792 (3) | 0.0493 (10) | |
H2A | 0.6528 | 0.6333 | 0.3168 | 0.059* | |
H2B | 0.6590 | 0.5176 | 0.2719 | 0.059* | |
C3 | 0.6529 (3) | 0.6551 (4) | 0.1953 (3) | 0.0491 (10) | |
H3A | 0.6994 | 0.6348 | 0.1647 | 0.059* | |
H3B | 0.5885 | 0.6264 | 0.1639 | 0.059* | |
C4 | 0.8416 (3) | 0.7049 (4) | 0.3319 (3) | 0.0664 (14) | |
H4A | 0.8154 | 0.7480 | 0.3704 | 0.080* | |
H4B | 0.9113 | 0.6923 | 0.3591 | 0.080* | |
C5 | 0.8332 (3) | 0.7752 (4) | 0.2587 (4) | 0.0730 (16) | |
H5A | 0.8397 | 0.7259 | 0.2139 | 0.088* | |
H5B | 0.8889 | 0.8273 | 0.2715 | 0.088* | |
Co1 | 0.56846 (3) | 0.25194 (4) | 0.08643 (2) | 0.02460 (9) | |
Co2 | 0.94025 (3) | 0.24877 (4) | 0.40481 (2) | 0.02251 (9) | |
N1 | 0.7432 (2) | 0.8420 (3) | 0.2272 (2) | 0.0404 (7) | |
H1C | 0.7498 | 0.8842 | 0.1840 | 0.048* | |
H1D | 0.7393 | 0.8909 | 0.2677 | 0.048* | |
N2 | 0.7916 (2) | 0.5921 (3) | 0.31858 (16) | 0.0354 (6) | |
H2C | 0.8193 | 0.5495 | 0.2864 | 0.042* | |
H2D | 0.8034 | 0.5570 | 0.3684 | 0.042* | |
O1 | 0.52421 (17) | 0.0882 (2) | 0.10741 (15) | 0.0378 (6) | |
H11 | 0.4658 | 0.0739 | 0.0776 | 0.057* | |
H12 | 0.5326 | 0.0633 | 0.1566 | 0.057* | |
O2 | 0.62291 (18) | 0.4116 (2) | 0.06991 (15) | 0.0371 (6) | |
H21 | 0.6222 | 0.4355 | 0.0220 | 0.056* | |
H22 | 0.6811 | 0.4136 | 0.1031 | 0.056* | |
O3 | 0.71109 (16) | 0.1944 (2) | 0.14899 (15) | 0.0364 (6) | |
H31 | 0.7212 | 0.1270 | 0.1347 | 0.055* | |
H32 | 0.7584 | 0.2360 | 0.1434 | 0.055* | |
O4 | 0.5609 (2) | 0.3149 (2) | 0.20264 (15) | 0.0451 (7) | |
H41 | 0.5283 | 0.3739 | 0.2082 | 0.068* | |
H42 | 0.5721 | 0.2755 | 0.2473 | 0.068* | |
O5 | 0.57856 (19) | 0.1958 (2) | −0.03016 (15) | 0.0410 (6) | |
H51 | 0.5925 | 0.2372 | −0.0677 | 0.061* | |
H52 | 0.6125 | 0.1348 | −0.0284 | 0.061* | |
O6 | 0.42671 (17) | 0.3068 (2) | 0.02907 (17) | 0.0432 (6) | |
H61 | 0.4143 | 0.3709 | 0.0477 | 0.065* | |
H62 | 0.3749 | 0.2664 | 0.0213 | 0.065* | |
O7 | 0.79520 (16) | 0.3042 (2) | 0.33784 (14) | 0.0354 (5) | |
H71 | 0.7881 | 0.3225 | 0.2877 | 0.053* | |
H72 | 0.7495 | 0.2619 | 0.3443 | 0.053* | |
O8 | 0.9567 (2) | 0.1818 (2) | 0.29491 (14) | 0.0437 (7) | |
H81 | 0.9392 | 0.2135 | 0.2474 | 0.066* | |
H82 | 0.9692 | 0.1118 | 0.2894 | 0.066* | |
O9 | 0.89302 (17) | 0.0900 (2) | 0.43047 (15) | 0.0374 (6) | |
H91 | 0.8367 | 0.0716 | 0.3985 | 0.056* | |
H92 | 0.8957 | 0.0760 | 0.4810 | 0.056* | |
O10 | 1.08348 (15) | 0.19433 (19) | 0.46827 (14) | 0.0316 (5) | |
H101 | 1.1329 | 0.2347 | 0.4673 | 0.047* | |
H102 | 1.0911 | 0.1261 | 0.4559 | 0.047* | |
O11 | 0.92294 (18) | 0.3187 (2) | 0.51302 (14) | 0.0373 (6) | |
H111 | 0.8898 | 0.3802 | 0.5077 | 0.056* | |
H112 | 0.9133 | 0.2798 | 0.5528 | 0.056* | |
O12 | 0.98677 (16) | 0.41338 (19) | 0.38252 (13) | 0.0310 (5) | |
H121 | 1.0375 | 0.4311 | 0.4222 | 0.047* | |
H122 | 0.9990 | 0.4271 | 0.3365 | 0.047* | |
O13 | 0.98207 (19) | 0.4652 (2) | 0.22216 (15) | 0.0437 (7) | |
O14 | 0.8746 (2) | 0.4821 (2) | 0.08156 (14) | 0.0432 (6) | |
O15 | 0.80762 (19) | 0.4370 (3) | 0.19412 (16) | 0.0479 (7) | |
O16 | 0.9033 (2) | 0.2994 (2) | 0.14824 (14) | 0.0424 (6) | |
O17 | 0.6251 (2) | 0.17788 (19) | 0.33990 (15) | 0.0388 (6) | |
O18 | 0.72061 (19) | 0.0123 (3) | 0.33110 (19) | 0.0585 (9) | |
O19 | 0.6113 (2) | 0.0105 (2) | 0.41637 (15) | 0.0530 (8) | |
O20 | 0.54614 (17) | 0.0078 (2) | 0.26795 (14) | 0.0355 (5) | |
O21 | 0.83964 (16) | 0.9666 (2) | −0.00881 (14) | 0.0311 (5) | |
O22 | 0.74559 (16) | 0.8156 (2) | 0.02875 (18) | 0.0408 (6) | |
O23 | 0.66393 (17) | 0.9879 (2) | −0.03288 (16) | 0.0391 (6) | |
O24 | 0.77366 (19) | 0.9889 (2) | 0.10789 (14) | 0.0390 (6) | |
S1 | 0.89265 (6) | 0.42267 (6) | 0.16061 (4) | 0.02494 (15) | |
S2 | 0.75433 (5) | 0.94014 (6) | 0.02367 (5) | 0.02542 (16) | |
S3 | 0.62532 (6) | 0.05217 (7) | 0.33890 (5) | 0.02640 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0392 (19) | 0.043 (2) | 0.049 (2) | 0.0084 (17) | 0.0122 (17) | 0.0027 (18) |
C2 | 0.043 (2) | 0.055 (3) | 0.050 (2) | −0.0135 (19) | 0.0141 (18) | 0.014 (2) |
C3 | 0.045 (2) | 0.049 (2) | 0.045 (2) | −0.0027 (19) | 0.0006 (18) | −0.0013 (19) |
C4 | 0.064 (3) | 0.069 (3) | 0.043 (2) | −0.023 (3) | −0.022 (2) | 0.012 (2) |
C5 | 0.045 (2) | 0.069 (3) | 0.104 (4) | −0.020 (2) | 0.019 (3) | 0.011 (3) |
Co1 | 0.02776 (19) | 0.02164 (19) | 0.02410 (19) | 0.00090 (17) | 0.00694 (15) | 0.00093 (17) |
Co2 | 0.02656 (18) | 0.02121 (18) | 0.01983 (17) | −0.00148 (17) | 0.00676 (14) | 0.00051 (16) |
N1 | 0.0549 (19) | 0.0292 (15) | 0.0420 (17) | 0.0006 (14) | 0.0219 (15) | 0.0051 (13) |
N2 | 0.0460 (16) | 0.0365 (16) | 0.0223 (13) | 0.0025 (14) | 0.0077 (12) | 0.0077 (12) |
O1 | 0.0406 (13) | 0.0365 (13) | 0.0318 (12) | −0.0123 (11) | 0.0033 (10) | 0.0062 (11) |
O2 | 0.0455 (14) | 0.0309 (13) | 0.0322 (12) | −0.0101 (11) | 0.0066 (11) | 0.0041 (10) |
O3 | 0.0308 (12) | 0.0270 (12) | 0.0489 (15) | 0.0021 (10) | 0.0073 (11) | 0.0000 (11) |
O4 | 0.0683 (18) | 0.0411 (15) | 0.0299 (13) | 0.0241 (14) | 0.0203 (12) | 0.0061 (11) |
O5 | 0.0640 (17) | 0.0290 (13) | 0.0336 (13) | 0.0116 (12) | 0.0199 (12) | 0.0038 (11) |
O6 | 0.0328 (12) | 0.0296 (13) | 0.0599 (17) | 0.0037 (11) | 0.0015 (12) | −0.0117 (12) |
O7 | 0.0306 (11) | 0.0423 (14) | 0.0298 (12) | −0.0032 (11) | 0.0030 (9) | 0.0083 (11) |
O8 | 0.0777 (19) | 0.0295 (13) | 0.0240 (11) | 0.0162 (13) | 0.0147 (12) | 0.0012 (10) |
O9 | 0.0418 (13) | 0.0352 (13) | 0.0313 (12) | −0.0143 (11) | 0.0042 (10) | 0.0031 (11) |
O10 | 0.0279 (11) | 0.0249 (11) | 0.0390 (13) | −0.0002 (9) | 0.0050 (10) | −0.0015 (10) |
O11 | 0.0582 (16) | 0.0319 (13) | 0.0277 (12) | 0.0113 (12) | 0.0217 (11) | 0.0052 (10) |
O12 | 0.0341 (11) | 0.0331 (12) | 0.0240 (10) | −0.0109 (10) | 0.0054 (9) | 0.0014 (9) |
O13 | 0.0488 (15) | 0.0461 (16) | 0.0283 (12) | −0.0225 (13) | −0.0017 (11) | 0.0059 (11) |
O14 | 0.0696 (18) | 0.0322 (13) | 0.0225 (11) | −0.0079 (13) | 0.0047 (12) | 0.0063 (10) |
O15 | 0.0392 (14) | 0.066 (2) | 0.0419 (15) | 0.0050 (14) | 0.0169 (12) | −0.0046 (14) |
O16 | 0.0789 (19) | 0.0238 (12) | 0.0272 (12) | 0.0069 (13) | 0.0197 (12) | −0.0008 (10) |
O17 | 0.0590 (16) | 0.0233 (11) | 0.0326 (13) | −0.0089 (11) | 0.0106 (12) | 0.0022 (10) |
O18 | 0.0319 (13) | 0.071 (2) | 0.071 (2) | −0.0068 (14) | 0.0114 (13) | −0.0414 (17) |
O19 | 0.102 (2) | 0.0343 (14) | 0.0258 (12) | −0.0163 (15) | 0.0233 (14) | 0.0021 (11) |
O20 | 0.0375 (13) | 0.0345 (13) | 0.0289 (12) | −0.0097 (11) | 0.0007 (10) | −0.0023 (10) |
O21 | 0.0300 (11) | 0.0347 (13) | 0.0310 (11) | −0.0062 (10) | 0.0127 (9) | −0.0021 (10) |
O22 | 0.0342 (13) | 0.0215 (11) | 0.0671 (18) | −0.0031 (10) | 0.0150 (12) | 0.0015 (12) |
O23 | 0.0332 (12) | 0.0325 (13) | 0.0439 (15) | 0.0063 (11) | −0.0014 (11) | 0.0009 (11) |
O24 | 0.0532 (15) | 0.0383 (14) | 0.0278 (12) | 0.0034 (12) | 0.0150 (11) | −0.0033 (11) |
S1 | 0.0341 (4) | 0.0218 (3) | 0.0176 (3) | −0.0048 (3) | 0.0053 (3) | −0.0009 (3) |
S2 | 0.0250 (3) | 0.0205 (3) | 0.0309 (4) | 0.0007 (3) | 0.0083 (3) | −0.0009 (3) |
S3 | 0.0321 (4) | 0.0255 (4) | 0.0209 (3) | −0.0059 (3) | 0.0064 (3) | −0.0019 (3) |
C1—C3 | 1.472 (5) | O2—H21 | 0.8449 |
C1—N1 | 1.486 (5) | O2—H22 | 0.8494 |
C1—H1A | 0.9700 | O3—H31 | 0.8491 |
C1—H1B | 0.9700 | O3—H32 | 0.8530 |
C2—N2 | 1.476 (5) | O4—H41 | 0.8504 |
C2—C3 | 1.515 (5) | O4—H42 | 0.8533 |
C2—H2A | 0.9700 | O5—H51 | 0.8587 |
C2—H2B | 0.9700 | O5—H52 | 0.8573 |
C3—H3A | 0.9700 | O6—H61 | 0.8500 |
C3—H3B | 0.9700 | O6—H62 | 0.8494 |
C4—C5 | 1.450 (6) | O7—H71 | 0.8426 |
C4—N2 | 1.486 (5) | O7—H72 | 0.8447 |
C4—H4A | 0.9700 | O8—H81 | 0.8465 |
C4—H4B | 0.9700 | O8—H82 | 0.8513 |
C5—N1 | 1.457 (5) | O9—H91 | 0.8482 |
C5—H5A | 0.9700 | O9—H92 | 0.8494 |
C5—H5B | 0.9700 | O10—H101 | 0.8470 |
Co1—O6 | 2.058 (2) | O10—H102 | 0.8411 |
Co1—O2 | 2.072 (2) | O11—H111 | 0.8505 |
Co1—O1 | 2.080 (2) | O11—H112 | 0.8482 |
Co1—O3 | 2.096 (2) | O12—H121 | 0.8494 |
Co1—O5 | 2.098 (2) | O12—H122 | 0.8503 |
Co1—O4 | 2.107 (2) | O13—S1 | 1.467 (2) |
Co2—O11 | 2.061 (2) | O14—S1 | 1.449 (2) |
Co2—O9 | 2.064 (2) | O15—S1 | 1.472 (3) |
Co2—O8 | 2.069 (2) | O16—S1 | 1.474 (2) |
Co2—O10 | 2.094 (2) | O17—S3 | 1.475 (2) |
Co2—O12 | 2.107 (2) | O18—S3 | 1.464 (3) |
Co2—O7 | 2.133 (2) | O19—S3 | 1.448 (3) |
N1—H1C | 0.9000 | O20—S3 | 1.471 (2) |
N1—H1D | 0.9000 | O21—S2 | 1.488 (2) |
N2—H2C | 0.9000 | O22—S2 | 1.471 (2) |
N2—H2D | 0.9000 | O23—S2 | 1.463 (2) |
O1—H11 | 0.8479 | O24—S2 | 1.469 (2) |
O1—H12 | 0.8471 | ||
C3—C1—N1 | 116.5 (3) | C5—N1—H1D | 107.8 |
C3—C1—H1A | 108.2 | C1—N1—H1D | 107.8 |
N1—C1—H1A | 108.2 | H1C—N1—H1D | 107.1 |
C3—C1—H1B | 108.2 | C2—N2—C4 | 115.4 (3) |
N1—C1—H1B | 108.2 | C2—N2—H2C | 108.4 |
H1A—C1—H1B | 107.3 | C4—N2—H2C | 108.4 |
N2—C2—C3 | 114.1 (3) | C2—N2—H2D | 108.4 |
N2—C2—H2A | 108.7 | C4—N2—H2D | 108.4 |
C3—C2—H2A | 108.7 | H2C—N2—H2D | 107.5 |
N2—C2—H2B | 108.7 | Co1—O1—H11 | 111.8 |
C3—C2—H2B | 108.7 | Co1—O1—H12 | 121.0 |
H2A—C2—H2B | 107.6 | H11—O1—H12 | 110.1 |
C1—C3—C2 | 115.6 (4) | Co1—O2—H21 | 121.5 |
C1—C3—H3A | 108.4 | Co1—O2—H22 | 105.3 |
C2—C3—H3A | 108.4 | H21—O2—H22 | 110.8 |
C1—C3—H3B | 108.4 | Co1—O3—H31 | 112.0 |
C2—C3—H3B | 108.4 | Co1—O3—H32 | 115.5 |
H3A—C3—H3B | 107.5 | H31—O3—H32 | 107.6 |
C5—C4—N2 | 117.4 (4) | Co1—O4—H41 | 123.8 |
C5—C4—H4A | 108.0 | Co1—O4—H42 | 124.7 |
N2—C4—H4A | 108.0 | H41—O4—H42 | 108.5 |
C5—C4—H4B | 108.0 | Co1—O5—H51 | 126.2 |
N2—C4—H4B | 108.0 | Co1—O5—H52 | 114.6 |
H4A—C4—H4B | 107.2 | H51—O5—H52 | 104.7 |
C4—C5—N1 | 117.5 (4) | Co1—O6—H61 | 112.4 |
C4—C5—H5A | 107.9 | Co1—O6—H62 | 125.1 |
N1—C5—H5A | 107.9 | H61—O6—H62 | 107.0 |
C4—C5—H5B | 107.9 | Co2—O7—H71 | 115.0 |
N1—C5—H5B | 107.9 | Co2—O7—H72 | 114.0 |
H5A—C5—H5B | 107.2 | H71—O7—H72 | 113.5 |
O6—Co1—O2 | 90.18 (10) | Co2—O8—H81 | 126.0 |
O6—Co1—O1 | 93.94 (10) | Co2—O8—H82 | 122.8 |
O2—Co1—O1 | 175.87 (9) | H81—O8—H82 | 109.6 |
O6—Co1—O3 | 177.76 (10) | Co2—O9—H91 | 113.5 |
O2—Co1—O3 | 91.02 (9) | Co2—O9—H92 | 117.1 |
O1—Co1—O3 | 84.85 (9) | H91—O9—H92 | 110.1 |
O6—Co1—O5 | 88.96 (11) | Co2—O10—H101 | 120.0 |
O2—Co1—O5 | 91.94 (10) | Co2—O10—H102 | 109.8 |
O1—Co1—O5 | 88.27 (10) | H101—O10—H102 | 111.3 |
O3—Co1—O5 | 92.89 (10) | Co2—O11—H111 | 116.4 |
O6—Co1—O4 | 91.14 (10) | Co2—O11—H112 | 124.0 |
O2—Co1—O4 | 85.66 (10) | H111—O11—H112 | 109.4 |
O1—Co1—O4 | 94.12 (10) | Co2—O12—H121 | 108.8 |
O3—Co1—O4 | 87.06 (10) | Co2—O12—H122 | 119.2 |
O5—Co1—O4 | 177.59 (10) | H121—O12—H122 | 108.3 |
O11—Co2—O9 | 92.90 (10) | O14—S1—O13 | 111.44 (15) |
O11—Co2—O8 | 178.79 (10) | O14—S1—O15 | 110.01 (17) |
O9—Co2—O8 | 88.09 (10) | O13—S1—O15 | 109.02 (16) |
O11—Co2—O10 | 90.99 (10) | O14—S1—O16 | 110.02 (14) |
O9—Co2—O10 | 86.67 (9) | O13—S1—O16 | 109.24 (17) |
O8—Co2—O10 | 89.75 (10) | O15—S1—O16 | 106.99 (17) |
O11—Co2—O12 | 84.92 (9) | O23—S2—O24 | 110.93 (15) |
O9—Co2—O12 | 177.80 (9) | O23—S2—O22 | 110.19 (15) |
O8—Co2—O12 | 94.08 (10) | O24—S2—O22 | 109.09 (16) |
O10—Co2—O12 | 93.70 (9) | O23—S2—O21 | 109.37 (15) |
O11—Co2—O7 | 90.08 (10) | O24—S2—O21 | 108.66 (14) |
O9—Co2—O7 | 93.75 (9) | O22—S2—O21 | 108.55 (14) |
O8—Co2—O7 | 89.17 (10) | O19—S3—O18 | 109.6 (2) |
O10—Co2—O7 | 178.82 (9) | O19—S3—O20 | 109.45 (16) |
O12—Co2—O7 | 85.91 (9) | O18—S3—O20 | 108.66 (15) |
C5—N1—C1 | 118.1 (3) | O19—S3—O17 | 109.02 (15) |
C5—N1—H1C | 107.8 | O18—S3—O17 | 109.01 (17) |
C1—N1—H1C | 107.8 | O20—S3—O17 | 111.07 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O24 | 0.90 | 1.87 | 2.758 (4) | 171 |
N1—H1D···O18i | 0.90 | 1.84 | 2.723 (4) | 167 |
N2—H2C···O15 | 0.90 | 2.00 | 2.820 (4) | 151 |
N2—H2D···O21ii | 0.90 | 1.99 | 2.850 (4) | 161 |
O1—H11···O23iii | 0.85 | 1.91 | 2.738 (3) | 165 |
O1—H12···O20 | 0.85 | 1.93 | 2.774 (3) | 178 |
O2—H21···O19iv | 0.84 | 1.84 | 2.682 (4) | 176 |
O2—H22···O15 | 0.85 | 2.00 | 2.843 (4) | 169 |
O3—H31···O24v | 0.85 | 1.89 | 2.722 (3) | 167 |
O3—H32···O16 | 0.85 | 2.16 | 2.982 (4) | 163 |
O3—H32···O15 | 0.85 | 2.53 | 3.152 (4) | 130 |
O4—H41···O20vi | 0.85 | 1.99 | 2.840 (3) | 175 |
O4—H42···O17 | 0.85 | 1.90 | 2.733 (3) | 166 |
O5—H51···O17iv | 0.86 | 2.00 | 2.855 (3) | 175 |
O5—H52···O23v | 0.86 | 1.88 | 2.726 (3) | 169 |
O6—H61···O19vi | 0.85 | 1.82 | 2.665 (4) | 178 |
O6—H62···O22iii | 0.85 | 1.92 | 2.749 (3) | 164 |
O7—H71···O15 | 0.84 | 2.14 | 2.908 (4) | 152 |
O7—H72···O17 | 0.84 | 2.00 | 2.829 (3) | 169 |
O8—H81···O16 | 0.85 | 1.88 | 2.722 (3) | 174 |
O8—H82···O13vii | 0.85 | 1.88 | 2.725 (3) | 171 |
O9—H91···O18 | 0.85 | 1.84 | 2.681 (3) | 173 |
O9—H92···O14viii | 0.85 | 1.91 | 2.742 (4) | 165 |
O10—H101···O22vii | 0.85 | 1.94 | 2.788 (3) | 174 |
O10—H102···O14vii | 0.84 | 1.91 | 2.742 (3) | 170 |
O11—H111···O21ii | 0.85 | 1.92 | 2.759 (3) | 168 |
O11—H112···O16viii | 0.85 | 1.88 | 2.729 (3) | 174 |
O12—H121···O21vii | 0.85 | 1.96 | 2.806 (3) | 176 |
O12—H122···O13 | 0.85 | 1.91 | 2.728 (3) | 162 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z; (iv) x, −y+1/2, z−1/2; (v) x, y−1, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+2, y−1/2, −z+1/2; (viii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H14N2)[Co(H2O)6]2(SO4)3 |
Mr | 724.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 14.109 (2), 11.730 (3), 16.696 (5) |
β (°) | 106.65 (2) |
V (Å3) | 2647.2 (11) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16044, 12932, 6008 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.163, 0.98 |
No. of reflections | 12932 |
No. of parameters | 325 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.99, −1.08 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O24 | 0.90 | 1.87 | 2.758 (4) | 170.6 |
N1—H1D···O18i | 0.90 | 1.84 | 2.723 (4) | 167.3 |
N2—H2C···O15 | 0.90 | 2.00 | 2.820 (4) | 150.7 |
N2—H2D···O21ii | 0.90 | 1.99 | 2.850 (4) | 160.5 |
O1—H11···O23iii | 0.85 | 1.91 | 2.738 (3) | 164.8 |
O1—H12···O20 | 0.85 | 1.93 | 2.774 (3) | 177.7 |
O2—H21···O19iv | 0.84 | 1.84 | 2.682 (4) | 176.0 |
O2—H22···O15 | 0.85 | 2.00 | 2.843 (4) | 169.4 |
O3—H31···O24v | 0.85 | 1.89 | 2.722 (3) | 167.0 |
O3—H32···O16 | 0.85 | 2.16 | 2.982 (4) | 163.0 |
O3—H32···O15 | 0.85 | 2.53 | 3.152 (4) | 130.1 |
O4—H41···O20vi | 0.85 | 1.99 | 2.840 (3) | 174.7 |
O4—H42···O17 | 0.85 | 1.90 | 2.733 (3) | 166.2 |
O5—H51···O17iv | 0.86 | 2.00 | 2.855 (3) | 175.4 |
O5—H52···O23v | 0.86 | 1.88 | 2.726 (3) | 169.3 |
O6—H61···O19vi | 0.85 | 1.82 | 2.665 (4) | 177.6 |
O6—H62···O22iii | 0.85 | 1.92 | 2.749 (3) | 163.7 |
O7—H71···O15 | 0.84 | 2.14 | 2.908 (4) | 152.0 |
O7—H72···O17 | 0.84 | 2.00 | 2.829 (3) | 168.7 |
O8—H81···O16 | 0.85 | 1.88 | 2.722 (3) | 173.6 |
O8—H82···O13vii | 0.85 | 1.88 | 2.725 (3) | 170.6 |
O9—H91···O18 | 0.85 | 1.84 | 2.681 (3) | 172.5 |
O9—H92···O14viii | 0.85 | 1.91 | 2.742 (4) | 165.2 |
O10—H101···O22vii | 0.85 | 1.94 | 2.788 (3) | 174.4 |
O10—H102···O14vii | 0.84 | 1.91 | 2.742 (3) | 169.7 |
O11—H111···O21ii | 0.85 | 1.92 | 2.759 (3) | 167.7 |
O11—H112···O16viii | 0.85 | 1.88 | 2.729 (3) | 174.2 |
O12—H121···O21vii | 0.85 | 1.96 | 2.806 (3) | 175.7 |
O12—H122···O13 | 0.85 | 1.91 | 2.728 (3) | 161.7 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z; (iv) x, −y+1/2, z−1/2; (v) x, y−1, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+2, y−1/2, −z+1/2; (viii) x, −y+1/2, z+1/2. |
References
Bataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487–3493. Web of Science CSD CrossRef CAS Google Scholar
Bataille, T. & Louer, D. (2004). J. Solid State Chem. 177, 1235–1243. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2712. Web of Science CSD CrossRef IUCr Journals Google Scholar
Morimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335–341. CSD CrossRef IUCr Journals Web of Science Google Scholar
Pan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286–m288. CSD CrossRef CAS IUCr Journals Google Scholar
Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2009). Solid State Sci. 11, 614–621. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, H. S. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1397–m1399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940–943. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The sulfate chemistry has regained interest for a few years, mainly with the idea of using amines as templates in hydrothermal syntheses, and also because of the tetrahedral shape of using amines as templates in hydrothermal syntheses SO42- that promises to extend the zeotype materials to sulfate compounds (Bataille & Louer, 2002). Many structures have been obtained, with one-dimensional (Bataille & Louer, 2004), two-dimensional (Xing et al., 2003)and three-dimensional (Morimoto & Lingafelter, 1970)architectures, consisting of inorganic frameworks built up from strong metal–oxygen bonds. By cons, supramolecular networks of hexaaquametal sulfates including amine groups have been much less investigated. While the crystal engineering of supramolecular compounds is known to favour electric, magnetic and optical properties, supramolecular compounds containing sulfate are still relatively few. We report herein a novel cobalt sulfate template by homopiperazine, (C5H14N2) (Co(H2O)6)2 (SO4)3 (I).
The crystal structure of (C5H14N2)(Co(H2O)6)2(SO4)3 has an asymmetric unit consisting of two cobalt cations octahedrally coordinate by six water molecules, [Co(H2O)6]2+, three isolated sulfate anions, SO42-, and one diprotonated homopiperazine cation, C5H14N22+ (Fig.1). These components are linked together by hydrogen bonds to form a three-dimensional supramolecular network (Fig.2).
In this compound, the cobalt atoms occupy general positions and are at the centre of slightly distored octahedron formed by six water molecules. Within these octahedra, the Co—Ow distances range from 2.057 (3) to 2.106 (3) and from 2.061 (2) to 2.135 (3) Å, for Co2+(1) and Co2+(2), respectively. The values of Ow—Co—Ow angles are between 84.67 (11) and 177.76 (11)° in the Co2+(1) octahedron and between 84.93 (11) and 178.98 (12)° in the Co2+(2) octahedron. These geometrical characteristics agree with those described in the literature for cobalt octahedron formed by six water molecules too (Pan et al., 2003; Rekik et al., 2009). The Co(H2O)6 octahedra are separated from each other with the shortest cobalt–cobalt distance being 6.308 Å. In this structure each Co2+ octahedron is surrounded by six sulfate anions, connected via hydrogen bonds in a bidentate fashion. Only one homopiperazinium cation exists in the asymmetric unit and adopts a chair conformation as evidenced by the mean deviation (± 0.027) from the least square plane. A similar conformation for the same organic molecule was observed in (C5H14N2)(H2AsO4)2 (Wilkinson & Harrison, 2006).
There are three independent SO42- anions in this structure. The geometrical characteristics of these anions are comparable and are not very distinct from these observed in other compounds containing the same group (Hemissi et al., 2010). These sulfate anions compensate the positive charges of the bis-hexaaquacobalt (II) and ensure the cohesion of the packing. . Indeed, all oxygen atoms of the SO4 groups participate as acceptor in hydrogen bonds accepting hydrogen atoms of the organic moiety and the complex Co(H2O)6 2+. This kind of bonds participates with other interactions (namly electrostatic and Van Der Waals) to form a stable three-dimensional network.