metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Homopiperazine-1,4-diium bis­­[hexa­aqua­cobalt(II)] tris­­ulfate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 30 June 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound, (C5H14N2)[Co(H2O)6]2(SO4)3, the cationic framework is built up of mixed organic–inorganic fragments, namely [Co(H2O)6]2+ and [C5H14N2]2+. The [Co(H2O)6]2+ cations form unconnected octa­hedra. Sulfate anions inter­calated between cationic species connect them via N—H⋯O and O—H⋯O hydrogen bonds and electrostatic inter­actions.

Related literature

For sulfate chemistry with amines, see: Bataille & Louer (2002[Bataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487-3493.], 2004[Bataille, T. & Louer, D. (2004). J. Solid State Chem. 177, 1235-1243.]); Xing et al. (2003[Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940-943.]); Morimoto & Lingafelter (1970[Morimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335-341.]). For related structures, see: Hemissi et al. (2010[Hemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2712.]); Rekik et al. (2009[Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2009). Solid State Sci. 11, 614-621.]); Wilkinson & Harrison (2006[Wilkinson, H. S. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1397-m1399.]); Pan et al. (2003[Pan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286-m288.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[Co(H2O)6]2(SO4)3

  • Mr = 724.41

  • Monoclinic, P 21 /c

  • a = 14.109 (2) Å

  • b = 11.730 (3) Å

  • c = 16.696 (5) Å

  • β = 106.65 (2)°

  • V = 2647.2 (11) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 16044 measured reflections

  • 12932 independent reflections

  • 6008 reflections with I > 2σ(I)

  • Rint = 0.044

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.163

  • S = 0.98

  • 12932 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O24 0.90 1.87 2.758 (4) 171
N1—H1D⋯O18i 0.90 1.84 2.723 (4) 167
N2—H2C⋯O15 0.90 2.00 2.820 (4) 151
N2—H2D⋯O21ii 0.90 1.99 2.850 (4) 161
O1—H11⋯O23iii 0.85 1.91 2.738 (3) 165
O1—H12⋯O20 0.85 1.93 2.774 (3) 178
O2—H21⋯O19iv 0.84 1.84 2.682 (4) 176
O2—H22⋯O15 0.85 2.00 2.843 (4) 169
O3—H31⋯O24v 0.85 1.89 2.722 (3) 167
O3—H32⋯O16 0.85 2.16 2.982 (4) 163
O3—H32⋯O15 0.85 2.53 3.152 (4) 130
O4—H41⋯O20vi 0.85 1.99 2.840 (3) 175
O4—H42⋯O17 0.85 1.90 2.733 (3) 166
O5—H51⋯O17iv 0.86 2.00 2.855 (3) 175
O5—H52⋯O23v 0.86 1.88 2.726 (3) 169
O6—H61⋯O19vi 0.85 1.82 2.665 (4) 178
O6—H62⋯O22iii 0.85 1.92 2.749 (3) 164
O7—H71⋯O15 0.84 2.14 2.908 (4) 152
O7—H72⋯O17 0.84 2.00 2.829 (3) 169
O8—H81⋯O16 0.85 1.88 2.722 (3) 174
O8—H82⋯O13vii 0.85 1.88 2.725 (3) 171
O9—H91⋯O18 0.85 1.84 2.681 (3) 173
O9—H92⋯O14viii 0.85 1.91 2.742 (4) 165
O10—H101⋯O22vii 0.85 1.94 2.788 (3) 174
O10—H102⋯O14vii 0.84 1.91 2.742 (3) 170
O11—H111⋯O21ii 0.85 1.92 2.759 (3) 168
O11—H112⋯O16viii 0.85 1.88 2.729 (3) 174
O12—H121⋯O21vii 0.85 1.96 2.806 (3) 176
O12—H122⋯O13 0.85 1.91 2.728 (3) 162
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The sulfate chemistry has regained interest for a few years, mainly with the idea of using amines as templates in hydrothermal syntheses, and also because of the tetrahedral shape of using amines as templates in hydrothermal syntheses SO42- that promises to extend the zeotype materials to sulfate compounds (Bataille & Louer, 2002). Many structures have been obtained, with one-dimensional (Bataille & Louer, 2004), two-dimensional (Xing et al., 2003)and three-dimensional (Morimoto & Lingafelter, 1970)architectures, consisting of inorganic frameworks built up from strong metal–oxygen bonds. By cons, supramolecular networks of hexaaquametal sulfates including amine groups have been much less investigated. While the crystal engineering of supramolecular compounds is known to favour electric, magnetic and optical properties, supramolecular compounds containing sulfate are still relatively few. We report herein a novel cobalt sulfate template by homopiperazine, (C5H14N2) (Co(H2O)6)2 (SO4)3 (I).

The crystal structure of (C5H14N2)(Co(H2O)6)2(SO4)3 has an asymmetric unit consisting of two cobalt cations octahedrally coordinate by six water molecules, [Co(H2O)6]2+, three isolated sulfate anions, SO42-, and one diprotonated homopiperazine cation, C5H14N22+ (Fig.1). These components are linked together by hydrogen bonds to form a three-dimensional supramolecular network (Fig.2).

In this compound, the cobalt atoms occupy general positions and are at the centre of slightly distored octahedron formed by six water molecules. Within these octahedra, the Co—Ow distances range from 2.057 (3) to 2.106 (3) and from 2.061 (2) to 2.135 (3) Å, for Co2+(1) and Co2+(2), respectively. The values of Ow—Co—Ow angles are between 84.67 (11) and 177.76 (11)° in the Co2+(1) octahedron and between 84.93 (11) and 178.98 (12)° in the Co2+(2) octahedron. These geometrical characteristics agree with those described in the literature for cobalt octahedron formed by six water molecules too (Pan et al., 2003; Rekik et al., 2009). The Co(H2O)6 octahedra are separated from each other with the shortest cobalt–cobalt distance being 6.308 Å. In this structure each Co2+ octahedron is surrounded by six sulfate anions, connected via hydrogen bonds in a bidentate fashion. Only one homopiperazinium cation exists in the asymmetric unit and adopts a chair conformation as evidenced by the mean deviation (± 0.027) from the least square plane. A similar conformation for the same organic molecule was observed in (C5H14N2)(H2AsO4)2 (Wilkinson & Harrison, 2006).

There are three independent SO42- anions in this structure. The geometrical characteristics of these anions are comparable and are not very distinct from these observed in other compounds containing the same group (Hemissi et al., 2010). These sulfate anions compensate the positive charges of the bis-hexaaquacobalt (II) and ensure the cohesion of the packing. . Indeed, all oxygen atoms of the SO4 groups participate as acceptor in hydrogen bonds accepting hydrogen atoms of the organic moiety and the complex Co(H2O)6 2+. This kind of bonds participates with other interactions (namly electrostatic and Van Der Waals) to form a stable three-dimensional network.

Related literature top

For sulfate chemistry with amines, see: Bataille & Louer (2002, 2004); Xing et al. (2003);Morimoto & Lingafelter, 1970. For related structures, see: Hemissi et al. (2010); Rekik et al. (2009); Wilkinson & Harrison (2006); Pan et al. (2003).

Experimental top

Single crystals of the title compound, (C5H14N2)(Co(H2O)6)2(SO4)3, were prepared by adding ethanolic solution (5 ml) of homopiperazine (5 mmol) dropwise to an aqueous solution of cobalt sulfate Co(SO4).7H2O (10 mmol, 10 ml). The obtained mixture was added to an aqueous solution of sulfuric acid (15 mmol, 20 ml). The clear solution were slowly stirred for 20 min and allowed to stand at room temperature (293 K) untill single pink crystals were formed.

Refinement top

The aqua H atoms were located in a difference map. H atoms bonded to C and N atoms were positioned geometrically were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The assymetric unit of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Connection of the different entities via H-bonds into supramolecular network. Hydrogen bonds are shown as dashed lines.
Homopiperazine-1,4-diium bis[hexaaquacobalt(II)] trisulfate top
Crystal data top
(C5H14N2)[Co(H2O)6]2(SO4)3F(000) = 1504
Mr = 724.41Dx = 1.818 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.109 (2) Åθ = 9–11°
b = 11.730 (3) ŵ = 0.83 mm1
c = 16.696 (5) ÅT = 293 K
β = 106.65 (2)°Block, pink
V = 2647.2 (11) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 2322
Non–profiled ω scansk = 219
16044 measured reflectionsl = 127
12932 independent reflections2 standard reflections every 120 min
6008 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0669P)2]
where P = (Fo2 + 2Fc2)/3
12932 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
(C5H14N2)[Co(H2O)6]2(SO4)3V = 2647.2 (11) Å3
Mr = 724.41Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 14.109 (2) ŵ = 0.83 mm1
b = 11.730 (3) ÅT = 293 K
c = 16.696 (5) Å0.30 × 0.25 × 0.20 mm
β = 106.65 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.044
16044 measured reflections2 standard reflections every 120 min
12932 independent reflections intensity decay: 5%
6008 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 0.98Δρmax = 0.99 e Å3
12932 reflectionsΔρmin = 1.08 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6475 (3)0.7803 (3)0.1987 (3)0.0438 (9)
H1A0.60810.80030.23570.053*
H1B0.61240.80770.14340.053*
C20.6837 (3)0.5952 (4)0.2792 (3)0.0493 (10)
H2A0.65280.63330.31680.059*
H2B0.65900.51760.27190.059*
C30.6529 (3)0.6551 (4)0.1953 (3)0.0491 (10)
H3A0.69940.63480.16470.059*
H3B0.58850.62640.16390.059*
C40.8416 (3)0.7049 (4)0.3319 (3)0.0664 (14)
H4A0.81540.74800.37040.080*
H4B0.91130.69230.35910.080*
C50.8332 (3)0.7752 (4)0.2587 (4)0.0730 (16)
H5A0.83970.72590.21390.088*
H5B0.88890.82730.27150.088*
Co10.56846 (3)0.25194 (4)0.08643 (2)0.02460 (9)
Co20.94025 (3)0.24877 (4)0.40481 (2)0.02251 (9)
N10.7432 (2)0.8420 (3)0.2272 (2)0.0404 (7)
H1C0.74980.88420.18400.048*
H1D0.73930.89090.26770.048*
N20.7916 (2)0.5921 (3)0.31858 (16)0.0354 (6)
H2C0.81930.54950.28640.042*
H2D0.80340.55700.36840.042*
O10.52421 (17)0.0882 (2)0.10741 (15)0.0378 (6)
H110.46580.07390.07760.057*
H120.53260.06330.15660.057*
O20.62291 (18)0.4116 (2)0.06991 (15)0.0371 (6)
H210.62220.43550.02200.056*
H220.68110.41360.10310.056*
O30.71109 (16)0.1944 (2)0.14899 (15)0.0364 (6)
H310.72120.12700.13470.055*
H320.75840.23600.14340.055*
O40.5609 (2)0.3149 (2)0.20264 (15)0.0451 (7)
H410.52830.37390.20820.068*
H420.57210.27550.24730.068*
O50.57856 (19)0.1958 (2)0.03016 (15)0.0410 (6)
H510.59250.23720.06770.061*
H520.61250.13480.02840.061*
O60.42671 (17)0.3068 (2)0.02907 (17)0.0432 (6)
H610.41430.37090.04770.065*
H620.37490.26640.02130.065*
O70.79520 (16)0.3042 (2)0.33784 (14)0.0354 (5)
H710.78810.32250.28770.053*
H720.74950.26190.34430.053*
O80.9567 (2)0.1818 (2)0.29491 (14)0.0437 (7)
H810.93920.21350.24740.066*
H820.96920.11180.28940.066*
O90.89302 (17)0.0900 (2)0.43047 (15)0.0374 (6)
H910.83670.07160.39850.056*
H920.89570.07600.48100.056*
O101.08348 (15)0.19433 (19)0.46827 (14)0.0316 (5)
H1011.13290.23470.46730.047*
H1021.09110.12610.45590.047*
O110.92294 (18)0.3187 (2)0.51302 (14)0.0373 (6)
H1110.88980.38020.50770.056*
H1120.91330.27980.55280.056*
O120.98677 (16)0.41338 (19)0.38252 (13)0.0310 (5)
H1211.03750.43110.42220.047*
H1220.99900.42710.33650.047*
O130.98207 (19)0.4652 (2)0.22216 (15)0.0437 (7)
O140.8746 (2)0.4821 (2)0.08156 (14)0.0432 (6)
O150.80762 (19)0.4370 (3)0.19412 (16)0.0479 (7)
O160.9033 (2)0.2994 (2)0.14824 (14)0.0424 (6)
O170.6251 (2)0.17788 (19)0.33990 (15)0.0388 (6)
O180.72061 (19)0.0123 (3)0.33110 (19)0.0585 (9)
O190.6113 (2)0.0105 (2)0.41637 (15)0.0530 (8)
O200.54614 (17)0.0078 (2)0.26795 (14)0.0355 (5)
O210.83964 (16)0.9666 (2)0.00881 (14)0.0311 (5)
O220.74559 (16)0.8156 (2)0.02875 (18)0.0408 (6)
O230.66393 (17)0.9879 (2)0.03288 (16)0.0391 (6)
O240.77366 (19)0.9889 (2)0.10789 (14)0.0390 (6)
S10.89265 (6)0.42267 (6)0.16061 (4)0.02494 (15)
S20.75433 (5)0.94014 (6)0.02367 (5)0.02542 (16)
S30.62532 (6)0.05217 (7)0.33890 (5)0.02640 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (19)0.043 (2)0.049 (2)0.0084 (17)0.0122 (17)0.0027 (18)
C20.043 (2)0.055 (3)0.050 (2)0.0135 (19)0.0141 (18)0.014 (2)
C30.045 (2)0.049 (2)0.045 (2)0.0027 (19)0.0006 (18)0.0013 (19)
C40.064 (3)0.069 (3)0.043 (2)0.023 (3)0.022 (2)0.012 (2)
C50.045 (2)0.069 (3)0.104 (4)0.020 (2)0.019 (3)0.011 (3)
Co10.02776 (19)0.02164 (19)0.02410 (19)0.00090 (17)0.00694 (15)0.00093 (17)
Co20.02656 (18)0.02121 (18)0.01983 (17)0.00148 (17)0.00676 (14)0.00051 (16)
N10.0549 (19)0.0292 (15)0.0420 (17)0.0006 (14)0.0219 (15)0.0051 (13)
N20.0460 (16)0.0365 (16)0.0223 (13)0.0025 (14)0.0077 (12)0.0077 (12)
O10.0406 (13)0.0365 (13)0.0318 (12)0.0123 (11)0.0033 (10)0.0062 (11)
O20.0455 (14)0.0309 (13)0.0322 (12)0.0101 (11)0.0066 (11)0.0041 (10)
O30.0308 (12)0.0270 (12)0.0489 (15)0.0021 (10)0.0073 (11)0.0000 (11)
O40.0683 (18)0.0411 (15)0.0299 (13)0.0241 (14)0.0203 (12)0.0061 (11)
O50.0640 (17)0.0290 (13)0.0336 (13)0.0116 (12)0.0199 (12)0.0038 (11)
O60.0328 (12)0.0296 (13)0.0599 (17)0.0037 (11)0.0015 (12)0.0117 (12)
O70.0306 (11)0.0423 (14)0.0298 (12)0.0032 (11)0.0030 (9)0.0083 (11)
O80.0777 (19)0.0295 (13)0.0240 (11)0.0162 (13)0.0147 (12)0.0012 (10)
O90.0418 (13)0.0352 (13)0.0313 (12)0.0143 (11)0.0042 (10)0.0031 (11)
O100.0279 (11)0.0249 (11)0.0390 (13)0.0002 (9)0.0050 (10)0.0015 (10)
O110.0582 (16)0.0319 (13)0.0277 (12)0.0113 (12)0.0217 (11)0.0052 (10)
O120.0341 (11)0.0331 (12)0.0240 (10)0.0109 (10)0.0054 (9)0.0014 (9)
O130.0488 (15)0.0461 (16)0.0283 (12)0.0225 (13)0.0017 (11)0.0059 (11)
O140.0696 (18)0.0322 (13)0.0225 (11)0.0079 (13)0.0047 (12)0.0063 (10)
O150.0392 (14)0.066 (2)0.0419 (15)0.0050 (14)0.0169 (12)0.0046 (14)
O160.0789 (19)0.0238 (12)0.0272 (12)0.0069 (13)0.0197 (12)0.0008 (10)
O170.0590 (16)0.0233 (11)0.0326 (13)0.0089 (11)0.0106 (12)0.0022 (10)
O180.0319 (13)0.071 (2)0.071 (2)0.0068 (14)0.0114 (13)0.0414 (17)
O190.102 (2)0.0343 (14)0.0258 (12)0.0163 (15)0.0233 (14)0.0021 (11)
O200.0375 (13)0.0345 (13)0.0289 (12)0.0097 (11)0.0007 (10)0.0023 (10)
O210.0300 (11)0.0347 (13)0.0310 (11)0.0062 (10)0.0127 (9)0.0021 (10)
O220.0342 (13)0.0215 (11)0.0671 (18)0.0031 (10)0.0150 (12)0.0015 (12)
O230.0332 (12)0.0325 (13)0.0439 (15)0.0063 (11)0.0014 (11)0.0009 (11)
O240.0532 (15)0.0383 (14)0.0278 (12)0.0034 (12)0.0150 (11)0.0033 (11)
S10.0341 (4)0.0218 (3)0.0176 (3)0.0048 (3)0.0053 (3)0.0009 (3)
S20.0250 (3)0.0205 (3)0.0309 (4)0.0007 (3)0.0083 (3)0.0009 (3)
S30.0321 (4)0.0255 (4)0.0209 (3)0.0059 (3)0.0064 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—C31.472 (5)O2—H210.8449
C1—N11.486 (5)O2—H220.8494
C1—H1A0.9700O3—H310.8491
C1—H1B0.9700O3—H320.8530
C2—N21.476 (5)O4—H410.8504
C2—C31.515 (5)O4—H420.8533
C2—H2A0.9700O5—H510.8587
C2—H2B0.9700O5—H520.8573
C3—H3A0.9700O6—H610.8500
C3—H3B0.9700O6—H620.8494
C4—C51.450 (6)O7—H710.8426
C4—N21.486 (5)O7—H720.8447
C4—H4A0.9700O8—H810.8465
C4—H4B0.9700O8—H820.8513
C5—N11.457 (5)O9—H910.8482
C5—H5A0.9700O9—H920.8494
C5—H5B0.9700O10—H1010.8470
Co1—O62.058 (2)O10—H1020.8411
Co1—O22.072 (2)O11—H1110.8505
Co1—O12.080 (2)O11—H1120.8482
Co1—O32.096 (2)O12—H1210.8494
Co1—O52.098 (2)O12—H1220.8503
Co1—O42.107 (2)O13—S11.467 (2)
Co2—O112.061 (2)O14—S11.449 (2)
Co2—O92.064 (2)O15—S11.472 (3)
Co2—O82.069 (2)O16—S11.474 (2)
Co2—O102.094 (2)O17—S31.475 (2)
Co2—O122.107 (2)O18—S31.464 (3)
Co2—O72.133 (2)O19—S31.448 (3)
N1—H1C0.9000O20—S31.471 (2)
N1—H1D0.9000O21—S21.488 (2)
N2—H2C0.9000O22—S21.471 (2)
N2—H2D0.9000O23—S21.463 (2)
O1—H110.8479O24—S21.469 (2)
O1—H120.8471
C3—C1—N1116.5 (3)C5—N1—H1D107.8
C3—C1—H1A108.2C1—N1—H1D107.8
N1—C1—H1A108.2H1C—N1—H1D107.1
C3—C1—H1B108.2C2—N2—C4115.4 (3)
N1—C1—H1B108.2C2—N2—H2C108.4
H1A—C1—H1B107.3C4—N2—H2C108.4
N2—C2—C3114.1 (3)C2—N2—H2D108.4
N2—C2—H2A108.7C4—N2—H2D108.4
C3—C2—H2A108.7H2C—N2—H2D107.5
N2—C2—H2B108.7Co1—O1—H11111.8
C3—C2—H2B108.7Co1—O1—H12121.0
H2A—C2—H2B107.6H11—O1—H12110.1
C1—C3—C2115.6 (4)Co1—O2—H21121.5
C1—C3—H3A108.4Co1—O2—H22105.3
C2—C3—H3A108.4H21—O2—H22110.8
C1—C3—H3B108.4Co1—O3—H31112.0
C2—C3—H3B108.4Co1—O3—H32115.5
H3A—C3—H3B107.5H31—O3—H32107.6
C5—C4—N2117.4 (4)Co1—O4—H41123.8
C5—C4—H4A108.0Co1—O4—H42124.7
N2—C4—H4A108.0H41—O4—H42108.5
C5—C4—H4B108.0Co1—O5—H51126.2
N2—C4—H4B108.0Co1—O5—H52114.6
H4A—C4—H4B107.2H51—O5—H52104.7
C4—C5—N1117.5 (4)Co1—O6—H61112.4
C4—C5—H5A107.9Co1—O6—H62125.1
N1—C5—H5A107.9H61—O6—H62107.0
C4—C5—H5B107.9Co2—O7—H71115.0
N1—C5—H5B107.9Co2—O7—H72114.0
H5A—C5—H5B107.2H71—O7—H72113.5
O6—Co1—O290.18 (10)Co2—O8—H81126.0
O6—Co1—O193.94 (10)Co2—O8—H82122.8
O2—Co1—O1175.87 (9)H81—O8—H82109.6
O6—Co1—O3177.76 (10)Co2—O9—H91113.5
O2—Co1—O391.02 (9)Co2—O9—H92117.1
O1—Co1—O384.85 (9)H91—O9—H92110.1
O6—Co1—O588.96 (11)Co2—O10—H101120.0
O2—Co1—O591.94 (10)Co2—O10—H102109.8
O1—Co1—O588.27 (10)H101—O10—H102111.3
O3—Co1—O592.89 (10)Co2—O11—H111116.4
O6—Co1—O491.14 (10)Co2—O11—H112124.0
O2—Co1—O485.66 (10)H111—O11—H112109.4
O1—Co1—O494.12 (10)Co2—O12—H121108.8
O3—Co1—O487.06 (10)Co2—O12—H122119.2
O5—Co1—O4177.59 (10)H121—O12—H122108.3
O11—Co2—O992.90 (10)O14—S1—O13111.44 (15)
O11—Co2—O8178.79 (10)O14—S1—O15110.01 (17)
O9—Co2—O888.09 (10)O13—S1—O15109.02 (16)
O11—Co2—O1090.99 (10)O14—S1—O16110.02 (14)
O9—Co2—O1086.67 (9)O13—S1—O16109.24 (17)
O8—Co2—O1089.75 (10)O15—S1—O16106.99 (17)
O11—Co2—O1284.92 (9)O23—S2—O24110.93 (15)
O9—Co2—O12177.80 (9)O23—S2—O22110.19 (15)
O8—Co2—O1294.08 (10)O24—S2—O22109.09 (16)
O10—Co2—O1293.70 (9)O23—S2—O21109.37 (15)
O11—Co2—O790.08 (10)O24—S2—O21108.66 (14)
O9—Co2—O793.75 (9)O22—S2—O21108.55 (14)
O8—Co2—O789.17 (10)O19—S3—O18109.6 (2)
O10—Co2—O7178.82 (9)O19—S3—O20109.45 (16)
O12—Co2—O785.91 (9)O18—S3—O20108.66 (15)
C5—N1—C1118.1 (3)O19—S3—O17109.02 (15)
C5—N1—H1C107.8O18—S3—O17109.01 (17)
C1—N1—H1C107.8O20—S3—O17111.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O240.901.872.758 (4)171
N1—H1D···O18i0.901.842.723 (4)167
N2—H2C···O150.902.002.820 (4)151
N2—H2D···O21ii0.901.992.850 (4)161
O1—H11···O23iii0.851.912.738 (3)165
O1—H12···O200.851.932.774 (3)178
O2—H21···O19iv0.841.842.682 (4)176
O2—H22···O150.852.002.843 (4)169
O3—H31···O24v0.851.892.722 (3)167
O3—H32···O160.852.162.982 (4)163
O3—H32···O150.852.533.152 (4)130
O4—H41···O20vi0.851.992.840 (3)175
O4—H42···O170.851.902.733 (3)166
O5—H51···O17iv0.862.002.855 (3)175
O5—H52···O23v0.861.882.726 (3)169
O6—H61···O19vi0.851.822.665 (4)178
O6—H62···O22iii0.851.922.749 (3)164
O7—H71···O150.842.142.908 (4)152
O7—H72···O170.842.002.829 (3)169
O8—H81···O160.851.882.722 (3)174
O8—H82···O13vii0.851.882.725 (3)171
O9—H91···O180.851.842.681 (3)173
O9—H92···O14viii0.851.912.742 (4)165
O10—H101···O22vii0.851.942.788 (3)174
O10—H102···O14vii0.841.912.742 (3)170
O11—H111···O21ii0.851.922.759 (3)168
O11—H112···O16viii0.851.882.729 (3)174
O12—H121···O21vii0.851.962.806 (3)176
O12—H122···O130.851.912.728 (3)162
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z1/2; (v) x, y1, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y1/2, z+1/2; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[Co(H2O)6]2(SO4)3
Mr724.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.109 (2), 11.730 (3), 16.696 (5)
β (°) 106.65 (2)
V3)2647.2 (11)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.83
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16044, 12932, 6008
Rint0.044
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.163, 0.98
No. of reflections12932
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 1.08

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O240.901.872.758 (4)170.6
N1—H1D···O18i0.901.842.723 (4)167.3
N2—H2C···O150.902.002.820 (4)150.7
N2—H2D···O21ii0.901.992.850 (4)160.5
O1—H11···O23iii0.851.912.738 (3)164.8
O1—H12···O200.851.932.774 (3)177.7
O2—H21···O19iv0.841.842.682 (4)176.0
O2—H22···O150.852.002.843 (4)169.4
O3—H31···O24v0.851.892.722 (3)167.0
O3—H32···O160.852.162.982 (4)163.0
O3—H32···O150.852.533.152 (4)130.1
O4—H41···O20vi0.851.992.840 (3)174.7
O4—H42···O170.851.902.733 (3)166.2
O5—H51···O17iv0.862.002.855 (3)175.4
O5—H52···O23v0.861.882.726 (3)169.3
O6—H61···O19vi0.851.822.665 (4)177.6
O6—H62···O22iii0.851.922.749 (3)163.7
O7—H71···O150.842.142.908 (4)152.0
O7—H72···O170.842.002.829 (3)168.7
O8—H81···O160.851.882.722 (3)173.6
O8—H82···O13vii0.851.882.725 (3)170.6
O9—H91···O180.851.842.681 (3)172.5
O9—H92···O14viii0.851.912.742 (4)165.2
O10—H101···O22vii0.851.942.788 (3)174.4
O10—H102···O14vii0.841.912.742 (3)169.7
O11—H111···O21ii0.851.922.759 (3)167.7
O11—H112···O16viii0.851.882.729 (3)174.2
O12—H121···O21vii0.851.962.806 (3)175.7
O12—H122···O130.851.912.728 (3)161.7
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z1/2; (v) x, y1, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y1/2, z+1/2; (viii) x, y+1/2, z+1/2.
 

References

First citationBataille, T. & Louer, D. (2002). J. Mater. Chem. 12, 3487–3493.  Web of Science CSD CrossRef CAS Google Scholar
First citationBataille, T. & Louer, D. (2004). J. Solid State Chem. 177, 1235–1243.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorimoto, C. N. & Lingafelter, E. C. (1970). Acta Cryst. B26, 335–341.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationPan, J.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m286–m288.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRekik, W., Naili, H., Mhiri, T. & Bataille, T. (2009). Solid State Sci. 11, 614–621.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2006). Acta Cryst. E62, m1397–m1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940–943.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds