organic compounds
2-Chloromethyl-1-methyl-1,3-benzimidazole
aDepartment of Pharmacology, School of Pharmacy, Fourth Military Medical University, Chang-le West Road 17, Xi'an 710032, Shaanxi, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, People's Republic of China
*Correspondence e-mail: minggao@fmmu.edu.cn
The title compound, C9H9ClN2, was prepared from the reaction of N-methylbenzene-1,2-diamine and 2-chloroacetic acid in boiling 6 M hydrochloric acid. The benzimidazole unit is approximately planar, the largest deviation from the mean plane being 0.008 (1) Å. The Cl atom is displaced by 1.667 (2) Å from this plane. The methyl group is statistically disordered with equal occupancy.
Related literature
For the biological activity of benzimidazoles, see: Refaat (2010); Laryea et al. (2010); Horton et al. (2003); Ries et al. (2003); Spasov et al. (1999); Matsui et al. (1994); Porcari et al. (1998); Rath et al. (1997); Migawa et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811028376/dn2705sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028376/dn2705Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028376/dn2705Isup3.cml
For the preparation of the title compound N-methylbenzene-1,2-diamine (5.0 mmol) and 2-chloroacetic acid(6.0 mmol) was dissolved in 6 N hydrochloric acid (30.0 ml) and refluxed for 6 h. The reaction mixture was cooled in to room temperature, then neutralized with aqueous sodium hydroxide. The precipitate was filtered off and washed with cold water. The crude product was crystallized from ethanol to give white block-like crystals of the title compound.
All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C, aromatic or methylene) and Uiso(H) = 1.5Ueq(C, methyl).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (1) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. |
C9H9ClN2 | Z = 2 |
Mr = 180.63 | F(000) = 188 |
Triclinic, P1 | Dx = 1.365 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.607 (2) Å | Cell parameters from 2191 reflections |
b = 8.168 (2) Å | θ = 2.3–25.1° |
c = 8.925 (3) Å | µ = 0.38 mm−1 |
α = 84.566 (3)° | T = 296 K |
β = 79.682 (4)° | Block, white |
γ = 68.134 (4)° | 0.37 × 0.29 × 0.18 mm |
V = 439.6 (2) Å3 |
Bruker SMART APEX CCD diffractometer | 1523 independent reflections |
Radiation source: fine-focus sealed tube | 1361 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −7→5 |
Tmin = 0.874, Tmax = 0.937 | k = −9→9 |
2191 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1656P] where P = (Fo2 + 2Fc2)/3 |
1523 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C9H9ClN2 | γ = 68.134 (4)° |
Mr = 180.63 | V = 439.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.607 (2) Å | Mo Kα radiation |
b = 8.168 (2) Å | µ = 0.38 mm−1 |
c = 8.925 (3) Å | T = 296 K |
α = 84.566 (3)° | 0.37 × 0.29 × 0.18 mm |
β = 79.682 (4)° |
Bruker SMART APEX CCD diffractometer | 1523 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1361 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.937 | Rint = 0.018 |
2191 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
1523 reflections | Δρmin = −0.32 e Å−3 |
109 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2259 (4) | 0.4372 (3) | 0.6995 (2) | 0.0610 (6) | |
H1A | 0.3424 | 0.4781 | 0.7109 | 0.073* | |
H1B | 0.0985 | 0.5393 | 0.6790 | 0.073* | |
C2 | 0.1665 (3) | 0.3458 (2) | 0.8432 (2) | 0.0498 (5) | |
C3 | −0.2214 (4) | 0.3954 (3) | 0.8004 (3) | 0.0666 (6) | |
H3A | −0.3405 | 0.3638 | 0.8563 | 0.100* | 0.50 |
H3B | −0.1788 | 0.3444 | 0.7017 | 0.100* | 0.50 |
H3C | −0.2683 | 0.5215 | 0.7888 | 0.100* | 0.50 |
H3D | −0.1846 | 0.4560 | 0.7082 | 0.100* | 0.50 |
H3E | −0.3463 | 0.4754 | 0.8628 | 0.100* | 0.50 |
H3F | −0.2568 | 0.2983 | 0.7757 | 0.100* | 0.50 |
C4 | −0.0294 (3) | 0.2393 (2) | 1.0212 (2) | 0.0488 (5) | |
C5 | −0.1859 (4) | 0.1843 (3) | 1.1144 (3) | 0.0600 (6) | |
H5 | −0.3242 | 0.2069 | 1.0885 | 0.072* | |
C6 | −0.1250 (4) | 0.0947 (3) | 1.2471 (3) | 0.0675 (6) | |
H6 | −0.2258 | 0.0574 | 1.3137 | 0.081* | |
C7 | 0.0842 (4) | 0.0581 (3) | 1.2848 (3) | 0.0673 (6) | |
H7 | 0.1198 | −0.0041 | 1.3751 | 0.081* | |
C8 | 0.2384 (4) | 0.1119 (3) | 1.1915 (2) | 0.0605 (6) | |
H8 | 0.3773 | 0.0871 | 1.2173 | 0.073* | |
C9 | 0.1803 (3) | 0.2046 (2) | 1.0572 (2) | 0.0495 (5) | |
Cl1 | 0.31643 (17) | 0.29247 (10) | 0.54306 (8) | 0.1088 (4) | |
N1 | 0.3008 (3) | 0.2749 (2) | 0.94299 (19) | 0.0535 (4) | |
N2 | −0.0342 (3) | 0.3294 (2) | 0.88264 (18) | 0.0498 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0686 (13) | 0.0587 (12) | 0.0545 (12) | −0.0238 (11) | −0.0075 (10) | 0.0029 (10) |
C2 | 0.0509 (11) | 0.0472 (10) | 0.0489 (11) | −0.0161 (8) | −0.0037 (8) | −0.0048 (8) |
C3 | 0.0599 (13) | 0.0680 (14) | 0.0736 (15) | −0.0195 (11) | −0.0252 (11) | 0.0030 (11) |
C4 | 0.0505 (10) | 0.0436 (10) | 0.0495 (11) | −0.0146 (8) | −0.0031 (8) | −0.0077 (8) |
C5 | 0.0550 (12) | 0.0568 (12) | 0.0676 (14) | −0.0235 (10) | 0.0018 (10) | −0.0068 (10) |
C6 | 0.0741 (15) | 0.0634 (13) | 0.0630 (14) | −0.0314 (12) | 0.0101 (11) | −0.0041 (11) |
C7 | 0.0840 (16) | 0.0602 (13) | 0.0512 (12) | −0.0235 (12) | −0.0033 (11) | 0.0048 (10) |
C8 | 0.0609 (13) | 0.0639 (13) | 0.0540 (12) | −0.0198 (10) | −0.0100 (10) | 0.0006 (10) |
C9 | 0.0513 (11) | 0.0483 (10) | 0.0474 (10) | −0.0173 (9) | −0.0040 (8) | −0.0042 (8) |
Cl1 | 0.1675 (9) | 0.0837 (5) | 0.0523 (4) | −0.0326 (5) | 0.0147 (4) | −0.0069 (3) |
N1 | 0.0494 (9) | 0.0588 (10) | 0.0518 (10) | −0.0203 (8) | −0.0065 (7) | 0.0006 (8) |
N2 | 0.0465 (9) | 0.0509 (9) | 0.0520 (9) | −0.0170 (7) | −0.0082 (7) | −0.0028 (7) |
C1—C2 | 1.488 (3) | C4—N2 | 1.377 (3) |
C1—Cl1 | 1.786 (2) | C4—C5 | 1.389 (3) |
C1—H1A | 0.9700 | C4—C9 | 1.398 (3) |
C1—H1B | 0.9700 | C5—C6 | 1.373 (3) |
C2—N1 | 1.310 (3) | C5—H5 | 0.9300 |
C2—N2 | 1.363 (3) | C6—C7 | 1.397 (4) |
C3—N2 | 1.453 (3) | C6—H6 | 0.9300 |
C3—H3A | 0.9600 | C7—C8 | 1.373 (3) |
C3—H3B | 0.9600 | C7—H7 | 0.9300 |
C3—H3C | 0.9600 | C8—C9 | 1.390 (3) |
C3—H3D | 0.9600 | C8—H8 | 0.9300 |
C3—H3E | 0.9600 | C9—N1 | 1.393 (3) |
C3—H3F | 0.9600 | ||
C2—C1—Cl1 | 110.86 (15) | H3B—C3—H3F | 56.3 |
C2—C1—H1A | 109.5 | H3C—C3—H3F | 141.1 |
Cl1—C1—H1A | 109.5 | H3D—C3—H3F | 109.5 |
C2—C1—H1B | 109.5 | H3E—C3—H3F | 109.5 |
Cl1—C1—H1B | 109.5 | N2—C4—C5 | 131.59 (19) |
H1A—C1—H1B | 108.1 | N2—C4—C9 | 105.69 (17) |
N1—C2—N2 | 114.14 (18) | C5—C4—C9 | 122.71 (19) |
N1—C2—C1 | 123.36 (19) | C6—C5—C4 | 116.3 (2) |
N2—C2—C1 | 122.49 (18) | C6—C5—H5 | 121.9 |
N2—C3—H3A | 109.5 | C4—C5—H5 | 121.9 |
N2—C3—H3B | 109.5 | C5—C6—C7 | 121.9 (2) |
H3A—C3—H3B | 109.5 | C5—C6—H6 | 119.1 |
N2—C3—H3C | 109.5 | C7—C6—H6 | 119.1 |
H3A—C3—H3C | 109.5 | C8—C7—C6 | 121.5 (2) |
H3B—C3—H3C | 109.5 | C8—C7—H7 | 119.3 |
N2—C3—H3D | 109.5 | C6—C7—H7 | 119.3 |
H3A—C3—H3D | 141.1 | C7—C8—C9 | 117.9 (2) |
H3B—C3—H3D | 56.3 | C7—C8—H8 | 121.1 |
H3C—C3—H3D | 56.3 | C9—C8—H8 | 121.1 |
N2—C3—H3E | 109.5 | C8—C9—N1 | 130.36 (19) |
H3A—C3—H3E | 56.3 | C8—C9—C4 | 119.77 (19) |
H3B—C3—H3E | 141.1 | N1—C9—C4 | 109.87 (17) |
H3C—C3—H3E | 56.3 | C2—N1—C9 | 104.17 (16) |
H3D—C3—H3E | 109.5 | C2—N2—C4 | 106.13 (16) |
N2—C3—H3F | 109.5 | C2—N2—C3 | 128.34 (18) |
H3A—C3—H3F | 56.3 | C4—N2—C3 | 125.52 (17) |
Experimental details
Crystal data | |
Chemical formula | C9H9ClN2 |
Mr | 180.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.607 (2), 8.168 (2), 8.925 (3) |
α, β, γ (°) | 84.566 (3), 79.682 (4), 68.134 (4) |
V (Å3) | 439.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.37 × 0.29 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.874, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2191, 1523, 1361 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.122, 1.06 |
No. of reflections | 1523 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.32 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
This work was supported by 2009ZX09103–111 and the China Postdoctoral Science Foundation (No. 2009041446). We thank the Instrumental Analysis Center of Northwest University for the data collection at the CCD facility.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Horton, D. A., Bourne, G. T. & Sinythe, M. L. (2003). Chem. Rev. 103, 893–930. Web of Science CrossRef PubMed CAS Google Scholar
Laryea, D., Gullbo, J., Isakssoon, A., Larsson, R. & Nygren, P. (2010). Anti-Cancer Drugs, 21, 33–42. Web of Science CrossRef PubMed CAS Google Scholar
Matsui, T., Nakamura, Y., Ishikawa, H., Matsuura, A. & Kobayashi, F. (1994). Jpn J. Pharmacol. 64, 115–124. CrossRef CAS PubMed Web of Science Google Scholar
Migawa, M. T., Girardet, J. L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C. & Townsend, L. B. (1998). J. Med. Chem. 41, 1242–1251. Web of Science CrossRef CAS PubMed Google Scholar
Porcari, A. R., Devivar, R. V., Kucera, L. S., Drach, J. C. & Townsend, L. B. (1998). J. Med. Chem. 41, 1252–1262. Web of Science CrossRef CAS PubMed Google Scholar
Rath, T., Morningstar, M. L., Boyer, P. L., Hughes, S. M., Buckheitjr, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207. PubMed Google Scholar
Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956. Web of Science CrossRef CAS PubMed Google Scholar
Ries, U. J., Priepke, H. W. M., Hauel, N. H., Haaksma, E. E. J., Stassen, J. M., Wienen, W. & Nar, H. (2003). Bioorg. Med. Chem. Lett. 13, 2297–2321. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzimidazole and its derivatives are present in various bioactive compounds possessing antiparasitic, antimicrobial, and antifungal properties (Refaat, 2010; Laryea et al., 2010; Horton et al., 2003; Ries et al., 2003; Spasov et al., 1999; Matsui et al. 1994). They also play very important role in the synthesis of many natural products and synthetic drugs. Compounds possessing the benzimidazole moiety express significant activity against several viruses such as HIV (Porcari, et al., 1998; Rath, et al., 1997), Herpes (HSV-1) (Migawa, et al., 1998), human cytomegalovirus (HCMV) and influenza. As a part of our ongoing investigations of benzimidazole derivatives, the title compound was synthesized and its crystal structure is reported herein.
The two fused rings forming the benzimidazole moiety are planar with the largest deviation from the mean plane being 0.008 (1)Å. The Cl atom is out of this plane by -1.667 (2)Å (Fig. 1). The methyl group is statistically disordered. The distances and angles within the methyl-benzimidazole agree with the values reported in the literature (43 hits found in the Cambridge Structural Database, Conquest, version 1.13; Allen, 2002).
The packing is only stabilized by electrostatic and van der Waals interactions.