organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2181-o2182

threo-Di­ethyl 2-ethyl-2-hy­dr­oxy-3-(4-methyl­benzene­sulfonamido)­succinate

aLaboratoire de Synthèse Organique Appliquée , Université d'Oran Es-Sénia, Département de Chimie, BP 1524, El Ménouer, Oran 31000, Algeria, bInstitut des Biomolécules Max Mousseron, UMR 5247, CNRS, UM2, UM1, Place E. Bataillon, 34095 Montpellier, Cedex 5, France, and cInstitut Européen des Membranes, Université de Montpellier II, 34000 Montpellier, France
*Correspondence e-mail: avderlee@univ-montp2.fr

(Received 11 July 2011; accepted 21 July 2011; online 30 July 2011)

The asymmetric unit of the title compound, C17H25NO7S, contains two independent mol­ecules, which are enanti­omers forming a hydrogen-bonded dimer associated with two R22(7) patterns. In each mol­ecule, one ethyl group from the two available ethyl ester functional groups is disordered. In one mol­ecule, the ethyl group of the ester function from an α-carb­oxy­lic acid is positionally disordered over two sets of sites with occupancies of 0.66:0.34. In the second mol­ecule, it is the ethyl group in the γ-ester function that is disordered over two sets of sites with occupancies of 0.58:0.42.

Related literature

For our studies on optically pure β-substituted β-hy­droxy aspartates as glutamate transporter blockers, see: Wehbe et al. (2003a[Wehbe, J., Kassem, T., Rolland, V., Rolland, M., Tabcheh, M., Roumestant, M. L. & Martinez, J. (2003a). Org. Biomol. Chem. 1, 1938-1942.],b[Wehbe, J., Rolland, V., Roumestant, M. L. & Martinez, J. (2003b). Tetrahedron Asymmetry, 14, 1123-1126.],c[Wehbe, J., Rolland, V., Martinez, J. & Rolland, M. (2003c). Acta Cryst. C59, o473-o475.]); Mekki et al. (2011a[Mekki, S., Rolland, V., Bellahouel, S., van der Lee, A. & Rolland, M. (2011a). Acta Cryst. C67, o301-o305.],b[Mekki, S., Bellahouel, S., Vanthuyne, N., Rolland, M., Derdour, A., Martinez, J. & Rolland, V. (2011b). Amino Acids. Submitted.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the visualization of non-covalent inter­actions, see: Johnson et al. (2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]); Jmol (2011)[Jmol (2011). Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ .]. For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008[McMahon, B. & Hanson, R. M. (2008). J. Appl. Cryst. 41, 811-814.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25NO7S

  • Mr = 387.44

  • Triclinic, [P \overline 1]

  • a = 9.5424 (3) Å

  • b = 12.2708 (4) Å

  • c = 18.2427 (5) Å

  • α = 90.800 (2)°

  • β = 91.153 (2)°

  • γ = 112.513 (3)°

  • V = 1972.36 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.79 mm−1

  • T = 173 K

  • 0.27 × 0.24 × 0.12 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.110, Tmax = 1.000

  • 25194 measured reflections

  • 6999 independent reflections

  • 6214 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.02

  • 6999 reflections

  • 527 parameters

  • 81 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O32 0.84 (2) 2.23 (2) 3.0426 (18) 162 (2)
O31—H31⋯O22 0.80 (2) 2.10 (2) 2.7747 (17) 142 (2)
N12—H12⋯O31 0.86 (2) 2.19 (2) 3.019 (2) 161 (2)
O32—H32⋯O21 0.81 (2) 2.15 (2) 2.8321 (17) 142 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Jmol (Jmol, 2011[Jmol (2011). Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ .]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the present work, as a part of an on-going study of asymmetric syntheses of optically pure β-substituted β-hydroxy aspartates (Wehbe et al., 2003a,b,c; Mekki et al., 2011a,b), the structure of a new compound, threo-diethyl 2-ethyl-2-hydroxy-3-(4-methylphenylsulfonamido)succinate, is described. The key step of the synthesis is the regiospecific Sharpless aminohydroxylation on an ethyl fumarate derivative.

The crystal structure is made up by racemic dimers formed by two independent homochiral molecules ((2S,3S) and (2R,3R) for (I) and (II), respectively). They are bonded by non-covalent NH···O and OH···O hydrogen bonds (Fig. 1) forming two R22(7) patterns (Etter, 1990; Bernstein et al., 1995), where the H···O distances range from 2.10 (2) Å to 2.232 (19) Å and the D—H···O angles from 142 (2) to 161.9 (18) ° (Table 1). In order to get an idea of the relative strength of the NH···O and OH···O hydrogen bonds the intersection of the Van der Waals surfaces of donor hydrogen and acceptor was calculated using the program Jmol (Jmol, 2011; 'contact' command with 'full' and 'hbond' options). The resulting Fig. 2 shows clearly that the Van der Waals interaction zones between the hydroxyl groups and the carbonyl ester O atoms are more important than those between the hydroxyl groups and the secondary amine group. The latter interaction zones are much smaller than the former ones. A calculation based on the electron density and its derivatives (Johnson et al., 2010; calculation done in Jmol using the 'contact' command with 'nci' and 'hbond' as options) gives slightly different results (Fig. 3), in the sense that one of the OH···O interactions appears to be negligible. The relevant Van der Waals surfaces may be inspected in the enhanced Jmol picture in Fig. 4. This pictorial view of the non-covalent interaction regions is not completely in agreement with what could be concluded from the directionality of the interaction which is greater for nitrogen as hydrogen bond donor than for oxygen (Table 1). The dimeric structure bears much similarity with those reported recently for the two concomitant β-benzyl β-hydroxy aspartate analogue polymorphs (Mekki et al., 2011a).

The two independent homochiral molecules are very approximately related by a local inversion center between the two molecules. That this local center is only very approximate, can be clearly seen in Fig. 5, which shows the best superposition of the (2S,3S) molecule (I) and the (2S,3S) inversion center related molecule (II) as calculated with Olex2 (Dolomanov et al., 2009). The root-mean-squared deviation (considering the majority disordered parts only) between the two molecules is 0.780 Å. The main conformational differences between molecules (I) and (II) stem from the orientation of the ethyl ester moiety in both residues. This is well illustrated by the torsion angles C9—O5—C4—C3 (-4.2 (2)° and 173.6 (3)° for molecules (I) and (II), respectively) and C1–01-C7—C8 (-165.5 (3)° and -88.6 (2)° for molecules (I) and (II), respectively).

In both molecules, the S1—N1(H1)—C2 pseudo-torsion angle [140.2 (1)° for (I) and -143.3 (1)° for (II)] implies a slight pyramidalization of the sulfonamide moiety.

Related literature top

For our studies on optically pure β-substituted β-hydroxy aspartates as glutamate transporter blockers, see: Wehbe et al. (2003a,b,c); Mekki et al. (2011a,b). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995). For the visualization of non-covalent interactions, see: Johnson et al. (2010); Jmol (2011). For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008).

Experimental top

A solution of (0.04 mmole, 14.7 mg) K2[OsO2(OH)4] in water (2.5 ml) and chloramine-T (1.5 mmole, 423 mg) was added to a solution of diethyl 2-ethylfumarate (20 mg, 0.1 mmole) and (DHQD)2PHAL (0.05 mmole, 39 mg) in CH3CN (1.25 ml). After 1 h stirring at room temperature a second fraction of diethyl 2-ethylfumarate (180 mg, 0.9 mmole) in CH3CN (1.25 ml) was added to the reaction mixture. After 5 h, a solution of Na2SO3 (357 mg) in water (5.4 ml) was added an the reaction mixture was extracted 3 times with AcOEt (5.4 ml). The fraction was then washed with brine and dried under MgSO4. The solvent was removed and the title compound was recrystallized in cyclohexane by slow evaporation at ambient temperature yielding colourless crystals in the form of relatively large prisms.

Refinement top

All N-bound and O-bound H atoms were located in a difference Fourier maps and later restraint to a distance O–H = 0.82 (2) Å with Uiso(H)=1.5Ueq(O) and N–H = 0.88 (2) Å with Uiso(H)=1.2Ueq(N) in order to stabilize their coordinates during the final step of the refinement. All other H atoms were introduced at calculated positions and refined as riding atoms with C–H = 0.96–0.98 Å, with displacement parameters Uiso(H) equal to 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other H atoms. Restraints (SADI, SIMU, DELU) were used to stabilize the refinement of the disordered diethyl groups. The occupancies of the disordered parts were fixed during the final cycles of the refinements.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97; molecular graphics: OLEX2 (Dolomanov et al., 2009) and Jmol (Jmol, 2011); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are indicated as dotted lines. Hydrogen atoms not involved in hydrogen bond interactions have been omitted for clarity.
[Figure 2] Fig. 2. Van der Waals intersection surfaces (green) between nitrogen and oxygen hydrogen bond donors and oxygen acceptors of the two independent molecules in the asymmetric unit.
[Figure 3] Fig. 3. Non-covalent interaction surfaces (green) between nitrogen and oxygen hydrogen bond donors and oxygen acceptors of the two independent molecules in the asymmetric unit.
[Figure 4] Fig. 4. Enhanced Jmol view of the title compound showing displacement ellipsoids at the 50% probability level. Semi-translucent Van der Waals surfaces for donor H atoms and acceptors are displayed in green.
[Figure 5] Fig. 5. Best superposition of the two independent molecules in the asymmetric unit. Hydrogen bonds are omitted for clarity.
threo-Diethyl 2-ethyl-2-hydroxy-3-(4-methylbenzenesulfonamido)succinate top
Crystal data top
C17H25NO7SZ = 4
Mr = 387.44F(000) = 824
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.5424 (3) ÅCell parameters from 6999 reflections
b = 12.2708 (4) Åθ = 4.6–67.3°
c = 18.2427 (5) ŵ = 1.79 mm1
α = 90.800 (2)°T = 173 K
β = 91.153 (2)°Prism, colourless
γ = 112.513 (3)°0.27 × 0.24 × 0.12 mm
V = 1972.36 (10) Å3
Data collection top
Agilent Xcalibur Sapphire3 Gemini
diffractometer
6999 independent reflections
Radiation source: Enhance (Cu) X-ray Source6214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0143 pixels mm-1θmax = 67.3°, θmin = 4.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.110, Tmax = 1.000l = 2121
25194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.066P)2 + 0.4378P]
where P = (Fo2 + 2Fc2)/3
6999 reflections(Δ/σ)max = 0.001
527 parametersΔρmax = 0.34 e Å3
81 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H25NO7Sγ = 112.513 (3)°
Mr = 387.44V = 1972.36 (10) Å3
Triclinic, P1Z = 4
a = 9.5424 (3) ÅCu Kα radiation
b = 12.2708 (4) ŵ = 1.79 mm1
c = 18.2427 (5) ÅT = 173 K
α = 90.800 (2)°0.27 × 0.24 × 0.12 mm
β = 91.153 (2)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini
diffractometer
6999 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
6214 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 1.000Rint = 0.043
25194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04081 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
6999 reflectionsΔρmin = 0.31 e Å3
527 parameters
Special details top

Experimental. CrysAlis PRO (Agilent, 2010); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S110.49201 (5)0.41250 (4)0.16266 (2)0.03996 (12)
O110.36355 (15)0.60190 (15)0.33568 (7)0.0597 (4)
O210.48790 (14)0.69378 (11)0.23799 (7)0.0461 (3)
O310.77622 (13)0.69982 (11)0.32660 (7)0.0436 (3)
H310.852 (2)0.702 (2)0.3077 (13)0.065*
O410.90123 (14)0.54137 (12)0.31132 (7)0.0494 (3)
O510.69568 (14)0.39398 (11)0.35277 (7)0.0455 (3)
O610.43567 (17)0.30752 (11)0.20417 (8)0.0552 (3)
O710.57708 (15)0.41810 (12)0.09820 (7)0.0516 (3)
N110.60481 (15)0.51686 (13)0.21844 (7)0.0377 (3)
H110.656 (2)0.5792 (15)0.1966 (11)0.045*
C110.46431 (18)0.61992 (16)0.28350 (9)0.0400 (4)
C210.54737 (18)0.53549 (15)0.28902 (9)0.0376 (3)
H210.47460.45770.30620.045*
C310.68397 (18)0.58310 (15)0.34482 (9)0.0379 (3)
C410.77443 (19)0.50450 (16)0.33431 (9)0.0400 (4)
C510.6352 (2)0.58202 (18)0.42443 (9)0.0463 (4)
H5A10.58270.63710.43010.056*
H5B10.56220.50190.43550.056*
C610.7683 (2)0.6170 (2)0.47904 (11)0.0575 (5)
H6A10.81540.55880.47670.086*
H6B10.73210.62000.52860.086*
H6C10.84310.69490.46700.086*
C7A10.2915 (6)0.6916 (5)0.3353 (4)0.0568 (13)0.66
H7A10.37010.77170.33010.068*0.66
H7B10.21790.67520.29350.068*0.66
C8A10.2124 (4)0.6844 (4)0.40588 (19)0.0621 (9)0.66
H8A10.13810.60380.41170.093*0.66
H8B10.16030.73940.40560.093*0.66
H8C10.28690.70520.44670.093*0.66
C7B10.2456 (11)0.6449 (11)0.3313 (8)0.071 (3)0.34
H7C10.14890.58760.34970.085*0.34
H7D10.22950.66730.28080.085*0.34
C8B10.3134 (11)0.7484 (10)0.3809 (5)0.093 (3)0.34
H8D10.32650.72240.43020.139*0.34
H8E10.24650.79220.38270.139*0.34
H8F10.41240.79960.36280.139*0.34
C910.7677 (2)0.30975 (18)0.33901 (11)0.0525 (4)
H9A10.81840.32630.29130.063*
H9B10.68890.22870.33620.063*
C1010.8821 (3)0.3172 (2)0.39851 (14)0.0725 (7)
H10A10.96760.39360.39670.109*
H10B10.91880.25350.39130.109*
H10C10.83470.30950.44630.109*
C1110.33817 (18)0.45303 (14)0.14075 (9)0.0370 (3)
C1210.3501 (2)0.52924 (16)0.08434 (9)0.0423 (4)
H1210.43700.55510.05470.051*
C1310.2333 (2)0.56743 (17)0.07165 (11)0.0508 (4)
H1310.24080.61970.03270.061*
C1410.1055 (2)0.53164 (17)0.11419 (11)0.0504 (4)
C1510.0970 (2)0.4554 (2)0.17044 (12)0.0573 (5)
H1510.01050.43010.20040.069*
C1610.2117 (2)0.41539 (18)0.18398 (11)0.0516 (4)
H1610.20390.36250.22260.062*
C1710.0214 (3)0.5743 (2)0.10073 (16)0.0741 (7)
H17A10.11890.50690.09970.111*
H17B10.00750.61410.05360.111*
H17C10.02010.62980.14020.111*
S120.84903 (5)1.02772 (4)0.29860 (2)0.04747 (13)
O121.16142 (13)0.94133 (13)0.16081 (7)0.0505 (3)
O221.02729 (14)0.80796 (11)0.24124 (7)0.0470 (3)
O320.71903 (13)0.74485 (10)0.13370 (7)0.0409 (3)
H320.640 (2)0.746 (2)0.1483 (13)0.061*
O420.57282 (14)0.88091 (13)0.09183 (8)0.0538 (3)
O520.79035 (14)1.03488 (11)0.07151 (8)0.0486 (3)
O620.8723 (2)1.12985 (13)0.25634 (8)0.0641 (4)
O720.73105 (17)0.98906 (16)0.35091 (8)0.0660 (4)
N120.81369 (16)0.91758 (14)0.24099 (8)0.0403 (3)
H120.781 (2)0.8512 (15)0.2626 (11)0.048*
C121.03877 (18)0.88414 (15)0.19833 (9)0.0376 (3)
C220.91316 (17)0.92874 (14)0.17950 (9)0.0353 (3)
H220.96141.01400.16700.042*
C320.81149 (17)0.85996 (14)0.11295 (9)0.0340 (3)
C420.70850 (18)0.92560 (15)0.09133 (9)0.0381 (4)
C520.90368 (19)0.85057 (15)0.04729 (9)0.0389 (4)
H5A20.98160.92960.03790.047*
H5B20.95700.79790.05970.047*
C620.8076 (2)0.8036 (2)0.02228 (11)0.0579 (5)
H6A20.72480.72840.01240.087*
H6B20.87080.79140.06070.087*
H6C20.76510.86060.03860.087*
C721.2928 (2)0.9086 (2)0.17253 (11)0.0564 (5)
H7A21.35250.92240.12740.068*
H7B21.25750.82360.18360.068*
C821.3905 (2)0.9804 (2)0.23496 (14)0.0684 (6)
H8A21.41971.06450.22530.103*
H8B21.48180.96260.24000.103*
H8C21.33390.96120.28040.103*
C9A20.7216 (7)1.1129 (6)0.0412 (3)0.0498 (13)0.58
H9A20.62131.06600.01820.060*0.58
H9B20.78721.16330.00350.060*0.58
C10A20.7047 (8)1.1870 (5)0.1027 (3)0.0780 (14)0.58
H10A20.63701.13640.13890.117*0.58
H10B20.66171.24230.08390.117*0.58
H10C20.80441.23130.12590.117*0.58
C9B20.6878 (9)1.1038 (7)0.0679 (5)0.0497 (18)0.42
H9C20.63881.09540.01860.060*0.42
H9D20.60801.07600.10490.060*0.42
C10B20.7904 (7)1.2279 (5)0.0836 (4)0.0624 (15)0.42
H10D20.73261.27880.08020.094*0.42
H10E20.87141.25240.04780.094*0.42
H10F20.83511.23470.13310.094*0.42
C1121.0231 (2)1.05241 (15)0.34519 (9)0.0417 (4)
C1221.0273 (2)0.98059 (18)0.40217 (10)0.0511 (4)
H1220.93820.91630.41530.061*
C1321.1631 (3)1.0037 (2)0.43969 (11)0.0589 (5)
H1321.16670.95450.47880.071*
C1421.2943 (2)1.0971 (2)0.42160 (11)0.0571 (5)
C1521.2877 (3)1.1647 (2)0.36312 (13)0.0642 (6)
H1521.37731.22760.34900.077*
C1621.1536 (3)1.14287 (18)0.32469 (12)0.0576 (5)
H1621.15121.19000.28420.069*
C1721.4417 (3)1.1235 (3)0.46385 (17)0.0910 (9)
H17A21.49791.08040.44110.137*
H17B21.42021.09880.51470.137*
H17C21.50261.20840.46320.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0442 (2)0.0407 (2)0.0390 (2)0.02082 (18)0.00107 (16)0.00119 (16)
O110.0464 (7)0.1004 (11)0.0453 (7)0.0415 (8)0.0135 (6)0.0136 (7)
O210.0424 (7)0.0480 (7)0.0516 (7)0.0211 (6)0.0082 (5)0.0059 (6)
O310.0354 (6)0.0449 (7)0.0483 (7)0.0129 (5)0.0031 (5)0.0038 (5)
O410.0380 (7)0.0594 (8)0.0538 (7)0.0218 (6)0.0046 (5)0.0051 (6)
O510.0443 (7)0.0473 (7)0.0473 (7)0.0199 (6)0.0049 (5)0.0043 (5)
O610.0664 (9)0.0404 (7)0.0598 (8)0.0218 (6)0.0082 (7)0.0038 (6)
O710.0541 (7)0.0655 (8)0.0453 (7)0.0347 (7)0.0003 (6)0.0098 (6)
N110.0351 (7)0.0436 (8)0.0351 (7)0.0157 (6)0.0040 (5)0.0029 (6)
C110.0298 (8)0.0521 (10)0.0372 (8)0.0147 (7)0.0026 (6)0.0017 (7)
C210.0331 (8)0.0440 (9)0.0343 (8)0.0130 (7)0.0048 (6)0.0041 (7)
C310.0338 (8)0.0430 (9)0.0363 (8)0.0137 (7)0.0034 (6)0.0041 (7)
C410.0370 (9)0.0505 (10)0.0329 (8)0.0173 (8)0.0003 (6)0.0023 (7)
C510.0443 (9)0.0598 (11)0.0371 (9)0.0225 (9)0.0038 (7)0.0004 (8)
C610.0570 (12)0.0768 (14)0.0392 (9)0.0267 (11)0.0043 (8)0.0029 (9)
C7A10.043 (3)0.081 (3)0.059 (3)0.038 (3)0.011 (3)0.003 (3)
C8A10.0473 (18)0.090 (3)0.0539 (18)0.0325 (18)0.0016 (14)0.0199 (17)
C7B10.027 (5)0.127 (10)0.060 (5)0.031 (5)0.002 (4)0.000 (6)
C8B10.101 (7)0.148 (8)0.064 (5)0.087 (7)0.004 (5)0.023 (5)
C910.0594 (11)0.0510 (11)0.0532 (10)0.0282 (9)0.0003 (9)0.0025 (8)
C1010.0917 (17)0.0723 (15)0.0710 (14)0.0523 (14)0.0224 (13)0.0108 (11)
C1110.0365 (8)0.0381 (8)0.0355 (8)0.0136 (7)0.0009 (6)0.0028 (6)
C1210.0421 (9)0.0459 (9)0.0391 (8)0.0168 (8)0.0035 (7)0.0038 (7)
C1310.0544 (11)0.0487 (10)0.0521 (10)0.0233 (9)0.0060 (8)0.0019 (8)
C1410.0436 (10)0.0522 (11)0.0578 (11)0.0224 (9)0.0107 (8)0.0171 (9)
C1510.0368 (9)0.0736 (14)0.0580 (11)0.0172 (9)0.0078 (8)0.0025 (10)
C1610.0446 (10)0.0577 (11)0.0478 (10)0.0135 (9)0.0059 (8)0.0118 (8)
C1710.0594 (13)0.0789 (16)0.0958 (18)0.0416 (12)0.0172 (12)0.0252 (13)
S120.0538 (3)0.0588 (3)0.0417 (2)0.0352 (2)0.00150 (18)0.00783 (19)
O120.0307 (6)0.0710 (9)0.0533 (7)0.0228 (6)0.0078 (5)0.0169 (6)
O220.0410 (7)0.0504 (7)0.0556 (7)0.0234 (6)0.0064 (5)0.0122 (6)
O320.0347 (6)0.0384 (6)0.0473 (6)0.0110 (5)0.0080 (5)0.0058 (5)
O420.0334 (7)0.0666 (9)0.0657 (8)0.0239 (6)0.0021 (6)0.0016 (7)
O520.0450 (7)0.0396 (7)0.0665 (8)0.0227 (6)0.0096 (6)0.0006 (6)
O620.0951 (11)0.0635 (9)0.0549 (8)0.0549 (9)0.0132 (7)0.0097 (7)
O720.0586 (8)0.1001 (12)0.0516 (8)0.0444 (8)0.0058 (6)0.0156 (8)
N120.0361 (7)0.0474 (8)0.0401 (7)0.0190 (7)0.0050 (6)0.0018 (6)
C120.0312 (8)0.0421 (9)0.0405 (8)0.0152 (7)0.0031 (6)0.0007 (7)
C220.0305 (8)0.0386 (8)0.0390 (8)0.0157 (7)0.0041 (6)0.0022 (6)
C320.0304 (7)0.0340 (8)0.0383 (8)0.0130 (6)0.0046 (6)0.0025 (6)
C420.0351 (9)0.0446 (9)0.0375 (8)0.0187 (7)0.0005 (6)0.0044 (7)
C520.0395 (9)0.0386 (8)0.0422 (9)0.0186 (7)0.0076 (7)0.0013 (7)
C620.0553 (11)0.0633 (12)0.0468 (10)0.0137 (10)0.0076 (9)0.0129 (9)
C720.0330 (9)0.0871 (15)0.0577 (11)0.0321 (10)0.0067 (8)0.0061 (10)
C820.0431 (11)0.0901 (17)0.0765 (15)0.0310 (11)0.0062 (10)0.0021 (13)
C9A20.044 (3)0.056 (3)0.058 (3)0.029 (2)0.004 (2)0.011 (2)
C10A20.114 (5)0.071 (3)0.076 (3)0.064 (3)0.013 (3)0.010 (3)
C9B20.046 (4)0.043 (3)0.073 (5)0.031 (3)0.001 (3)0.010 (4)
C10B20.069 (4)0.041 (3)0.088 (4)0.032 (3)0.008 (3)0.013 (3)
C1120.0488 (10)0.0419 (9)0.0374 (8)0.0210 (8)0.0004 (7)0.0026 (7)
C1220.0528 (11)0.0497 (10)0.0469 (10)0.0149 (9)0.0033 (8)0.0080 (8)
C1320.0656 (13)0.0682 (13)0.0451 (10)0.0278 (11)0.0011 (9)0.0123 (9)
C1420.0537 (11)0.0657 (13)0.0493 (10)0.0203 (10)0.0027 (9)0.0041 (9)
C1520.0546 (12)0.0539 (12)0.0713 (14)0.0064 (10)0.0014 (10)0.0090 (10)
C1620.0643 (13)0.0478 (11)0.0568 (11)0.0168 (10)0.0002 (9)0.0140 (9)
C1720.0648 (15)0.119 (2)0.0807 (18)0.0267 (16)0.0178 (13)0.0017 (16)
Geometric parameters (Å, º) top
S11—O611.4266 (14)S12—O621.4266 (15)
S11—O711.4298 (13)S12—O721.4318 (16)
S11—N111.6425 (15)S12—N121.6252 (15)
S11—C1111.7615 (16)S12—C1121.7675 (18)
O11—C111.326 (2)O12—C121.322 (2)
O11—C7B11.415 (11)O12—C721.469 (2)
O11—C7A11.504 (5)O22—C121.202 (2)
O21—C111.197 (2)O32—C321.4110 (19)
O31—C311.413 (2)O32—H320.813 (16)
O31—H310.804 (16)O42—C421.198 (2)
O41—C411.205 (2)O52—C421.327 (2)
O51—C411.327 (2)O52—C9A21.461 (6)
O51—C911.465 (2)O52—C9B21.519 (7)
N11—C211.458 (2)N12—C221.458 (2)
N11—H110.841 (15)N12—H120.855 (15)
C11—C211.530 (2)C12—C221.531 (2)
C21—C311.557 (2)C22—C321.557 (2)
C21—H211.0000C22—H221.0000
C31—C511.532 (2)C32—C521.529 (2)
C31—C411.533 (2)C32—C421.539 (2)
C51—C611.519 (3)C52—C621.521 (3)
C51—H5A10.9900C52—H5A20.9900
C51—H5B10.9900C52—H5B20.9900
C61—H6A10.9800C62—H6A20.9800
C61—H6B10.9800C62—H6B20.9800
C61—H6C10.9800C62—H6C20.9800
C7A1—C8A11.492 (7)C72—C821.498 (3)
C7A1—H7A10.9900C72—H7A20.9900
C7A1—H7B10.9900C72—H7B20.9900
C8A1—H8A10.9800C82—H8A20.9800
C8A1—H8B10.9800C82—H8B20.9800
C8A1—H8C10.9800C82—H8C20.9800
C7B1—C8B11.472 (13)C9A2—C10A21.484 (8)
C7B1—H7C10.9900C9A2—H9A20.9900
C7B1—H7D10.9900C9A2—H9B20.9900
C8B1—H8D10.9800C10A2—H10A20.9800
C8B1—H8E10.9800C10A2—H10B20.9800
C8B1—H8F10.9800C10A2—H10C20.9800
C91—C1011.501 (3)C9B2—C10B21.482 (10)
C91—H9A10.9900C9B2—H9C20.9900
C91—H9B10.9900C9B2—H9D20.9900
C101—H10A10.9800C10B2—H10D20.9800
C101—H10B10.9800C10B2—H10E20.9800
C101—H10C10.9800C10B2—H10F20.9800
C111—C1211.377 (2)C112—C1621.376 (3)
C111—C1611.383 (3)C112—C1221.382 (3)
C121—C1311.381 (3)C122—C1321.380 (3)
C121—H1210.9500C122—H1220.9500
C131—C1411.385 (3)C132—C1421.385 (3)
C131—H1310.9500C132—H1320.9500
C141—C1511.380 (3)C142—C1521.376 (3)
C141—C1711.510 (3)C142—C1721.509 (3)
C151—C1611.381 (3)C152—C1621.377 (3)
C151—H1510.9500C152—H1520.9500
C161—H1610.9500C162—H1620.9500
C171—H17A10.9800C172—H17A20.9800
C171—H17B10.9800C172—H17B20.9800
C171—H17C10.9800C172—H17C20.9800
O61—S11—O71120.91 (8)O62—S12—O72120.70 (10)
O61—S11—N11106.45 (8)O62—S12—N12107.00 (8)
O71—S11—N11105.62 (8)O72—S12—N12105.77 (9)
O61—S11—C111107.85 (8)O62—S12—C112106.58 (9)
O71—S11—C111109.08 (8)O72—S12—C112107.99 (9)
N11—S11—C111105.98 (7)N12—S12—C112108.32 (8)
C11—O11—C7B1122.2 (6)C12—O12—C72117.23 (14)
C11—O11—C7A1112.3 (3)C32—O32—H32108.2 (17)
C7B1—O11—C7A122.5 (5)C42—O52—C9A2122.5 (3)
C31—O31—H31110.7 (18)C42—O52—C9B2108.6 (4)
C41—O51—C91116.00 (14)C9A2—O52—C9B222.2 (3)
C21—N11—S11118.55 (11)C22—N12—S12119.77 (12)
C21—N11—H11114.8 (14)C22—N12—H12116.9 (14)
S11—N11—H11113.0 (14)S12—N12—H12111.8 (14)
O21—C11—O11124.05 (16)O22—C12—O12124.87 (15)
O21—C11—C21124.23 (14)O22—C12—C22124.70 (14)
O11—C11—C21111.71 (15)O12—C12—C22110.43 (13)
N11—C21—C11111.84 (13)N12—C22—C12111.69 (13)
N11—C21—C31108.01 (13)N12—C22—C32107.26 (12)
C11—C21—C31111.30 (14)C12—C22—C32112.26 (13)
N11—C21—H21108.5N12—C22—H22108.5
C11—C21—H21108.5C12—C22—H22108.5
C31—C21—H21108.5C32—C22—H22108.5
O31—C31—C51109.13 (14)O32—C32—C52108.40 (13)
O31—C31—C41108.78 (13)O32—C32—C42108.55 (12)
C51—C31—C41110.99 (13)C52—C32—C42109.96 (13)
O31—C31—C21108.75 (13)O32—C32—C22109.83 (12)
C51—C31—C21113.07 (14)C52—C32—C22112.77 (13)
C41—C31—C21105.98 (13)C42—C32—C22107.27 (12)
O41—C41—O51125.60 (16)O42—C42—O52125.97 (16)
O41—C41—C31122.53 (16)O42—C42—C32123.10 (16)
O51—C41—C31111.87 (14)O52—C42—C32110.92 (13)
C61—C51—C31112.68 (15)C62—C52—C32113.37 (14)
C61—C51—H5A1109.1C62—C52—H5A2108.9
C31—C51—H5A1109.1C32—C52—H5A2108.9
C61—C51—H5B1109.1C62—C52—H5B2108.9
C31—C51—H5B1109.1C32—C52—H5B2108.9
H5A1—C51—H5B1107.8H5A2—C52—H5B2107.7
C51—C61—H6A1109.5C52—C62—H6A2109.5
C51—C61—H6B1109.5C52—C62—H6B2109.5
H6A1—C61—H6B1109.5H6A2—C62—H6B2109.5
C51—C61—H6C1109.5C52—C62—H6C2109.5
H6A1—C61—H6C1109.5H6A2—C62—H6C2109.5
H6B1—C61—H6C1109.5H6B2—C62—H6C2109.5
C8A1—C7A1—O11108.3 (4)O12—C72—C82109.90 (17)
C8A1—C7A1—H7A1110.0O12—C72—H7A2109.7
O11—C7A1—H7A1110.0C82—C72—H7A2109.7
C8A1—C7A1—H7B1110.0O12—C72—H7B2109.7
O11—C7A1—H7B1110.0C82—C72—H7B2109.7
H7A1—C7A1—H7B1108.4H7A2—C72—H7B2108.2
O11—C7B1—C8B198.3 (7)C72—C82—H8A2109.5
O11—C7B1—H7C1112.1C72—C82—H8B2109.5
C8B1—C7B1—H7C1112.1H8A2—C82—H8B2109.5
O11—C7B1—H7D1112.1C72—C82—H8C2109.5
C8B1—C7B1—H7D1112.1H8A2—C82—H8C2109.5
H7C1—C7B1—H7D1109.7H8B2—C82—H8C2109.5
C7B1—C8B1—H8D1109.5O52—C9A2—C10A2107.4 (4)
C7B1—C8B1—H8E1109.5O52—C9A2—H9A2110.2
H8D1—C8B1—H8E1109.5C10A2—C9A2—H9A2110.2
C7B1—C8B1—H8F1109.5O52—C9A2—H9B2110.2
H8D1—C8B1—H8F1109.5C10A2—C9A2—H9B2110.2
H8E1—C8B1—H8F1109.5H9A2—C9A2—H9B2108.5
O51—C91—C101111.26 (16)C10B2—C9B2—O52104.7 (6)
O51—C91—H9A1109.4C10B2—C9B2—H9C2110.8
C101—C91—H9A1109.4O52—C9B2—H9C2110.8
O51—C91—H9B1109.4C10B2—C9B2—H9D2110.8
C101—C91—H9B1109.4O52—C9B2—H9D2110.8
H9A1—C91—H9B1108.0H9C2—C9B2—H9D2108.9
C91—C101—H10A1109.5C9B2—C10B2—H10D2109.5
C91—C101—H10B1109.5C9B2—C10B2—H10E2109.5
H10A1—C101—H10B1109.5H10D2—C10B2—H10E2109.5
C91—C101—H10C1109.5C9B2—C10B2—H10F2109.5
H10A1—C101—H10C1109.5H10D2—C10B2—H10F2109.5
H10B1—C101—H10C1109.5H10E2—C10B2—H10F2109.5
C121—C111—C161120.69 (16)C162—C112—C122120.33 (18)
C121—C111—S11119.56 (13)C162—C112—S12119.98 (14)
C161—C111—S11119.56 (13)C122—C112—S12119.69 (15)
C111—C121—C131118.78 (17)C132—C122—C112118.94 (19)
C111—C121—H121120.6C132—C122—H122120.5
C131—C121—H121120.6C112—C122—H122120.5
C121—C131—C141121.85 (18)C122—C132—C142121.50 (19)
C121—C131—H131119.1C122—C132—H132119.3
C141—C131—H131119.1C142—C132—H132119.3
C151—C141—C131118.05 (17)C152—C142—C132118.2 (2)
C151—C141—C171120.1 (2)C152—C142—C172120.5 (2)
C131—C141—C171121.8 (2)C132—C142—C172121.3 (2)
C141—C151—C161121.24 (18)C142—C152—C162121.2 (2)
C141—C151—H151119.4C142—C152—H152119.4
C161—C151—H151119.4C162—C152—H152119.4
C151—C161—C111119.39 (18)C112—C162—C152119.70 (18)
C151—C161—H161120.3C112—C162—H162120.2
C111—C161—H161120.3C152—C162—H162120.2
C141—C171—H17A1109.5C142—C172—H17A2109.5
C141—C171—H17B1109.5C142—C172—H17B2109.5
H17A1—C171—H17B1109.5H17A2—C172—H17B2109.5
C141—C171—H17C1109.5C142—C172—H17C2109.5
H17A1—C171—H17C1109.5H17A2—C172—H17C2109.5
H17B1—C171—H17C1109.5H17B2—C172—H17C2109.5
O61—S11—N11—C2152.11 (14)O72—S12—N12—C22179.32 (12)
O71—S11—N11—C21178.20 (12)C112—S12—N12—C2265.12 (14)
C111—S11—N11—C2162.54 (13)C72—O12—C12—O220.2 (3)
C7B1—O11—C11—O2117.8 (6)C72—O12—C12—C22179.84 (15)
C7A1—O11—C11—O214.9 (3)S12—N12—C22—C1292.68 (15)
C7B1—O11—C11—C21162.6 (5)S12—N12—C22—C32143.93 (11)
C7A1—O11—C11—C21174.6 (3)O22—C12—C22—N1229.4 (2)
S11—N11—C21—C1186.97 (16)O12—C12—C22—N12150.56 (14)
S11—N11—C21—C31150.22 (11)O22—C12—C22—C3291.1 (2)
O21—C11—C21—N1125.6 (2)O12—C12—C22—C3288.93 (17)
O11—C11—C21—N11154.86 (15)N12—C22—C32—O3251.41 (16)
O21—C11—C21—C3195.31 (19)C12—C22—C32—O3271.63 (16)
O11—C11—C21—C3184.23 (17)N12—C22—C32—C52172.42 (13)
N11—C21—C31—O3170.63 (16)C12—C22—C32—C5249.38 (17)
C11—C21—C31—O3152.50 (17)N12—C22—C32—C4266.37 (15)
N11—C21—C31—C51167.99 (14)C12—C22—C32—C42170.59 (13)
C11—C21—C31—C5168.88 (18)C9A2—O52—C42—O425.3 (4)
N11—C21—C31—C4146.18 (17)C9B2—O52—C42—O4214.0 (4)
C11—C21—C31—C41169.31 (13)C9A2—O52—C42—C32173.6 (3)
C91—O51—C41—O414.2 (2)C9B2—O52—C42—C32167.1 (4)
C91—O51—C41—C31175.19 (14)O32—C32—C42—O421.3 (2)
O31—C31—C41—O412.6 (2)C52—C32—C42—O42117.17 (18)
C51—C31—C41—O41122.64 (18)C22—C32—C42—O42119.87 (17)
C21—C31—C41—O41114.22 (17)O32—C32—C42—O52179.80 (13)
O31—C31—C41—O51178.02 (13)C52—C32—C42—O5261.77 (17)
C51—C31—C41—O5157.93 (18)C22—C32—C42—O5261.19 (16)
C21—C31—C41—O5165.20 (16)O32—C32—C52—C6268.54 (18)
O31—C31—C51—C6164.5 (2)C42—C32—C52—C6249.98 (19)
C41—C31—C51—C6155.4 (2)C22—C32—C52—C62169.64 (15)
C21—C31—C51—C61174.30 (16)C12—O12—C72—C8288.6 (2)
C11—O11—C7A1—C8A1165.5 (3)C42—O52—C9A2—C10A295.3 (5)
C7B1—O11—C7A1—C8A173 (2)C9B2—O52—C9A2—C10A239.3 (12)
C11—O11—C7B1—C8B1101.3 (9)C42—O52—C9B2—C10B2152.0 (5)
C7A1—O11—C7B1—C8B131.9 (14)C9A2—O52—C9B2—C10B275.6 (14)
C41—O51—C91—C10180.6 (2)O62—S12—C112—C16213.71 (18)
O61—S11—C111—C121161.28 (14)O72—S12—C112—C162144.77 (17)
O71—S11—C111—C12128.25 (16)N12—S12—C112—C162101.13 (17)
N11—S11—C111—C12185.03 (15)O62—S12—C112—C122166.24 (15)
O61—S11—C111—C16123.77 (17)O72—S12—C112—C12235.18 (18)
O71—S11—C111—C161156.80 (15)N12—S12—C112—C12278.92 (16)
N11—S11—C111—C16189.92 (16)C162—C112—C122—C1322.3 (3)
C161—C111—C121—C1310.0 (3)S12—C112—C122—C132177.69 (16)
S11—C111—C121—C131174.93 (14)C112—C122—C132—C1420.2 (3)
C111—C121—C131—C1410.3 (3)C122—C132—C142—C1522.2 (3)
C121—C131—C141—C1510.1 (3)C122—C132—C142—C172178.7 (2)
C121—C131—C141—C171179.41 (18)C132—C142—C152—C1621.9 (4)
C131—C141—C151—C1610.3 (3)C172—C142—C152—C162179.0 (2)
C171—C141—C151—C161179.8 (2)C122—C112—C162—C1522.6 (3)
C141—C151—C161—C1110.5 (3)S12—C112—C162—C152177.35 (18)
C121—C111—C161—C1510.4 (3)C142—C152—C162—C1120.5 (4)
S11—C111—C161—C151174.53 (15)S11—N11—H11—C21140.2 (12)
O62—S12—N12—C2249.44 (15)S12—N12—H12—C22143.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O320.84 (2)2.23 (2)3.0426 (18)162 (2)
O31—H31···O220.80 (2)2.10 (2)2.7747 (17)142 (2)
N12—H12···O310.86 (2)2.19 (2)3.019 (2)161 (2)
O32—H32···O210.81 (2)2.15 (2)2.8321 (17)142 (2)

Experimental details

Crystal data
Chemical formulaC17H25NO7S
Mr387.44
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.5424 (3), 12.2708 (4), 18.2427 (5)
α, β, γ (°)90.800 (2), 91.153 (2), 112.513 (3)
V3)1972.36 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.79
Crystal size (mm)0.27 × 0.24 × 0.12
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.110, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25194, 6999, 6214
Rint0.043
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.02
No. of reflections6999
No. of parameters527
No. of restraints81
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXS97, OLEX2 (Dolomanov et al., 2009) and Jmol (Jmol, 2011), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O320.844 (15)2.229 (16)3.0426 (18)161.9 (19)
O31—H31···O220.804 (16)2.10 (2)2.7747 (17)142 (2)
N12—H12···O310.857 (15)2.194 (16)3.019 (2)161 (2)
O32—H32···O210.813 (16)2.145 (19)2.8321 (17)142 (2)
 

Acknowledgements

This work was supported by the Erasmus Mundus Averroés program.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJmol (2011). Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcMahon, B. & Hanson, R. M. (2008). J. Appl. Cryst. 41, 811–814.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMekki, S., Bellahouel, S., Vanthuyne, N., Rolland, M., Derdour, A., Martinez, J. & Rolland, V. (2011b). Amino Acids. Submitted.  Google Scholar
First citationMekki, S., Rolland, V., Bellahouel, S., van der Lee, A. & Rolland, M. (2011a). Acta Cryst. C67, o301–o305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWehbe, J., Kassem, T., Rolland, V., Rolland, M., Tabcheh, M., Roumestant, M. L. & Martinez, J. (2003a). Org. Biomol. Chem. 1, 1938–1942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWehbe, J., Rolland, V., Martinez, J. & Rolland, M. (2003c). Acta Cryst. C59, o473–o475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWehbe, J., Rolland, V., Roumestant, M. L. & Martinez, J. (2003b). Tetrahedron Asymmetry, 14, 1123–1126.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2181-o2182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds