organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[({[Bis(pyridin-2-yl)methyl­idene]hydrazine­carbonyl}hydrazinyl­idene)(pyridin-2-yl)methyl]pyridinium tetra­fluoro­borate

aSchool of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People's Republic of China
*Correspondence e-mail: zhangjie973@126.com

(Received 8 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title compound, C23H19N8O+·BF4, one pyridine N atom is protonated. Two intra­molecular N—H⋯N hydrogen bonds occur. In the crystal, inter­molecular N—H⋯N hydrogen bond links neighboring C23H19N8O+ units into cyclic supra­molecular dimers while C—H⋯O hydrogen bonds link the C23H19N8O+ units into a two-dimensional supra­molecular network structure.

Related literature

For the synthesis and crystal structure of the precursor ligand, 1,3-bis­(bis­(2-pyrid­yl)methyl­ene)amino)­urea, see: Manoj et al. (2005[Manoj, E., Prathapachandra Kurup, M. R., Fun, H.-K. & Chantrapromma, S. (2005). Acta Cryst. E61, o4110-o4112.]). For a tetra­nuclear iron(II) complex based on a deriv­ative of the title compound, see: Wu et al. (2009[Wu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475-1478.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19N8O+·BF4

  • Mr = 510.27

  • Triclinic, [P \overline 1]

  • a = 7.9187 (16) Å

  • b = 10.626 (2) Å

  • c = 13.623 (3) Å

  • α = 90.03 (3)°

  • β = 91.50 (3)°

  • γ = 97.85 (3)°

  • V = 1135.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 123 K

  • 0.22 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.981

  • 18299 measured reflections

  • 5175 independent reflections

  • 4025 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 0.98

  • 5175 reflections

  • 346 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.90 (2) 1.92 (2) 2.792 (2) 163.5 (15)
N3—H30⋯N8 0.88 (2) 1.99 (2) 2.658 (2) 132.1 (19)
N4—H40⋯N6 0.83 (2) 2.02 (2) 2.640 (2) 132 (2)
C2—H2⋯O1ii 0.93 2.41 3.083 (2) 129 (1)
C18—H18⋯O1iii 0.93 2.46 3.355 (2) 162 (1)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the ligand 1,3-bis(bis(2-pyridyl)methylene)amino)urea and its derivatives have been employed to assembly clusters with novel topological structures and interesting magnetic and photomagnetic properties (Wu et al., 2009). In our attempt to synthesize a tetranuclear square iron cluster based on the ligand 1,3-bis(bis(2-pyridyl)methylene)amino)urea and FeII(BF4)2.4H2O, the title compound was obtained unexpectedly. Herein, we report the crystal structure of 1,3-bis(bis(2-pyridyl)methylene)amino)urea tetrafluoroborate (I).

The geometry and labeling scheme for the crystal structure of the title complex are depicted in Figure 1. The molecular structure comprises a [C23H19N8O]+ cation and a charge balancing anion [BF4]-. In the molecular structure, one pyridine nitrogen was protonated by one hydrogen. The cation adopts an EE configuration about the hydrazine bonds which is similar to its precursor 1,3-bis(bis(2-pyridyl)methylene)amino)urea (Manoj et al., 2005).

The C—O bond length is 1.2157 (18) Å. The C—Nhydrazine double bond lengths are 1.297 (2) and 1.301 (2) Å, respectively. There are two intramolecular N—H···N hydrogen bonds. A relatively strong intermolecular N—H···N hydrogen bond links two neighboring [C23H19N8O]+ units into a cyclic supramolecular dimer. In addition, C—H···O hydrogen bonds link the [C23H19N8O]+ units into a two-dimensional supramolecular network structure as shown in Figure 2.

Related literature top

For the synthesis and crystal structure of the precursor ligand, 1,3-bis(bis(2-pyridyl)methylene)amino)urea, see: Manoj et al. (2005). For a tetranuclear iron(II) complex based on a derivative of the title compound, see: Wu et al. (2009).

Experimental top

The title complex was prepared as following: a methanol solution (5 ml) of [FeII(BF4)2].4H2O (60 mg, 0.2 mmol) was added slowly to a MeOH suspension (20 ml) containing the ligand 1,3-bis(bis(2-pyridyl)methylene)amino)urea (84 mg, 0.2 mmol). After stirring 30 min, the mixture was then carefully filtered and the resulting solution was kept at room temperature for about two days, producing colorless block-shape crystals of (I) with high yield (ca 60%).

Refinement top

The coordinates of the three H atoms bound to three nitrogen atoms were found from difference Fourier maps and refined freely. H atoms bound to C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 Å. All H atoms were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of part of the crystal structure of (I) along the c axis, showing two-dimensional supramolecular structure through formed by N—H···N and C—H···O hydrogen bonds.
2-[({[Bis(pyridin-2-yl)methylidene]hydrazinecarbonyl}hydrazinylidene)(pyridin- 2-yl)methyl]pyridinium tetrafluoroborate top
Crystal data top
C23H19N8O+·BF4Z = 2
Mr = 510.27F(000) = 524
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9187 (16) ÅCell parameters from 3505 reflections
b = 10.626 (2) Åθ = 2.3–26.7°
c = 13.623 (3) ŵ = 0.12 mm1
α = 90.03 (3)°T = 123 K
β = 91.50 (3)°Block, colorless
γ = 97.85 (3)°0.22 × 0.19 × 0.16 mm
V = 1135.1 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5175 independent reflections
Radiation source: fine-focus sealed tube4025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.974, Tmax = 0.981k = 1313
18299 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1033P)2 + 0.3032P]
where P = (Fo2 + 2Fc2)/3
5175 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C23H19N8O+·BF4γ = 97.85 (3)°
Mr = 510.27V = 1135.1 (4) Å3
Triclinic, P1Z = 2
a = 7.9187 (16) ÅMo Kα radiation
b = 10.626 (2) ŵ = 0.12 mm1
c = 13.623 (3) ÅT = 123 K
α = 90.03 (3)°0.22 × 0.19 × 0.16 mm
β = 91.50 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4025 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.032
18299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.68 e Å3
5175 reflectionsΔρmin = 0.49 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.020 (3)0.896 (2)0.6632 (16)0.033 (6)*
H300.224 (3)0.592 (2)0.5650 (17)0.041 (6)*
H400.141 (3)0.567 (2)0.3285 (17)0.038 (6)*
O10.07813 (16)0.75955 (10)0.40804 (8)0.0215 (3)
N10.05189 (17)0.93425 (12)0.70991 (9)0.0151 (3)
N20.16150 (16)0.75693 (12)0.60077 (9)0.0149 (3)
N30.17522 (17)0.65646 (12)0.54249 (9)0.0147 (3)
N40.16693 (18)0.56751 (12)0.38758 (10)0.0164 (3)
N60.15116 (17)0.43582 (12)0.22247 (9)0.0178 (3)
N70.20613 (16)0.14392 (12)0.42932 (9)0.0154 (3)
N80.32921 (18)0.55934 (13)0.69471 (10)0.0210 (3)
N50.21894 (16)0.46491 (12)0.43220 (9)0.0147 (3)
C130.24217 (19)0.36556 (14)0.38154 (11)0.0143 (3)
C80.27284 (19)0.65124 (14)0.74875 (11)0.0163 (3)
C190.22420 (19)0.34758 (14)0.27322 (11)0.0152 (3)
C140.29165 (19)0.26067 (14)0.44455 (11)0.0142 (3)
C200.2835 (2)0.24569 (15)0.22615 (12)0.0193 (3)
H200.33780.18780.26210.023*
C150.4159 (2)0.28667 (15)0.51871 (11)0.0175 (3)
H150.47290.36850.52760.021*
C50.2903 (2)0.93506 (16)0.81632 (12)0.0219 (4)
H50.38170.89710.84080.026*
C10.13426 (19)0.66862 (14)0.44403 (11)0.0152 (3)
C160.4535 (2)0.18811 (15)0.57937 (11)0.0185 (3)
H160.53660.20260.62910.022*
C60.1830 (2)0.87492 (14)0.74368 (11)0.0158 (3)
C170.3646 (2)0.06836 (15)0.56384 (11)0.0183 (3)
H170.38670.00080.60330.022*
C90.2753 (2)0.64769 (16)0.85125 (12)0.0207 (3)
H90.23260.71020.88710.025*
C180.2421 (2)0.05004 (14)0.48887 (11)0.0174 (3)
H180.18210.03080.47940.021*
C70.20552 (19)0.75424 (14)0.69332 (11)0.0151 (3)
C120.3918 (2)0.46578 (17)0.74277 (13)0.0261 (4)
H120.43090.40250.70590.031*
C20.0211 (2)1.04672 (15)0.74398 (12)0.0208 (3)
H20.07121.08310.71890.025*
C230.1328 (2)0.42228 (16)0.12492 (12)0.0218 (4)
H230.08450.48380.08960.026*
C220.1824 (2)0.32125 (17)0.07416 (12)0.0245 (4)
H220.16340.31350.00660.029*
C100.3423 (2)0.54963 (16)0.89862 (12)0.0237 (4)
H100.34670.54650.96690.028*
C110.4023 (2)0.45699 (16)0.84425 (13)0.0254 (4)
H110.44850.39050.87450.030*
C210.2605 (2)0.23194 (16)0.12549 (12)0.0239 (4)
H210.29700.16390.09300.029*
C30.1261 (2)1.10889 (17)0.81633 (13)0.0276 (4)
H30.10611.18740.84010.033*
C40.2611 (2)1.05221 (18)0.85257 (13)0.0284 (4)
H40.33301.09250.90150.034*
B10.2959 (3)0.8076 (2)0.10945 (17)0.0306 (5)
F10.3407 (2)0.7618 (2)0.20065 (11)0.0788 (5)
F20.42071 (15)0.78336 (12)0.04479 (8)0.0381 (3)
F30.14286 (17)0.73994 (14)0.07990 (12)0.0618 (4)
F40.2908 (2)0.93300 (14)0.11734 (17)0.0898 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (7)0.0149 (6)0.0180 (6)0.0091 (5)0.0041 (5)0.0001 (4)
N10.0181 (7)0.0144 (6)0.0127 (6)0.0024 (5)0.0015 (5)0.0014 (5)
N20.0157 (6)0.0142 (6)0.0147 (6)0.0021 (5)0.0002 (5)0.0019 (5)
N30.0194 (7)0.0118 (6)0.0135 (6)0.0049 (5)0.0013 (5)0.0010 (5)
N40.0245 (7)0.0134 (6)0.0120 (6)0.0052 (5)0.0028 (5)0.0002 (5)
N60.0194 (7)0.0182 (7)0.0157 (6)0.0022 (5)0.0008 (5)0.0007 (5)
N70.0172 (6)0.0135 (6)0.0157 (6)0.0031 (5)0.0009 (5)0.0016 (5)
N80.0269 (8)0.0194 (7)0.0181 (7)0.0082 (6)0.0022 (6)0.0005 (5)
N50.0164 (6)0.0116 (6)0.0160 (6)0.0017 (5)0.0014 (5)0.0013 (5)
C130.0139 (7)0.0139 (7)0.0147 (7)0.0008 (6)0.0005 (6)0.0006 (6)
C80.0141 (7)0.0181 (8)0.0165 (7)0.0019 (6)0.0017 (6)0.0001 (6)
C190.0150 (7)0.0151 (7)0.0147 (7)0.0008 (6)0.0006 (6)0.0001 (6)
C140.0158 (7)0.0130 (7)0.0145 (7)0.0037 (6)0.0028 (6)0.0017 (5)
C200.0224 (8)0.0177 (8)0.0180 (8)0.0028 (6)0.0036 (6)0.0002 (6)
C150.0176 (8)0.0151 (7)0.0194 (8)0.0012 (6)0.0011 (6)0.0011 (6)
C50.0204 (8)0.0261 (9)0.0191 (8)0.0040 (7)0.0034 (6)0.0050 (6)
C10.0165 (7)0.0138 (7)0.0150 (7)0.0015 (6)0.0007 (6)0.0008 (6)
C160.0180 (8)0.0226 (8)0.0158 (7)0.0058 (6)0.0024 (6)0.0003 (6)
C60.0167 (7)0.0172 (7)0.0135 (7)0.0025 (6)0.0015 (6)0.0004 (6)
C170.0205 (8)0.0181 (8)0.0175 (7)0.0064 (6)0.0025 (6)0.0050 (6)
C90.0222 (8)0.0231 (8)0.0172 (8)0.0049 (7)0.0000 (6)0.0001 (6)
C180.0199 (8)0.0130 (7)0.0196 (8)0.0028 (6)0.0027 (6)0.0007 (6)
C70.0139 (7)0.0157 (7)0.0158 (7)0.0020 (6)0.0008 (6)0.0005 (6)
C120.0361 (10)0.0214 (8)0.0229 (9)0.0128 (7)0.0034 (7)0.0009 (7)
C20.0259 (9)0.0180 (8)0.0196 (8)0.0070 (6)0.0004 (7)0.0017 (6)
C230.0246 (9)0.0244 (8)0.0159 (8)0.0025 (7)0.0027 (6)0.0009 (6)
C220.0321 (10)0.0275 (9)0.0125 (8)0.0011 (7)0.0006 (7)0.0027 (6)
C100.0281 (9)0.0266 (9)0.0158 (8)0.0020 (7)0.0031 (7)0.0044 (6)
C110.0306 (9)0.0218 (8)0.0246 (9)0.0080 (7)0.0058 (7)0.0057 (7)
C210.0310 (9)0.0212 (8)0.0195 (8)0.0024 (7)0.0068 (7)0.0050 (6)
C30.0351 (10)0.0214 (9)0.0266 (9)0.0056 (7)0.0011 (8)0.0122 (7)
C40.0287 (9)0.0302 (9)0.0252 (9)0.0013 (7)0.0055 (7)0.0130 (7)
B10.0283 (11)0.0281 (11)0.0357 (12)0.0049 (9)0.0021 (9)0.0079 (9)
F10.0849 (13)0.1169 (15)0.0361 (8)0.0202 (11)0.0023 (8)0.0033 (9)
F20.0329 (6)0.0449 (7)0.0360 (6)0.0037 (5)0.0016 (5)0.0140 (5)
F30.0313 (7)0.0607 (9)0.0918 (12)0.0014 (6)0.0033 (7)0.0231 (8)
F40.0708 (12)0.0280 (8)0.174 (2)0.0124 (7)0.0381 (12)0.0134 (10)
Geometric parameters (Å, º) top
O1—C11.2157 (18)C5—C41.389 (2)
N1—C21.337 (2)C5—H50.9300
N1—C61.357 (2)C16—C171.381 (2)
N1—H10.90 (2)C16—H160.9300
N2—C71.301 (2)C6—C71.488 (2)
N2—N31.3481 (18)C17—C181.385 (2)
N3—C11.3820 (19)C17—H170.9300
N3—H300.89 (2)C9—C101.385 (2)
N4—N51.3557 (17)C9—H90.9300
N4—C11.378 (2)C18—H180.9300
N4—H400.82 (2)C12—C111.387 (2)
N6—C231.339 (2)C12—H120.9300
N6—C191.349 (2)C2—C31.380 (2)
N7—C181.3418 (19)C2—H20.9300
N7—C141.343 (2)C23—C221.383 (2)
N8—C121.335 (2)C23—H230.9300
N8—C81.353 (2)C22—C211.383 (2)
N5—C131.297 (2)C22—H220.9300
C13—C191.489 (2)C10—C111.374 (3)
C13—C141.495 (2)C10—H100.9300
C8—C91.396 (2)C11—H110.9300
C8—C71.480 (2)C21—H210.9300
C19—C201.399 (2)C3—C41.378 (3)
C14—C151.392 (2)C3—H30.9300
C20—C211.384 (2)C4—H40.9300
C20—H200.9300B1—F41.342 (3)
C15—C161.393 (2)B1—F31.373 (3)
C15—H150.9300B1—F11.390 (3)
C5—C61.384 (2)B1—F21.391 (3)
C2—N1—C6123.20 (14)C16—C17—H17120.4
C2—N1—H1117.6 (14)C18—C17—H17120.4
C6—N1—H1119.2 (14)C10—C9—C8118.98 (15)
C7—N2—N3120.02 (13)C10—C9—H9120.5
N2—N3—C1116.77 (13)C8—C9—H9120.5
N2—N3—H30120.6 (15)N7—C18—C17122.81 (14)
C1—N3—H30121.9 (15)N7—C18—H18118.6
N5—N4—C1119.28 (13)C17—C18—H18118.6
N5—N4—H40121.7 (16)N2—C7—C8128.54 (14)
C1—N4—H40118.4 (16)N2—C7—C6111.30 (13)
C23—N6—C19118.19 (14)C8—C7—C6120.15 (13)
C18—N7—C14118.10 (13)N8—C12—C11124.13 (16)
C12—N8—C8117.68 (14)N8—C12—H12117.9
C13—N5—N4120.72 (13)C11—C12—H12117.9
N5—C13—C19127.73 (14)N1—C2—C3120.10 (16)
N5—C13—C14112.55 (13)N1—C2—H2119.9
C19—C13—C14119.72 (13)C3—C2—H2119.9
N8—C8—C9121.70 (14)N6—C23—C22123.18 (16)
N8—C8—C7116.38 (13)N6—C23—H23118.4
C9—C8—C7121.90 (14)C22—C23—H23118.4
N6—C19—C20121.65 (14)C21—C22—C23118.89 (15)
N6—C19—C13116.70 (13)C21—C22—H22120.6
C20—C19—C13121.63 (14)C23—C22—H22120.6
N7—C14—C15122.42 (14)C11—C10—C9119.63 (15)
N7—C14—C13117.28 (13)C11—C10—H10120.2
C15—C14—C13120.22 (13)C9—C10—H10120.2
C21—C20—C19119.31 (15)C10—C11—C12117.84 (15)
C21—C20—H20120.3C10—C11—H11121.1
C19—C20—H20120.3C12—C11—H11121.1
C14—C15—C16118.96 (14)C22—C21—C20118.71 (15)
C14—C15—H15120.5C22—C21—H21120.6
C16—C15—H15120.5C20—C21—H21120.6
C6—C5—C4119.88 (16)C4—C3—C2118.64 (16)
C6—C5—H5120.1C4—C3—H3120.7
C4—C5—H5120.1C2—C3—H3120.7
O1—C1—N4121.74 (14)C3—C4—C5120.25 (16)
O1—C1—N3124.77 (14)C3—C4—H4119.9
N4—C1—N3113.48 (13)C5—C4—H4119.9
C17—C16—C15118.44 (14)F4—B1—F3113.43 (19)
C17—C16—H16120.8F4—B1—F1108.7 (2)
C15—C16—H16120.8F3—B1—F1107.76 (19)
N1—C6—C5117.93 (14)F4—B1—F2110.79 (19)
N1—C6—C7116.20 (13)F3—B1—F2108.98 (17)
C5—C6—C7125.70 (14)F1—B1—F2106.95 (17)
C16—C17—C18119.25 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.90 (2)1.92 (2)2.792 (2)163.5 (15)
N3—H30···N80.88 (2)1.99 (2)2.658 (2)132.1 (19)
N4—H40···N60.83 (2)2.02 (2)2.640 (2)132 (2)
C2—H2···O1ii0.932.413.083 (2)129 (1)
C18—H18···O1iii0.932.463.355 (2)162 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H19N8O+·BF4
Mr510.27
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.9187 (16), 10.626 (2), 13.623 (3)
α, β, γ (°)90.03 (3), 91.50 (3), 97.85 (3)
V3)1135.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
18299, 5175, 4025
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 0.98
No. of reflections5175
No. of parameters346
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.49

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.90 (2)1.92 (2)2.792 (2)163.5 (15)
N3—H30···N80.88 (2)1.99 (2)2.658 (2)132.1 (19)
N4—H40···N60.83 (2)2.02 (2)2.640 (2)132 (2)
C2—H2···O1ii0.9302.4113.083 (2)129.11 (15)
C18—H18···O1iii0.9302.4583.355 (2)161.92 (15)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y1, z.
 

Acknowledgements

This work was supported by supported by the Fundamental Research Funds for the Central Universities (China University of Mining and Technology, No. 2011QNA08).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManoj, E., Prathapachandra Kurup, M. R., Fun, H.-K. & Chantrapromma, S. (2005). Acta Cryst. E61, o4110–o4112.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-Y., Sato, O., Einaga, Y. & Duan, C.-Y. (2009). Angew. Chem. Int. Ed. 48, 1475–1478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds