organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­tri­phenyl­phospho­nium bromide dihydrate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 21 June 2011; accepted 4 July 2011; online 9 July 2011)

In the crystal structure of the title hydrated bromide salt, C20H20P+·Br·2H2O, O—H⋯Br and O—H⋯O hydrogen bonds as well as C—H⋯Br contacts connect the different components into a three-dimensional network. In the cation, the aromatic rings make dihedral angles of 55.24 (5), 76.16 (4) and 85.68 (4)°.

Related literature

For the crystal structures of the monohydrate as well as the dihydrate of tetra­phenyl­phospho­nium bromide, see: Vincent et al. (1988[Vincent, B. R., Knop, O., Linden, A., Cameron, T. S. & Robertson, K. N. (1988). Can. J. Chem. 66, 3060-3069.]); Krug & Müller (1990[Krug, V. & Müller, U. (1990). Acta Cryst. C46, 1577.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20P+·Br·2H2O

  • Mr = 407.27

  • Orthorhombic, P 21 21 21

  • a = 8.8030 (2) Å

  • b = 12.7450 (3) Å

  • c = 17.5779 (3) Å

  • V = 1972.14 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 200 K

  • 0.50 × 0.43 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 1.000

  • 17777 measured reflections

  • 4847 independent reflections

  • 4616 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.048

  • S = 1.04

  • 4847 reflections

  • 235 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2057 Friedel pairs

  • Flack parameter: 0.001 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O90—H901⋯Br1i 0.83 (2) 2.71 (2) 3.5137 (18) 162 (2)
O90—H902⋯Br1 0.84 (2) 2.57 (2) 3.3806 (15) 163 (3)
O91—H911⋯O90i 0.83 (2) 2.10 (2) 2.869 (3) 155 (3)
O91—H912⋯Br1 0.84 (2) 2.70 (2) 3.5315 (17) 174 (3)
C35—H35⋯Br1ii 0.95 2.95 3.8305 (16) 155
C1—H1B⋯Br1iii 0.99 2.70 3.6843 (14) 174
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystallization of ionic compounds is strongly influenced by the relative spatial size ratio of anion to cation, and the presence of different anions may influence the conformation and as well as metric parameters of the cation in the case of bigger, organic cations. At the beginning of a comprehensive study of the influence of various anions on bond lengths and angles among a series of tetra-organo phosphonium compounds, we determined the molecular and crystal structure of the title compound. The molecular structure of the monohydrate as well as the dihydrate of tetraphenylphosphonium bromide are apparent in the literature (Vincent et al., 1988; Krug & Müller, 1990).

The molecular geometry around the P atom is tetrahedral with the respective C–P–C angles covering a range of 105.57 (5)–112.48 (6) °, where the biggest as well as the smallest angle are enclosed between two phenyl groups. The least-squares planes defined by the carbon atoms of the aromatic moieties intersect at angles of 55.24 (5) °, 76.16 (4) ° and 85.68 (4) °. The methyl group of the ethyl substituent adopts a staggered conformation with respect to two of the three phenyl groups if the cation is projected along the phosphorus–ethyl bond.

In the molecule, hydrogen bonds are apparent between the water molecules as well as the bromide anion. The latter also serves as acceptor for C–H···Br contacts that stem from one of the H atoms on a phenyl group's meta-position as well as one of the H atoms of the ethyl substituent's CH2 group. While the first of these C–H···Br contacts falls only by about 0.1 Å below the sum of van der Waals radii, the latter one shows a shortening by more than 0.3 Å. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonds is DDDD on the unitary level, while the C–H···Br contacts necessitate a DD descriptor on the same level. In total, the components of the crystal structure are connected to form a three-dimensional network with the water molecules and bromide anions forming strands along the crystallographic a axis (Fig. 2). The closest intercentroid distance between two π-systems was measured at 4.5109 (7) Å.

The packing of the title compound is shown in Figure 3.

Related literature top

For the crystal structures of the monohydrate as well as the dihydrate of tetraphenylphosphonium bromide, see: Vincent et al. (1988); Krug & Müller (1990). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (KEK). Crystals suitable for the X-ray diffraction study were obtained upon recrystallization from boiling water with subsequent evaporation of the solvent at ambient temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms and C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydrogen atoms of the methyl group were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2008)]. The H atoms of the water molecules were located on a difference Fourier map and refined using a DFIX instruction (dO—H set to 0.83 Å), with individual thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, indicated by dashed lines, viewed along [0 0 - 1]. For clarity, only the water molecules as well as the bromide anion are depicted.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
Ethyltriphenylphosphonium bromide dihydrate top
Crystal data top
C20H20P+·Br·2H2OF(000) = 840
Mr = 407.27Dx = 1.372 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9915 reflections
a = 8.8030 (2) Åθ = 2.6–28.3°
b = 12.7450 (3) ŵ = 2.17 mm1
c = 17.5779 (3) ÅT = 200 K
V = 1972.14 (7) Å3Block, colourless
Z = 40.50 × 0.43 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
4847 independent reflections
Radiation source: fine-focus sealed tube4616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.750, Tmax = 1.000k = 1717
17777 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0125P)2 + 0.040P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4847 reflectionsΔρmax = 0.36 e Å3
235 parametersΔρmin = 0.25 e Å3
6 restraintsAbsolute structure: Flack (1983), 2057 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (4)
Crystal data top
C20H20P+·Br·2H2OV = 1972.14 (7) Å3
Mr = 407.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8030 (2) ŵ = 2.17 mm1
b = 12.7450 (3) ÅT = 200 K
c = 17.5779 (3) Å0.50 × 0.43 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
4847 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4616 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.015
17777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.25 e Å3
4847 reflectionsAbsolute structure: Flack (1983), 2057 Friedel pairs
235 parametersAbsolute structure parameter: 0.001 (4)
6 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.11207 (4)0.62436 (2)0.247940 (19)0.01803 (6)
C10.14585 (17)0.71121 (9)0.32676 (8)0.0254 (3)
H1A0.08270.77490.32070.031*
H1B0.11480.67610.37450.031*
C20.31276 (19)0.74301 (11)0.33249 (10)0.0370 (4)
H2A0.34300.77990.28600.056*
H2B0.37560.68010.33880.056*
H2C0.32680.78940.37640.056*
C110.17287 (16)0.69097 (9)0.16351 (7)0.0214 (3)
C120.09242 (18)0.78138 (10)0.14349 (9)0.0307 (3)
H120.00410.80080.17120.037*
C130.1415 (2)0.84243 (11)0.08333 (9)0.0403 (4)
H130.08690.90370.06930.048*
C140.2709 (2)0.81376 (14)0.04356 (11)0.0477 (5)
H140.30580.85620.00270.057*
C150.3489 (2)0.72443 (14)0.06281 (10)0.0463 (4)
H150.43650.70490.03450.056*
C160.30136 (18)0.66239 (12)0.12314 (9)0.0317 (3)
H160.35630.60100.13660.038*
C210.20967 (14)0.50274 (8)0.26212 (8)0.0197 (2)
C220.26143 (16)0.47526 (10)0.33420 (8)0.0253 (3)
H220.25150.52300.37540.030*
C230.32766 (18)0.37759 (10)0.34554 (9)0.0318 (3)
H230.36340.35820.39460.038*
C240.34127 (18)0.30872 (10)0.28520 (10)0.0326 (3)
H240.38750.24220.29300.039*
C250.28901 (17)0.33492 (10)0.21405 (9)0.0308 (3)
H250.29950.28670.17320.037*
C260.22083 (16)0.43177 (9)0.20171 (8)0.0249 (3)
H260.18230.44950.15290.030*
C310.08483 (13)0.59071 (9)0.23979 (7)0.0213 (2)
C320.17155 (16)0.57888 (10)0.30530 (8)0.0273 (3)
H320.13060.59660.35360.033*
C330.31895 (18)0.54080 (11)0.29909 (10)0.0350 (3)
H330.38000.53290.34330.042*
C340.37636 (17)0.51460 (10)0.22885 (10)0.0370 (4)
H340.47680.48780.22510.044*
C350.29041 (18)0.52654 (11)0.16363 (10)0.0344 (3)
H350.33210.50860.11550.041*
C360.14279 (16)0.56485 (9)0.16856 (9)0.0278 (3)
H360.08260.57320.12410.033*
Br10.449193 (19)0.407894 (11)0.011711 (8)0.03538 (5)
O900.3316 (2)0.15581 (12)0.02226 (11)0.0685 (4)
H9010.2440 (19)0.1498 (18)0.0054 (14)0.077 (9)*
H9020.340 (4)0.2210 (13)0.019 (2)0.127 (13)*
O910.0667 (2)0.49128 (14)0.01528 (11)0.0693 (4)
H9110.017 (3)0.4362 (16)0.0119 (16)0.091 (10)*
H9120.157 (2)0.472 (2)0.0104 (19)0.117 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01657 (14)0.01950 (12)0.01802 (15)0.00030 (10)0.00031 (14)0.00029 (10)
C10.0313 (8)0.0232 (5)0.0218 (6)0.0020 (5)0.0001 (6)0.0033 (5)
C20.0371 (9)0.0361 (7)0.0379 (9)0.0122 (6)0.0038 (8)0.0069 (6)
C110.0222 (6)0.0234 (5)0.0184 (6)0.0038 (5)0.0015 (6)0.0024 (4)
C120.0351 (8)0.0284 (6)0.0285 (7)0.0013 (5)0.0018 (6)0.0036 (5)
C130.0585 (11)0.0302 (6)0.0321 (8)0.0061 (7)0.0111 (9)0.0098 (6)
C140.0624 (12)0.0506 (9)0.0302 (8)0.0207 (9)0.0006 (9)0.0158 (7)
C150.0424 (10)0.0613 (10)0.0354 (9)0.0063 (8)0.0152 (9)0.0080 (8)
C160.0286 (7)0.0378 (7)0.0289 (8)0.0004 (6)0.0058 (7)0.0045 (6)
C210.0152 (6)0.0197 (4)0.0242 (7)0.0011 (4)0.0001 (6)0.0020 (4)
C220.0251 (7)0.0277 (6)0.0231 (7)0.0003 (5)0.0004 (6)0.0023 (5)
C230.0298 (7)0.0326 (6)0.0331 (8)0.0015 (6)0.0036 (7)0.0118 (5)
C240.0292 (7)0.0206 (5)0.0482 (9)0.0023 (5)0.0046 (8)0.0064 (6)
C250.0318 (8)0.0209 (5)0.0396 (9)0.0028 (5)0.0071 (7)0.0051 (6)
C260.0241 (7)0.0256 (6)0.0251 (7)0.0033 (5)0.0003 (6)0.0010 (5)
C310.0175 (5)0.0195 (4)0.0270 (6)0.0003 (4)0.0007 (5)0.0004 (5)
C320.0223 (6)0.0292 (6)0.0304 (7)0.0003 (5)0.0010 (6)0.0057 (5)
C330.0232 (7)0.0343 (7)0.0474 (10)0.0012 (6)0.0075 (7)0.0111 (6)
C340.0198 (7)0.0282 (6)0.0630 (11)0.0043 (5)0.0044 (8)0.0072 (6)
C350.0267 (7)0.0320 (6)0.0444 (10)0.0018 (6)0.0106 (7)0.0053 (6)
C360.0228 (7)0.0291 (6)0.0315 (8)0.0004 (5)0.0023 (6)0.0025 (5)
Br10.03888 (9)0.04024 (7)0.02703 (7)0.00297 (6)0.00667 (7)0.00226 (5)
O900.0591 (10)0.0589 (8)0.0876 (13)0.0081 (7)0.0044 (10)0.0171 (9)
O910.0564 (10)0.0833 (10)0.0680 (10)0.0059 (9)0.0105 (10)0.0101 (9)
Geometric parameters (Å, º) top
P1—C211.7896 (11)C22—H220.9500
P1—C311.7913 (12)C23—C241.382 (2)
P1—C111.7915 (13)C23—H230.9500
P1—C11.7981 (13)C24—C251.374 (2)
C1—C21.528 (2)C24—H240.9500
C1—H1A0.9900C25—C261.3896 (18)
C1—H1B0.9900C25—H250.9500
C2—H2A0.9800C26—H260.9500
C2—H2B0.9800C31—C321.3896 (19)
C2—H2C0.9800C31—C361.3917 (19)
C11—C161.384 (2)C32—C331.390 (2)
C11—C121.3976 (18)C32—H320.9500
C12—C131.382 (2)C33—C341.375 (2)
C12—H120.9500C33—H330.9500
C13—C141.385 (3)C34—C351.382 (2)
C13—H130.9500C34—H340.9500
C14—C151.372 (3)C35—C361.391 (2)
C14—H140.9500C35—H350.9500
C15—C161.388 (2)C36—H360.9500
C15—H150.9500O90—H9010.830 (15)
C16—H160.9500O90—H9020.836 (15)
C21—C221.3914 (19)O91—H9110.830 (15)
C21—C261.3983 (18)O91—H9120.836 (16)
C22—C231.3889 (18)
C21—P1—C31105.57 (5)C22—C21—P1120.13 (10)
C21—P1—C11112.48 (6)C26—C21—P1119.22 (10)
C31—P1—C11109.65 (6)C23—C22—C21119.58 (13)
C21—P1—C1110.27 (6)C23—C22—H22120.2
C31—P1—C1111.65 (6)C21—C22—H22120.2
C11—P1—C1107.28 (6)C24—C23—C22119.71 (14)
C2—C1—P1111.91 (10)C24—C23—H23120.1
C2—C1—H1A109.2C22—C23—H23120.1
P1—C1—H1A109.2C25—C24—C23121.01 (12)
C2—C1—H1B109.2C25—C24—H24119.5
P1—C1—H1B109.2C23—C24—H24119.5
H1A—C1—H1B107.9C24—C25—C26120.18 (13)
C1—C2—H2A109.5C24—C25—H25119.9
C1—C2—H2B109.5C26—C25—H25119.9
H2A—C2—H2B109.5C25—C26—C21119.11 (13)
C1—C2—H2C109.5C25—C26—H26120.4
H2A—C2—H2C109.5C21—C26—H26120.4
H2B—C2—H2C109.5C32—C31—C36121.22 (12)
C16—C11—C12120.13 (12)C32—C31—P1119.43 (10)
C16—C11—P1122.97 (10)C36—C31—P1118.90 (10)
C12—C11—P1116.61 (11)C33—C32—C31119.07 (14)
C13—C12—C11119.88 (14)C33—C32—H32120.5
C13—C12—H12120.1C31—C32—H32120.5
C11—C12—H12120.1C34—C33—C32119.89 (15)
C12—C13—C14119.65 (15)C34—C33—H33120.1
C12—C13—H13120.2C32—C33—H33120.1
C14—C13—H13120.2C33—C34—C35121.12 (13)
C15—C14—C13120.40 (15)C33—C34—H34119.4
C15—C14—H14119.8C35—C34—H34119.4
C13—C14—H14119.8C34—C35—C36119.90 (15)
C14—C15—C16120.67 (17)C34—C35—H35120.0
C14—C15—H15119.7C36—C35—H35120.0
C16—C15—H15119.7C35—C36—C31118.80 (14)
C11—C16—C15119.25 (15)C35—C36—H36120.6
C11—C16—H16120.4C31—C36—H36120.6
C15—C16—H16120.4H901—O90—H90298.5 (19)
C22—C21—C26120.38 (11)H911—O91—H912104 (2)
C21—P1—C1—C264.80 (11)C26—C21—C22—C231.5 (2)
C31—P1—C1—C2178.17 (10)P1—C21—C22—C23175.58 (11)
C11—P1—C1—C258.01 (12)C21—C22—C23—C240.1 (2)
C21—P1—C11—C1612.47 (14)C22—C23—C24—C250.6 (2)
C31—P1—C11—C16129.61 (12)C23—C24—C25—C260.2 (2)
C1—P1—C11—C16108.96 (12)C24—C25—C26—C211.5 (2)
C21—P1—C11—C12173.72 (10)C22—C21—C26—C252.20 (19)
C31—P1—C11—C1256.58 (12)P1—C21—C26—C25176.35 (10)
C1—P1—C11—C1264.85 (12)C21—P1—C31—C3284.70 (11)
C16—C11—C12—C130.1 (2)C11—P1—C31—C32153.90 (10)
P1—C11—C12—C13173.87 (12)C1—P1—C31—C3235.14 (12)
C11—C12—C13—C140.4 (2)C21—P1—C31—C3687.72 (11)
C12—C13—C14—C151.0 (3)C11—P1—C31—C3633.68 (11)
C13—C14—C15—C161.1 (3)C1—P1—C31—C36152.44 (10)
C12—C11—C16—C150.0 (2)C36—C31—C32—C330.21 (19)
P1—C11—C16—C15173.60 (13)P1—C31—C32—C33172.45 (10)
C14—C15—C16—C110.6 (3)C31—C32—C33—C340.6 (2)
C31—P1—C21—C22103.52 (11)C32—C33—C34—C350.7 (2)
C11—P1—C21—C22136.94 (11)C33—C34—C35—C360.5 (2)
C1—P1—C21—C2217.23 (12)C34—C35—C36—C310.2 (2)
C31—P1—C21—C2670.65 (11)C32—C31—C36—C350.01 (19)
C11—P1—C21—C2648.89 (12)P1—C31—C36—C35172.29 (10)
C1—P1—C21—C26168.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H901···Br1i0.83 (2)2.71 (2)3.5137 (18)162 (2)
O90—H902···Br10.84 (2)2.57 (2)3.3806 (15)163 (3)
O91—H911···O90i0.83 (2)2.10 (2)2.869 (3)155 (3)
O91—H912···Br10.84 (2)2.70 (2)3.5315 (17)174 (3)
C35—H35···Br1ii0.952.953.8305 (16)155
C1—H1B···Br1iii0.992.703.6843 (14)174
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20P+·Br·2H2O
Mr407.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)8.8030 (2), 12.7450 (3), 17.5779 (3)
V3)1972.14 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.50 × 0.43 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17777, 4847, 4616
Rint0.015
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.048, 1.04
No. of reflections4847
No. of parameters235
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.25
Absolute structureFlack (1983), 2057 Friedel pairs
Absolute structure parameter0.001 (4)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O90—H901···Br1i0.830 (15)2.714 (16)3.5137 (18)162 (2)
O90—H902···Br10.836 (15)2.572 (16)3.3806 (15)163 (3)
O91—H911···O90i0.830 (15)2.096 (18)2.869 (3)155 (3)
O91—H912···Br10.836 (16)2.699 (16)3.5315 (17)174 (3)
C35—H35···Br1ii0.952.953.8305 (16)155
C1—H1B···Br1iii0.992.703.6843 (14)174
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z; (iii) x+1/2, y+1, z+1/2.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrug, V. & Müller, U. (1990). Acta Cryst. C46, 1577.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVincent, B. R., Knop, O., Linden, A., Cameron, T. S. & Robertson, K. N. (1988). Can. J. Chem. 66, 3060–3069.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds