organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2164-o2165

2-Hy­dr­oxy-N-(4-meth­­oxy­benz­yl)-4-nitro­anilinium chloride

aLaboratoire des Produits Naturels d'origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 28 June 2011; accepted 21 July 2011; online 30 July 2011)

The crystal structure of the title compound, C14H15N2O4+·Cl, can be described as being composed of layers containing both cations and anions that are staggered along [010]. Two types of the hydrogen bonds are observed, viz. cation–anion and cation–cation. The chloride anions are acceptors of the strong hydrogen bonds donated by the secondary amine and the hy­droxy groups. The packing is also stabilized by weak C—H⋯O inter­molecular hydrogen bonds. An intra­molecular N—H⋯O inter­action also occurs.

Related literature

For the preparation of amines, see: Apodaca & Xiao (2001[Apodaca, R. & Xiao, W. (2001). Org. Lett. 3, 1745-1748.]); Baxter & Reitz (2002[Baxter, E. W. & Reitz, A. B. (2002). Org. React. 59, 1-714.]); Salvatore et al. (2002[Salvatore, R. N., Nagle, A. S. & Jung, K. W. (2002). J. Org. Chem. 67, 674-683.]); Sato et al. (2004[Sato, S., Sakamoto, T., Miyazawa, E. & Kikugawa, Y. (2004). Tetrahedron, 60, 7899-7906.]). For applications of amines, see: Bergeron et al. (1997[Bergeron, R. J., Feng, Y., Weimer, W. R., McManis, J. S., Dimova, H., Porter, C., Raisler, B. & Phanstiel, O. (1997). J. Med. Chem. 40, 1475-1494.]); Seayad et al. (2002[Seayad, A., Ahmed, M., Klein, H., Jackstell, R., Gross, T. & Beller, M. (2002). Science, 297, 1676-1678.]). For background to hydrogen bonding, see: Desiraju (2003[Desiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7, edited by G. R. Desiraju, pp. 5-7. John Wiley & Sons Ltd.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]) and for hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N2O4+·Cl

  • Mr = 310.73

  • Monoclinic, C 2/c

  • a = 32.1166 (9) Å

  • b = 7.4888 (2) Å

  • c = 13.0907 (4) Å

  • β = 108.655 (2)°

  • V = 2983.09 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.18 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.984

  • 11129 measured reflections

  • 3359 independent reflections

  • 2290 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.079

  • S = 1.35

  • 3359 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.84 2.16 2.9950 (13) 174
N10—H10A⋯O1 0.92 2.22 2.652 (2) 108
N10—H10A⋯Cl1i 0.92 2.30 3.1082 (17) 146
N10—H10B⋯Cl1ii 0.92 2.23 3.0518 (15) 149
C8—H8⋯O5ii 0.93 2.58 3.273 (2) 132
C14—H14⋯O6iii 0.93 2.48 3.388 (3) 165
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Amines are one of the most important classes of biologically active compounds of natural origin. They are also widely used in the chemical industry as basic intermediates for preparation of e.g. fine chemicals, pharmaceuticals and agrochemicals (Seayad et al., 2002).

Due to their biological properties, amines have played important role in chemotherapeutic treatment of different diseases (Bergeron et al., 1997).

Alkylation of the secondary amines with alkyl halides is the most straightforward method for the synthesis of the tertiary amines (Salvatore et al., 2002). Reductive amination of aldehydes andketones is a powerful tool for the synthesis of amines. This approach is extensively used for rapid access to diverse sets of amines (Sato et al., 2004; Baxter et al., 2002; Apodaca et al., 2001).

The synthetic route we envisioned for preparation of the title compounds consists of a one-step reductive amination of aromatic aldehydes with primary amine at acid conditions (pH = 4-5). We found that this could be efficiently conducted in methanol at room temperature using the excess of reductive agent (NaBH3CN). Under these conditions 2-(4-methoxybenzylamino)-5-nitrophenol was cleanly obtained in very good chemical yield (85%).

Fig. 1 shows the title molecule. The two benzene rings contain the interplanar angle equal to 35.35 (6)°. In the crystal packing, the important role play the hydrogen bonds. In the title structure, two types of hydrogen bonds are present, interconnecting the cations with the anions as well as mutually the cations. The chloride anions are involved as acceptors in the strong hydrogen bonds (Desiraju, 2003; Dorn et al. 2005) with the secondary amine and the hydroxy group stemming from the cation (Tab. 1), i.e. in [O—H···Cl- and N—H···Cl-] hydrogen bonds interactions.

The layers staggered along the b axis can be discerned in the crystal structure (Fig. 2). Each layer contains dimers composed of the cations and Cl-. These dimers are situated about the crystallographic two-fold axes. The dimers form the motifs R24(14) (Etter et al., 1990) with a pair of chains O1-H1···Cl1···H10a-N10-C1-C9 (Fig. 3). Moreover, the dimers are interconnected with those in the adjacent layer by another pair of the hydrogen bonds Cl1···H10b-N10-H10a with the graph set motif R24(8) (Fig. 3). The latter motifs are situated about the crystallographic inversion centres. The packing is also stabilized by weak N—H···O (intramolecular) and C—H···O (intermolecular) interactions (Fig. 4, Tab. 1). Fig. 5 shows the projection of the structure along the a axis.

Related literature top

For the preparation of amines, see: Apodaca & Xiao (2001); Baxter & Reitz (2002); Salvatore et al. (2002); Sato et al. (2004). For applications of amines, see: Bergeron et al. (1997); Seayad et al. (2002). For background to hydrogen bonding, see: Desiraju (2003); Dorn et al. (2005) and for hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

To the solution of 4-methoxybenzaldehyde (2 mmol) in dry methanol (10 ml) 5-nitro-2-aminophenol (2 mmol) was added and acidified by concentrated HCl until pH = 6. After vigorous stirring for 2 h at room temperature, NaBH3CN (6 mmol) was added. On completion of the reaction, as indicated by thin layer chromatography (ethyl acetate/hexane: 1/3 as eluent), the excess of the hydride was carefully destroyed by slow addition of 20 ml of cold water. The mixture was left for several hours and the resulting precipitate was filtered off, washed with water, then with ethanol and with hexane. 2-(4-methoxybenzylamino)-5-nitrophenol was identified by IR, 1H and 13C NMR spectroscopies. Colourless prismatic crystals (0.06×0.12×0.18 mm) of the title structure were obtained by slow crystallization from the aqueous solution with pH = 5.5.

Refinement top

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; Cmethyl—Hmethyl = 0.98 Å; Cmethylene—Hmethylene = 0.99Å and Nsec.amine—Hsec.amine = 0.84 Å. The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl/hydroxy) = 1.5Ueq(Cmethyl/Ohydroxy) or Uiso(Haryl/methylene/sec. amine) = 1.2Ueq(Caryl/Cmethylene/Nsec. amine).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule (Farrugia, 1997) with the atomic labelling scheme. The displacement parameters are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title structure viewed down the c axis (Brandenburg & Berndt, 2001). Cl is shown in green, N in blue and C in grey.
[Figure 3] Fig. 3. A section of the title structure showing the hydrogen bonds N—H···Cl and O—H···Cl as dashed lines (Brandenburg & Berndt, 2001). Cl is shown in green, N in blue and C in grey.
[Figure 4] Fig. 4. A section of the title structure showing intermolecular hydrogen bond N—H···O and weak C—H···O interactions as dashed lines (Brandenburg & Berndt, 2001). Cl is shown in green, N in blue and C in grey.
[Figure 5] Fig. 5. The packing of the title structure viewed down the a axis (Brandenburg & Berndt, 2001). Cl is shown in green, N in blue and C in grey.
2-Hydroxy-N-(4-methoxybenzyl)-4-nitroanilinium chloride top
Crystal data top
C14H15N2O4+·ClF(000) = 1296
Mr = 310.73Dx = 1.384 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1996 reflections
a = 32.1166 (9) Åθ = 2.7–25.9°
b = 7.4888 (2) ŵ = 0.27 mm1
c = 13.0907 (4) ÅT = 100 K
β = 108.655 (2)°Prism, colourless
V = 2983.09 (15) Å30.18 × 0.12 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 4136
Tmin = 0.784, Tmax = 0.984k = 98
11129 measured reflectionsl = 1613
3359 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.079H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
59 constraints
Crystal data top
C14H15N2O4+·ClV = 2983.09 (15) Å3
Mr = 310.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.1166 (9) ŵ = 0.27 mm1
b = 7.4888 (2) ÅT = 100 K
c = 13.0907 (4) Å0.18 × 0.12 × 0.06 mm
β = 108.655 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2290 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.984Rint = 0.049
11129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.35Δρmax = 0.32 e Å3
3359 reflectionsΔρmin = 0.25 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05089 (4)0.24108 (16)0.25570 (10)0.0282 (4)
H10.04810.25130.3170.042*
O50.19661 (4)0.3946 (2)0.52794 (12)0.0450 (4)
O60.23649 (5)0.4782 (2)0.43081 (12)0.0596 (5)
O180.16637 (4)0.13654 (17)0.26241 (11)0.0333 (4)
N40.20173 (6)0.4259 (2)0.44038 (15)0.0365 (5)
N100.05796 (5)0.31371 (19)0.06366 (12)0.0219 (4)
H10A0.03290.31660.08340.026*
H10B0.05620.40620.01620.026*
C10.09069 (6)0.3047 (2)0.25869 (16)0.0223 (5)
C20.12573 (6)0.3321 (2)0.35182 (16)0.0250 (5)
H20.12330.30740.41940.03*
C30.16445 (6)0.3973 (3)0.34105 (16)0.0259 (5)
C70.16978 (6)0.4387 (3)0.24313 (16)0.0289 (5)
H70.19630.48330.23950.035*
C80.13458 (6)0.4118 (2)0.15093 (16)0.0247 (5)
H80.13690.4390.08370.03*
C90.09576 (6)0.3441 (2)0.15932 (15)0.0207 (5)
C110.05879 (6)0.1389 (2)0.00555 (16)0.0273 (5)
H11A0.0680.0440.05840.033*
H11B0.02930.11160.04070.033*
C120.08902 (6)0.1425 (2)0.06154 (16)0.0232 (5)
C130.13234 (6)0.0854 (2)0.02110 (16)0.0267 (5)
H130.14320.04590.04990.032*
C140.15987 (6)0.0858 (2)0.08398 (16)0.0264 (5)
H140.18910.05070.05480.032*
C150.14329 (6)0.1393 (2)0.19111 (16)0.0236 (5)
C160.10009 (6)0.1979 (2)0.23310 (15)0.0245 (5)
H160.0890.23530.30450.029*
C170.07379 (6)0.2001 (2)0.16807 (16)0.0248 (5)
H170.0450.24120.19620.03*
C190.21172 (6)0.0849 (3)0.22251 (18)0.0447 (6)
H19A0.21390.03510.19550.067*
H19B0.22730.16410.16540.067*
H19C0.22430.09120.27990.067*
Cl10.042616 (15)0.30709 (6)0.47404 (4)0.02477 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (8)0.0383 (9)0.0212 (8)0.0058 (6)0.0133 (7)0.0010 (6)
O50.0345 (9)0.0751 (12)0.0242 (9)0.0038 (8)0.0079 (7)0.0032 (8)
O60.0226 (9)0.1194 (16)0.0372 (10)0.0117 (9)0.0102 (8)0.0126 (10)
O180.0293 (8)0.0455 (10)0.0306 (9)0.0039 (7)0.0174 (7)0.0011 (7)
N40.0260 (11)0.0543 (13)0.0292 (12)0.0056 (9)0.0087 (9)0.0083 (10)
N100.0229 (9)0.0259 (10)0.0201 (9)0.0018 (7)0.0112 (7)0.0006 (8)
C10.0221 (11)0.0214 (11)0.0265 (12)0.0034 (9)0.0120 (9)0.0004 (9)
C20.0275 (12)0.0290 (13)0.0200 (11)0.0072 (9)0.0096 (9)0.0017 (9)
C30.0215 (11)0.0328 (13)0.0230 (12)0.0054 (9)0.0066 (9)0.0049 (10)
C70.0209 (11)0.0378 (14)0.0309 (13)0.0003 (9)0.0125 (10)0.0048 (10)
C80.0268 (11)0.0309 (13)0.0211 (11)0.0013 (9)0.0140 (9)0.0004 (9)
C90.0205 (10)0.0206 (12)0.0212 (11)0.0015 (8)0.0072 (9)0.0018 (9)
C110.0337 (12)0.0237 (12)0.0263 (12)0.0035 (9)0.0121 (10)0.0044 (9)
C120.0285 (12)0.0216 (12)0.0217 (11)0.0027 (9)0.0112 (9)0.0035 (9)
C130.0321 (12)0.0284 (13)0.0192 (11)0.0032 (10)0.0073 (9)0.0007 (9)
C140.0220 (11)0.0317 (13)0.0246 (12)0.0039 (9)0.0060 (9)0.0026 (10)
C150.0254 (11)0.0257 (12)0.0228 (12)0.0031 (9)0.0120 (9)0.0046 (9)
C160.0276 (11)0.0276 (12)0.0171 (11)0.0006 (9)0.0053 (9)0.0017 (9)
C170.0214 (11)0.0267 (12)0.0253 (12)0.0014 (9)0.0064 (9)0.0019 (10)
C190.0297 (13)0.0644 (17)0.0467 (16)0.0054 (12)0.0218 (12)0.0007 (13)
Cl10.0245 (3)0.0286 (3)0.0224 (3)0.0021 (2)0.0091 (2)0.0001 (2)
Geometric parameters (Å, º) top
O1—C11.353 (2)C8—C91.382 (2)
O1—H10.84C8—H80.93
O5—N41.231 (2)C11—C121.503 (2)
O6—N41.2268 (19)C11—H11A0.97
O18—C151.365 (2)C11—H11B0.97
O18—C191.434 (2)C12—C131.389 (2)
N4—C31.475 (2)C12—C171.390 (3)
N10—C91.456 (2)C13—C141.387 (2)
N10—C111.519 (2)C13—H130.93
N10—H10A0.9201C14—C151.390 (3)
N10—H10B0.9201C14—H140.93
C1—C21.385 (2)C15—C161.390 (2)
C1—C91.393 (2)C16—C171.378 (2)
C2—C31.385 (2)C16—H160.93
C2—H20.93C17—H170.93
C3—C71.381 (3)C19—H19A0.96
C7—C81.379 (2)C19—H19B0.96
C7—H70.93C19—H19C0.96
C1—O1—H1109.3C12—C11—H11A108.9
C15—O18—C19117.73 (15)N10—C11—H11A108.9
O6—N4—O5123.56 (18)C12—C11—H11B108.9
O6—N4—C3117.71 (18)N10—C11—H11B108.9
O5—N4—C3118.73 (17)H11A—C11—H11B107.7
C9—N10—C11114.97 (13)C13—C12—C17117.77 (18)
C9—N10—H10A108.5C13—C12—C11121.83 (18)
C11—N10—H10A108.5C17—C12—C11120.38 (17)
C9—N10—H10B108.5C14—C13—C12121.61 (18)
C11—N10—H10B108.5C14—C13—H13119.2
H10A—N10—H10B107.5C12—C13—H13119.2
O1—C1—C2124.88 (17)C13—C14—C15119.21 (18)
O1—C1—C9116.05 (17)C13—C14—H14120.4
C2—C1—C9119.07 (17)C15—C14—H14120.4
C3—C2—C1117.78 (18)O18—C15—C16115.21 (17)
C3—C2—H2121.1O18—C15—C14124.67 (17)
C1—C2—H2121.1C16—C15—C14120.11 (18)
C7—C3—C2123.74 (19)C17—C16—C15119.42 (18)
C7—C3—N4118.62 (17)C17—C16—H16120.3
C2—C3—N4117.63 (18)C15—C16—H16120.3
C3—C7—C8117.97 (18)C16—C17—C12121.83 (18)
C3—C7—H7121C16—C17—H17119.1
C8—C7—H7121C12—C17—H17119.1
C9—C8—C7119.44 (18)O18—C19—H19A109.5
C9—C8—H8120.3O18—C19—H19B109.5
C7—C8—H8120.3H19A—C19—H19B109.5
C8—C9—C1121.97 (18)O18—C19—H19C109.5
C8—C9—N10120.92 (17)H19A—C19—H19C109.5
C1—C9—N10117.10 (16)H19B—C19—H19C109.5
C12—C11—N10113.27 (14)
O1—C1—C2—C3179.67 (17)C11—N10—C9—C882.5 (2)
C9—C1—C2—C30.2 (3)C11—N10—C9—C198.47 (19)
C1—C2—C3—C70.9 (3)C9—N10—C11—C1277.3 (2)
C1—C2—C3—N4179.87 (16)N10—C11—C12—C1393.1 (2)
O6—N4—C3—C73.1 (3)N10—C11—C12—C1788.4 (2)
O5—N4—C3—C7177.68 (18)C17—C12—C13—C140.3 (3)
O6—N4—C3—C2177.70 (18)C11—C12—C13—C14178.75 (17)
O5—N4—C3—C21.6 (3)C12—C13—C14—C152.1 (3)
C2—C3—C7—C80.6 (3)C19—O18—C15—C16177.25 (17)
N4—C3—C7—C8179.78 (17)C19—O18—C15—C143.9 (3)
C3—C7—C8—C90.5 (3)C13—C14—C15—O18176.41 (17)
C7—C8—C9—C11.2 (3)C13—C14—C15—C162.4 (3)
C7—C8—C9—N10179.87 (16)O18—C15—C16—C17178.03 (16)
O1—C1—C9—C8179.28 (16)C14—C15—C16—C170.9 (3)
C2—C1—C9—C80.8 (3)C15—C16—C17—C121.0 (3)
O1—C1—C9—N100.3 (2)C13—C12—C17—C161.3 (3)
C2—C1—C9—N10179.82 (15)C11—C12—C17—C16177.19 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.842.162.9950 (13)174
N10—H10A···O10.922.222.652 (2)108
N10—H10A···Cl1i0.922.303.1082 (17)146
N10—H10B···Cl1ii0.922.233.0518 (15)149
C8—H8···O5ii0.932.583.273 (2)132
C14—H14···O6iii0.932.483.388 (3)165
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15N2O4+·Cl
Mr310.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)32.1166 (9), 7.4888 (2), 13.0907 (4)
β (°) 108.655 (2)
V3)2983.09 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.18 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.784, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11129, 3359, 2290
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.079, 1.35
No. of reflections3359
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.842.162.9950 (13)174
N10—H10A···O10.922.222.652 (2)108
N10—H10A···Cl1i0.922.303.1082 (17)146
N10—H10B···Cl1ii0.922.233.0518 (15)149
C8—H8···O5ii0.932.583.273 (2)132
C14—H14···O6iii0.932.483.388 (3)165
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2.
 

Footnotes

Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria

Acknowledgements

We are grateful to all personnel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance.

References

First citationApodaca, R. & Xiao, W. (2001). Org. Lett. 3, 1745–1748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaxter, E. W. & Reitz, A. B. (2002). Org. React. 59, 1–714.  CAS Google Scholar
First citationBergeron, R. J., Feng, Y., Weimer, W. R., McManis, J. S., Dimova, H., Porter, C., Raisler, B. & Phanstiel, O. (1997). J. Med. Chem. 40, 1475–1494.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7, edited by G. R. Desiraju, pp. 5–7. John Wiley & Sons Ltd.  Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSalvatore, R. N., Nagle, A. S. & Jung, K. W. (2002). J. Org. Chem. 67, 674–683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSato, S., Sakamoto, T., Miyazawa, E. & Kikugawa, Y. (2004). Tetrahedron, 60, 7899–7906.  Web of Science CrossRef CAS Google Scholar
First citationSeayad, A., Ahmed, M., Klein, H., Jackstell, R., Gross, T. & Beller, M. (2002). Science, 297, 1676–1678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2164-o2165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds