metal-organic compounds
Diammine(2,2′-bipyridine)bis(thiocyanato-κN)cobalt(III) diamminetetrakis(thiocyanato-κN)chromate(III) acetonitrile disolvate
aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrs'ka St, Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com
The new heterometallic title complex, [Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2CH3CN, has been prepared using the open-air reaction of cobalt powder, Reineckes salt and 2,2′-bipyridine (dpy) in acetonitrile. The consists of discrete cationic [Co(NCS)2(NH3)2(dpy)]+ and anionic [Cr(NCS)4(NH3)2]− building blocks, both with 2 symmetry, and acetonitrile solvent molecules, which are linked together by N—H⋯N hydrogen bonds, forming extended supramolecular chains. Furthermore, N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds interlink neighbouring chains into a three-dimensional framework. The Co atom is in an elongated octahedral coordination environment with two N atoms from the dpy ligands and two NCS-groups in the equatorial plane and with two NH3 molecules at the axial positions. The CrIII ion is octahedraly coordinated by two NH3 molecules at the axial positions and four NCS-groups in the equatorial plane. Intensity statistics indicated non-merohedral with the twin matrix [100; 00; 0]. The refined ratio of the twin components is 0.530 (1):0.470 (1).
Related literature
For background to direct synthesis, see: Kokozay & Shevchenko (2005). For background to heterometallic complexes based on an anion of Reineckes salt, see: Zhang et al. (2001); Cucos et al. (2006); Cherkasova & Gorunova (2003); Nikitina et al. (2009); Kolotilov et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811024998/ff2017sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024998/ff2017Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811024998/ff2017Isup4.cdx
Cobalt powder (0.074 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2].H2O (0.443 g, 1.25 mmol), NH4NCS (0.190 g, 2.5 mmol), dpy (0.195 g, 1.25 mmol) and acetonitrile (15 ml) were heated to 50–60° and stirred magnetically until total dissolution of the cobalt was observed (5 h). The resulting blue solution was slowly evaporated at room temperature until dark-brown crystals suitable for crystallographic study were formed. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield: 0.34 g. Anal. Calc. for C20H26CoCrN14S6: Co, 7.70; Cr, 6.79; C, 31.37; H, 3.39; N, 26.61; S, 25.12. Found: Co, 7.5; Cr, 6.8; C, 31.5; H, 3.4; N, 26.2; S 25.0%. IR (KBr, cm-1): 3350(br), 3131(sh), 3022(sh), 2120(sh), 2082(vs), 2035(sh), 2008(sh), 1736(w), 1639(sh), 1607(m), 1579(sh), 1547(sh), 1500(w), 1565(sh) 1442(m), 1421(sh), 1310(sh), 1291(sh), 1275(m) 1229(sh), 1156(w), 1102(w), 1078(w), 1037(w), 794(sh), 749(w), 659(m), 613(m), 574(w), 509(m), 500(sh), 473(sh), 421(w), 412(w). The compound is sparingly soluble in dmso and dmf, insoluble in water and it is indefinitely stable in air.
All of the hydrogen atoms were positioned geometricaly and refined using a riding model approximation with Uiso = 1.2 or 1.5 Ueq of the
A rotating model was used for NH3 and CH3 groups. Intensity statistic indicated a nonmerohedral with twin matrix [1 0 0; 0 - 1 0; -1 0 - 1]. Refined weighs of twin components are 0.530 (1):0.470 (1).Data collection: CrysAlis PRO (Oxford Diffraction 2010); cell
CrysAlis PRO (Oxford Diffraction 2010); data reduction: CrysAlis PRO (Oxford Diffraction 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The structure of [Co(NCS)2(NH3)2(dpy)][Cr(NCS)4(NH3)2].2CH3CN with displacement ellipsoids drawn at 50% probability level. Hydrogen bonds ar drawn as dashed lines. [Symmetry codes: (i) x, 1-x, -0.5+z; (ii) 1-x, y, 0.5-z] |
[Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3N | F(000) = 782 |
Mr = 765.90 | Dx = 1.466 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.7107 Å |
a = 13.2923 (7) Å | Cell parameters from 6460 reflections |
b = 10.7155 (3) Å | θ = 2.9–32.0° |
c = 13.8745 (7) Å | µ = 1.19 mm−1 |
β = 118.592 (6)° | T = 100 K |
V = 1735.21 (13) Å3 | Block, brown |
Z = 2 | 0.32 × 0.08 × 0.07 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 5538 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4555 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 32.0°, θmin = 2.9° |
ω scans | h = −19→19 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −15→15 |
Tmin = 0.913, Tmax = 1.000 | l = −20→19 |
15857 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0393P)2 + 0.0897P] where P = (Fo2 + 2Fc2)/3 |
5538 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3N | V = 1735.21 (13) Å3 |
Mr = 765.90 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 13.2923 (7) Å | µ = 1.19 mm−1 |
b = 10.7155 (3) Å | T = 100 K |
c = 13.8745 (7) Å | 0.32 × 0.08 × 0.07 mm |
β = 118.592 (6)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 5538 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 4555 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 1.000 | Rint = 0.037 |
15857 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.63 e Å−3 |
5538 reflections | Δρmin = −0.45 e Å−3 |
195 parameters |
Experimental. CrysAlisPro, Oxford Diffraction (2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.37302 (4) | 0.2500 | 0.01545 (9) | |
Cr1 | 1.0000 | 0.60863 (5) | 0.7500 | 0.01985 (11) | |
S1 | 0.63132 (7) | 0.70219 (5) | 0.50113 (5) | 0.02427 (13) | |
S2 | 0.77446 (6) | 0.93976 (6) | 0.77738 (5) | 0.02889 (15) | |
S3 | 0.76313 (6) | 0.31039 (6) | 0.79923 (5) | 0.03010 (15) | |
N1 | 0.55064 (19) | 0.49821 (16) | 0.35953 (14) | 0.0207 (4) | |
N2 | 0.55107 (18) | 0.23884 (15) | 0.35489 (13) | 0.0166 (3) | |
N3 | 0.35074 (16) | 0.37847 (16) | 0.24572 (19) | 0.0200 (3) | |
H3A | 0.3215 | 0.4570 | 0.2283 | 0.024* | |
H3B | 0.3592 | 0.3571 | 0.3127 | 0.024* | |
H3C | 0.3021 | 0.3239 | 0.1942 | 0.024* | |
N4 | 0.89869 (17) | 0.74301 (18) | 0.75553 (19) | 0.0241 (4) | |
N5 | 0.89681 (18) | 0.47780 (18) | 0.7556 (2) | 0.0255 (4) | |
N6 | 0.9113 (2) | 0.60481 (18) | 0.58032 (15) | 0.0256 (4) | |
H6A | 0.9004 | 0.5242 | 0.5568 | 0.031* | |
H6B | 0.9523 | 0.6458 | 0.5532 | 0.031* | |
H6C | 0.8421 | 0.6428 | 0.5563 | 0.031* | |
N7 | 0.1244 (3) | 0.6759 (2) | 0.50204 (19) | 0.0399 (6) | |
C1 | 0.5829 (2) | 0.58425 (18) | 0.41771 (16) | 0.0173 (4) | |
C2 | 0.5294 (2) | 0.12311 (18) | 0.31030 (15) | 0.0184 (4) | |
C3 | 0.5631 (2) | 0.01704 (19) | 0.37534 (17) | 0.0223 (4) | |
H3 | 0.5474 | −0.0636 | 0.3430 | 0.027* | |
C4 | 0.6201 (3) | 0.0306 (2) | 0.48808 (18) | 0.0239 (4) | |
H4 | 0.6441 | −0.0408 | 0.5343 | 0.029* | |
C5 | 0.6417 (2) | 0.1487 (2) | 0.53293 (16) | 0.0224 (4) | |
H5 | 0.6813 | 0.1592 | 0.6104 | 0.027* | |
C6 | 0.6057 (2) | 0.25133 (19) | 0.46479 (16) | 0.0200 (4) | |
H6 | 0.6197 | 0.3325 | 0.4961 | 0.024* | |
C7 | 0.84805 (19) | 0.8257 (2) | 0.76460 (18) | 0.0201 (4) | |
C8 | 0.8414 (2) | 0.4067 (2) | 0.77314 (18) | 0.0221 (5) | |
C9 | 0.0976 (3) | 0.7692 (3) | 0.4594 (2) | 0.0387 (6) | |
C10 | 0.0669 (4) | 0.8930 (4) | 0.4081 (3) | 0.0722 (13) | |
H10A | −0.0165 | 0.9034 | 0.3724 | 0.108* | |
H10B | 0.0930 | 0.9007 | 0.3532 | 0.108* | |
H10C | 0.1036 | 0.9574 | 0.4644 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0162 (3) | 0.01328 (18) | 0.01519 (18) | 0.000 | 0.0061 (2) | 0.000 |
Cr1 | 0.0194 (3) | 0.0213 (3) | 0.0185 (2) | 0.000 | 0.0089 (3) | 0.000 |
S1 | 0.0297 (4) | 0.0188 (2) | 0.0256 (3) | −0.0041 (3) | 0.0143 (3) | −0.0073 (2) |
S2 | 0.0309 (3) | 0.0248 (3) | 0.0281 (3) | 0.0080 (3) | 0.0117 (3) | 0.0012 (2) |
S3 | 0.0362 (4) | 0.0268 (3) | 0.0304 (3) | −0.0103 (3) | 0.0184 (3) | −0.0061 (2) |
N1 | 0.0233 (11) | 0.0172 (8) | 0.0203 (8) | −0.0005 (9) | 0.0093 (9) | −0.0012 (7) |
N2 | 0.0158 (9) | 0.0164 (7) | 0.0151 (7) | 0.0005 (8) | 0.0054 (8) | 0.0011 (6) |
N3 | 0.0195 (10) | 0.0200 (8) | 0.0208 (9) | −0.0005 (7) | 0.0099 (9) | −0.0014 (9) |
N4 | 0.0242 (11) | 0.0261 (9) | 0.0218 (9) | 0.0000 (8) | 0.0108 (9) | −0.0016 (10) |
N5 | 0.0229 (11) | 0.0273 (10) | 0.0266 (10) | −0.0007 (8) | 0.0122 (10) | 0.0013 (10) |
N6 | 0.0259 (11) | 0.0289 (10) | 0.0205 (9) | 0.0005 (10) | 0.0099 (9) | −0.0026 (7) |
N7 | 0.0356 (15) | 0.0469 (15) | 0.0336 (12) | −0.0052 (14) | 0.0136 (13) | −0.0113 (11) |
C1 | 0.0152 (10) | 0.0174 (9) | 0.0186 (9) | 0.0020 (9) | 0.0076 (10) | 0.0033 (7) |
C2 | 0.0211 (11) | 0.0180 (9) | 0.0168 (9) | −0.0004 (9) | 0.0095 (10) | −0.0012 (7) |
C3 | 0.0287 (13) | 0.0149 (9) | 0.0201 (10) | −0.0011 (11) | 0.0091 (11) | −0.0008 (8) |
C4 | 0.0286 (13) | 0.0204 (10) | 0.0191 (9) | 0.0019 (11) | 0.0085 (11) | 0.0053 (8) |
C5 | 0.0241 (12) | 0.0254 (10) | 0.0147 (9) | −0.0002 (12) | 0.0069 (11) | 0.0007 (8) |
C6 | 0.0196 (11) | 0.0186 (9) | 0.0183 (9) | −0.0013 (11) | 0.0064 (10) | −0.0031 (8) |
C7 | 0.0193 (11) | 0.0236 (10) | 0.0139 (11) | −0.0040 (9) | 0.0051 (9) | 0.0020 (9) |
C8 | 0.0221 (11) | 0.0220 (11) | 0.0187 (13) | 0.0028 (9) | 0.0069 (10) | −0.0029 (8) |
C9 | 0.0253 (15) | 0.0644 (19) | 0.0212 (12) | −0.0008 (16) | 0.0069 (12) | −0.0024 (13) |
C10 | 0.044 (2) | 0.104 (3) | 0.062 (2) | 0.026 (2) | 0.0195 (19) | 0.045 (2) |
Co1—N1 | 1.8929 (17) | N3—H3C | 0.9100 |
Co1—N1i | 1.8929 (17) | N4—C7 | 1.155 (3) |
Co1—N2i | 1.9236 (16) | N5—C8 | 1.164 (3) |
Co1—N2 | 1.9236 (16) | N6—H6A | 0.9100 |
Co1—N3i | 1.9572 (17) | N6—H6B | 0.9100 |
Co1—N3 | 1.9571 (17) | N6—H6C | 0.9100 |
Cr1—N4 | 1.9979 (19) | N7—C9 | 1.130 (4) |
Cr1—N4ii | 1.9980 (19) | C2—C2i | 1.469 (4) |
Cr1—N5ii | 1.9884 (19) | C2—C3 | 1.386 (3) |
Cr1—N5 | 1.988 (2) | C3—H3 | 0.9500 |
Cr1—N6 | 2.0682 (18) | C3—C4 | 1.381 (3) |
Cr1—N6ii | 2.0682 (18) | C4—H4 | 0.9500 |
S1—C1 | 1.624 (2) | C4—C5 | 1.378 (3) |
S2—C7 | 1.627 (2) | C5—H5 | 0.9500 |
S3—C8 | 1.624 (3) | C5—C6 | 1.378 (3) |
N1—C1 | 1.164 (3) | C6—H6 | 0.9500 |
N2—C2 | 1.354 (3) | C9—C10 | 1.467 (5) |
N2—C6 | 1.346 (3) | C10—H10A | 0.9800 |
N3—H3A | 0.9100 | C10—H10B | 0.9800 |
N3—H3B | 0.9100 | C10—H10C | 0.9800 |
N1i—Co1—N1 | 89.74 (11) | H3A—N3—H3B | 109.5 |
N1i—Co1—N2i | 93.51 (7) | H3A—N3—H3C | 109.5 |
N1—Co1—N2i | 176.59 (8) | H3B—N3—H3C | 109.5 |
N1i—Co1—N2 | 176.59 (8) | C7—N4—Cr1 | 174.5 (2) |
N1—Co1—N2 | 93.51 (7) | C8—N5—Cr1 | 170.8 (2) |
N1—Co1—N3 | 88.23 (9) | Cr1—N6—H6A | 109.5 |
N1i—Co1—N3i | 88.23 (9) | Cr1—N6—H6B | 109.5 |
N1i—Co1—N3 | 89.34 (9) | Cr1—N6—H6C | 109.5 |
N1—Co1—N3i | 89.35 (9) | H6A—N6—H6B | 109.5 |
N2—Co1—N2i | 83.26 (10) | H6A—N6—H6C | 109.5 |
N2i—Co1—N3i | 91.77 (9) | H6B—N6—H6C | 109.5 |
N2—Co1—N3i | 90.79 (9) | N1—C1—S1 | 178.3 (2) |
N2i—Co1—N3 | 90.79 (9) | N2—C2—C2i | 113.66 (10) |
N2—Co1—N3 | 91.77 (9) | N2—C2—C3 | 121.47 (17) |
N3—Co1—N3i | 176.58 (10) | C3—C2—C2i | 124.86 (12) |
N4—Cr1—N4ii | 87.77 (11) | C2—C3—H3 | 120.6 |
N4—Cr1—N6ii | 89.90 (9) | C4—C3—C2 | 118.82 (19) |
N4ii—Cr1—N6ii | 91.73 (9) | C4—C3—H3 | 120.6 |
N4—Cr1—N6 | 91.73 (9) | C3—C4—H4 | 120.3 |
N4ii—Cr1—N6 | 89.90 (9) | C5—C4—C3 | 119.4 (2) |
N5—Cr1—N4 | 90.94 (8) | C5—C4—H4 | 120.3 |
N5ii—Cr1—N4ii | 90.94 (8) | C4—C5—H5 | 120.2 |
N5ii—Cr1—N4 | 178.72 (8) | C4—C5—C6 | 119.60 (18) |
N5—Cr1—N4ii | 178.72 (8) | C6—C5—H5 | 120.2 |
N5ii—Cr1—N5 | 90.34 (11) | N2—C6—C5 | 121.32 (18) |
N5ii—Cr1—N6ii | 90.12 (9) | N2—C6—H6 | 119.3 |
N5—Cr1—N6ii | 88.28 (10) | C5—C6—H6 | 119.3 |
N5ii—Cr1—N6 | 88.28 (10) | N4—C7—S2 | 178.6 (2) |
N5—Cr1—N6 | 90.12 (10) | N5—C8—S3 | 178.5 (2) |
N6ii—Cr1—N6 | 177.73 (11) | N7—C9—C10 | 177.5 (4) |
C1—N1—Co1 | 171.81 (19) | C9—C10—H10A | 109.5 |
C2—N2—Co1 | 114.71 (13) | C9—C10—H10B | 109.5 |
C6—N2—Co1 | 125.92 (14) | C9—C10—H10C | 109.5 |
C6—N2—C2 | 119.36 (17) | H10A—C10—H10B | 109.5 |
Co1—N3—H3A | 109.5 | H10A—C10—H10C | 109.5 |
Co1—N3—H3B | 109.5 | H10B—C10—H10C | 109.5 |
Co1—N3—H3C | 109.5 | ||
Co1—N2—C2—C2i | 0.0 (4) | N3i—Co1—N2—C6 | 87.5 (2) |
Co1—N2—C2—C3 | 178.6 (2) | N3—Co1—N2—C6 | −90.2 (2) |
Co1—N2—C6—C5 | −178.1 (2) | C2—N2—C6—C5 | 1.1 (4) |
N1—Co1—N2—C2 | 178.9 (2) | C2i—C2—C3—C4 | 178.5 (4) |
N1—Co1—N2—C6 | −1.8 (2) | C2—C3—C4—C5 | 0.1 (5) |
N2i—Co1—N2—C2 | 0.00 (16) | C3—C4—C5—C6 | 0.4 (5) |
N2i—Co1—N2—C6 | 179.2 (3) | C4—C5—C6—N2 | −1.0 (4) |
N2—C2—C3—C4 | 0.0 (5) | C6—N2—C2—C2i | −179.3 (3) |
N3i—Co1—N2—C2 | −91.7 (2) | C6—N2—C2—C3 | −0.6 (4) |
N3—Co1—N2—C2 | 90.6 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+2, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···S3iii | 0.91 | 2.69 | 3.591 (2) | 173 |
N3—H3B···S1iii | 0.91 | 2.60 | 3.513 (2) | 176 |
N3—H3C···N7iv | 0.91 | 2.58 | 3.330 (4) | 140 |
N6—H6A···N7iii | 0.91 | 2.26 | 3.172 (3) | 179 |
N6—H6C···S1 | 0.91 | 2.61 | 3.498 (3) | 167 |
C4—H4···S1v | 0.95 | 2.78 | 3.523 (2) | 135 |
C5—H5···S3 | 0.95 | 2.82 | 3.681 (2) | 151 |
C6—H6···N1 | 0.95 | 2.43 | 2.940 (3) | 113 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) x, −y+1, z−1/2; (v) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3N |
Mr | 765.90 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.2923 (7), 10.7155 (3), 13.8745 (7) |
β (°) | 118.592 (6) |
V (Å3) | 1735.21 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.32 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.913, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15857, 5538, 4555 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.084, 1.02 |
No. of reflections | 5538 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.45 |
Computer programs: CrysAlis PRO (Oxford Diffraction 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
Co1—N1 | 1.8929 (17) | Cr1—N4 | 1.9979 (19) |
Co1—N2 | 1.9236 (16) | Cr1—N5 | 1.988 (2) |
Co1—N3 | 1.9571 (17) | Cr1—N6 | 2.0682 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···S3i | 0.91 | 2.69 | 3.591 (2) | 173 |
N3—H3B···S1i | 0.91 | 2.60 | 3.513 (2) | 176 |
N3—H3C···N7ii | 0.91 | 2.58 | 3.330 (4) | 140 |
N6—H6A···N7i | 0.91 | 2.26 | 3.172 (3) | 179 |
N6—H6C···S1 | 0.91 | 2.61 | 3.498 (3) | 167 |
C4—H4···S1iii | 0.95 | 2.78 | 3.523 (2) | 135 |
C5—H5···S3 | 0.95 | 2.82 | 3.681 (2) | 151 |
C6—H6···N1 | 0.95 | 2.43 | 2.940 (3) | 113 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1, z−1/2; (iii) x, y−1, z. |
References
Cherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611–615. CAS Google Scholar
Cucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903–907. Web of Science CSD CrossRef Google Scholar
Kokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287–312. CAS Google Scholar
Kolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255–1266. Web of Science CSD CrossRef Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265–1272. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, K.-L.W., Chen, Xu, Y., Wang, Z., Zhong, Z.J. & You, X.-Z. (2001). Polyhedron, 20, 2033–2036. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Direct synthesis of coordination compounds, which employs metal powders or metal oxides as starting materials, has been proved to be an efficient route to obtain novel heterometallic complexes (Kokozay & Shevchenko, 2005). Recently, it has been shown that use of anionic complexes as a source of metalloligands (Reineckes salt, (NH)4[Cr(NCS)4(NH3)2].H2O, was taken as a representative example) in direct synthesis of Cu/Cr heterometallic compounds with amines and Schiff-base ligands Nikitina et al. (2009) has yielded a broad range of complexes with various polymeric and ionic crystal structures. In the present work, we report that the reaction of cobalt powder, Reineckes salt and 2,2'-bipyridine (dpy) in acetonitrile solution has afforded a single crystals of the novel heterometallic Co/Cr compound. In crystal structure of the complex cationic [Co(NCS)2(NH3)2(dpy)]+ and anionic [Cr(NCS)4(NH3)2]- building blocks as well as acetonitrile molecules are joined together forming three-dimensional supramolecular framework assisted by numerous N—H···N, N—H..S and C—H···S hydrogen bonds (Fig. 1). The Co atoms are in elongated octahedral coordination environment with two nitrogen atoms from dpy ligand and two NCS-groups in the equatorial plane and with two nitrogen atoms of NH3 molecules at the axial positions. The bond lengths of Co–N are in a narrow range: Co(1)–N(1) = 1.9237 (15) Å; Co(1)–N(2) = 1.8957 (16) Å; Co(1)–N(3) = 1.9586 (14) Å, the cis bond angles range from 83.17 (9)° to 93.55 (6)°, while the trans bond angles are 176.61 (7)° and 176.63 (10). The CrIII ions have N6 donor set formed by two NH3 molecules at the axial positions and four NCS-groups in the equatorial plane. The axial Cr–N bond lengths are 2.0711 (15) Å. The thiocyanate groups are almost linear with angles N(4)–C(7)–S(21) = 178.51 (18)° and N(5)–C(8)–S(3) = 178.40 (20)°.