metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1021-m1022

Diammine(2,2′-bi­pyridine)­bis­(thio­cyan­ato­-κN)cobalt(III) diammine­tetra­kis(thio­cyanato­-κN)chromate(III) aceto­nitrile disolvate

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrs'ka St, Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com

(Received 15 June 2011; accepted 25 June 2011; online 6 July 2011)

The new heterometallic title complex, [Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2CH3CN, has been prepared using the open-air reaction of cobalt powder, Reineckes salt and 2,2′-bipyridine (dpy) in acetonitrile. The crystal structure consists of discrete cationic [Co(NCS)2(NH3)2(dpy)]+ and anionic [Cr(NCS)4(NH3)2] building blocks, both with 2 symmetry, and acetonitrile solvent mol­ecules, which are linked together by N—H⋯N hydrogen bonds, forming extended supra­molecular chains. Furthermore, N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds inter­link neighbouring chains into a three-dimensional framework. The Co atom is in an elongated octa­hedral coordination environment with two N atoms from the dpy ligands and two NCS-groups in the equatorial plane and with two NH3 mol­ecules at the axial positions. The CrIII ion is octa­hedraly coordinated by two NH3 mol­ecules at the axial positions and four NCS-groups in the equatorial plane. Intensity statistics indicated non-merohedral twinning with the twin matrix [100; 0[\overline{1}]0; [\overline{1}]0[\overline{1}]]. The refined ratio of the twin components is 0.530 (1):0.470 (1).

Related literature

For background to direct synthesis, see: Kokozay & Shevchenko (2005[Kokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287-312.]). For background to heterometallic complexes based on an anion of Reineckes salt, see: Zhang et al. (2001[Zhang, K.-L.W., Chen, Xu, Y., Wang, Z., Zhong, Z.J. & You, X.-Z. (2001). Polyhedron, 20, 2033-2036.]); Cucos et al. (2006[Cucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903-907.]); Cherkasova & Gorunova (2003[Cherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611-615.]); Nikitina et al. (2009[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265-1272.]); Kolotilov et al. (2010[Kolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255-1266.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3N

  • Mr = 765.90

  • Monoclinic, P 2/c

  • a = 13.2923 (7) Å

  • b = 10.7155 (3) Å

  • c = 13.8745 (7) Å

  • β = 118.592 (6)°

  • V = 1735.21 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.32 × 0.08 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.913, Tmax = 1.000

  • 15857 measured reflections

  • 5538 independent reflections

  • 4555 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.02

  • 5538 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 1.8929 (17)
Co1—N2 1.9236 (16)
Co1—N3 1.9571 (17)
Cr1—N4 1.9979 (19)
Cr1—N5 1.988 (2)
Cr1—N6 2.0682 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S3i 0.91 2.69 3.591 (2) 173
N3—H3B⋯S1i 0.91 2.60 3.513 (2) 176
N3—H3C⋯N7ii 0.91 2.58 3.330 (4) 140
N6—H6A⋯N7i 0.91 2.26 3.172 (3) 179
N6—H6C⋯S1 0.91 2.61 3.498 (3) 167
C4—H4⋯S1iii 0.95 2.78 3.523 (2) 135
C5—H5⋯S3 0.95 2.82 3.681 (2) 151
C6—H6⋯N1 0.95 2.43 2.940 (3) 113
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Direct synthesis of coordination compounds, which employs metal powders or metal oxides as starting materials, has been proved to be an efficient route to obtain novel heterometallic complexes (Kokozay & Shevchenko, 2005). Recently, it has been shown that use of anionic complexes as a source of metalloligands (Reineckes salt, (NH)4[Cr(NCS)4(NH3)2].H2O, was taken as a representative example) in direct synthesis of Cu/Cr heterometallic compounds with amines and Schiff-base ligands Nikitina et al. (2009) has yielded a broad range of complexes with various polymeric and ionic crystal structures. In the present work, we report that the reaction of cobalt powder, Reineckes salt and 2,2'-bipyridine (dpy) in acetonitrile solution has afforded a single crystals of the novel heterometallic Co/Cr compound. In crystal structure of the complex cationic [Co(NCS)2(NH3)2(dpy)]+ and anionic [Cr(NCS)4(NH3)2]- building blocks as well as acetonitrile molecules are joined together forming three-dimensional supramolecular framework assisted by numerous N—H···N, N—H..S and C—H···S hydrogen bonds (Fig. 1). The Co atoms are in elongated octahedral coordination environment with two nitrogen atoms from dpy ligand and two NCS-groups in the equatorial plane and with two nitrogen atoms of NH3 molecules at the axial positions. The bond lengths of Co–N are in a narrow range: Co(1)–N(1) = 1.9237 (15) Å; Co(1)–N(2) = 1.8957 (16) Å; Co(1)–N(3) = 1.9586 (14) Å, the cis bond angles range from 83.17 (9)° to 93.55 (6)°, while the trans bond angles are 176.61 (7)° and 176.63 (10). The CrIII ions have N6 donor set formed by two NH3 molecules at the axial positions and four NCS-groups in the equatorial plane. The axial Cr–N bond lengths are 2.0711 (15) Å. The thiocyanate groups are almost linear with angles N(4)–C(7)–S(21) = 178.51 (18)° and N(5)–C(8)–S(3) = 178.40 (20)°.

Related literature top

For background to direct synthesis, see: Kokozay & Shevchenko (2005). For background to heterometallic complexes based on an anion of Reineckes salt, see: Zhang et al. (2001); Cucos et al. (2006); Cherkasova et al. (2003); Nikitina et al. (2009); Kolotilov et al. (2010).

Experimental top

Cobalt powder (0.074 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2].H2O (0.443 g, 1.25 mmol), NH4NCS (0.190 g, 2.5 mmol), dpy (0.195 g, 1.25 mmol) and acetonitrile (15 ml) were heated to 50–60° and stirred magnetically until total dissolution of the cobalt was observed (5 h). The resulting blue solution was slowly evaporated at room temperature until dark-brown crystals suitable for crystallographic study were formed. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield: 0.34 g. Anal. Calc. for C20H26CoCrN14S6: Co, 7.70; Cr, 6.79; C, 31.37; H, 3.39; N, 26.61; S, 25.12. Found: Co, 7.5; Cr, 6.8; C, 31.5; H, 3.4; N, 26.2; S 25.0%. IR (KBr, cm-1): 3350(br), 3131(sh), 3022(sh), 2120(sh), 2082(vs), 2035(sh), 2008(sh), 1736(w), 1639(sh), 1607(m), 1579(sh), 1547(sh), 1500(w), 1565(sh) 1442(m), 1421(sh), 1310(sh), 1291(sh), 1275(m) 1229(sh), 1156(w), 1102(w), 1078(w), 1037(w), 794(sh), 749(w), 659(m), 613(m), 574(w), 509(m), 500(sh), 473(sh), 421(w), 412(w). The compound is sparingly soluble in dmso and dmf, insoluble in water and it is indefinitely stable in air.

Refinement top

All of the hydrogen atoms were positioned geometricaly and refined using a riding model approximation with Uiso = 1.2 or 1.5 Ueq of the carrier atom. A rotating model was used for NH3 and CH3 groups. Intensity statistic indicated a nonmerohedral twinning with twin matrix [1 0 0; 0 - 1 0; -1 0 - 1]. Refined weighs of twin components are 0.530 (1):0.470 (1).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction 2010); cell refinement: CrysAlis PRO (Oxford Diffraction 2010); data reduction: CrysAlis PRO (Oxford Diffraction 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of [Co(NCS)2(NH3)2(dpy)][Cr(NCS)4(NH3)2].2CH3CN with displacement ellipsoids drawn at 50% probability level. Hydrogen bonds ar drawn as dashed lines. [Symmetry codes: (i) x, 1-x, -0.5+z; (ii) 1-x, y, 0.5-z]
Diammine(2,2'-bipyridine)bis(thiocyanato-κN)cobalt(III) diamminetetrakis(thiocyanato-κN)chromate(III) acetonitrile disolvate top
Crystal data top
[Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3NF(000) = 782
Mr = 765.90Dx = 1.466 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.7107 Å
a = 13.2923 (7) ÅCell parameters from 6460 reflections
b = 10.7155 (3) Åθ = 2.9–32.0°
c = 13.8745 (7) ŵ = 1.19 mm1
β = 118.592 (6)°T = 100 K
V = 1735.21 (13) Å3Block, brown
Z = 20.32 × 0.08 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5538 independent reflections
Radiation source: Enhance (Mo) X-ray Source4555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1827 pixels mm-1θmax = 32.0°, θmin = 2.9°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.913, Tmax = 1.000l = 2019
15857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.0897P]
where P = (Fo2 + 2Fc2)/3
5538 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3NV = 1735.21 (13) Å3
Mr = 765.90Z = 2
Monoclinic, P2/cMo Kα radiation
a = 13.2923 (7) ŵ = 1.19 mm1
b = 10.7155 (3) ÅT = 100 K
c = 13.8745 (7) Å0.32 × 0.08 × 0.07 mm
β = 118.592 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5538 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4555 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 1.000Rint = 0.037
15857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
5538 reflectionsΔρmin = 0.45 e Å3
195 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.37302 (4)0.25000.01545 (9)
Cr11.00000.60863 (5)0.75000.01985 (11)
S10.63132 (7)0.70219 (5)0.50113 (5)0.02427 (13)
S20.77446 (6)0.93976 (6)0.77738 (5)0.02889 (15)
S30.76313 (6)0.31039 (6)0.79923 (5)0.03010 (15)
N10.55064 (19)0.49821 (16)0.35953 (14)0.0207 (4)
N20.55107 (18)0.23884 (15)0.35489 (13)0.0166 (3)
N30.35074 (16)0.37847 (16)0.24572 (19)0.0200 (3)
H3A0.32150.45700.22830.024*
H3B0.35920.35710.31270.024*
H3C0.30210.32390.19420.024*
N40.89869 (17)0.74301 (18)0.75553 (19)0.0241 (4)
N50.89681 (18)0.47780 (18)0.7556 (2)0.0255 (4)
N60.9113 (2)0.60481 (18)0.58032 (15)0.0256 (4)
H6A0.90040.52420.55680.031*
H6B0.95230.64580.55320.031*
H6C0.84210.64280.55630.031*
N70.1244 (3)0.6759 (2)0.50204 (19)0.0399 (6)
C10.5829 (2)0.58425 (18)0.41771 (16)0.0173 (4)
C20.5294 (2)0.12311 (18)0.31030 (15)0.0184 (4)
C30.5631 (2)0.01704 (19)0.37534 (17)0.0223 (4)
H30.54740.06360.34300.027*
C40.6201 (3)0.0306 (2)0.48808 (18)0.0239 (4)
H40.64410.04080.53430.029*
C50.6417 (2)0.1487 (2)0.53293 (16)0.0224 (4)
H50.68130.15920.61040.027*
C60.6057 (2)0.25133 (19)0.46479 (16)0.0200 (4)
H60.61970.33250.49610.024*
C70.84805 (19)0.8257 (2)0.76460 (18)0.0201 (4)
C80.8414 (2)0.4067 (2)0.77314 (18)0.0221 (5)
C90.0976 (3)0.7692 (3)0.4594 (2)0.0387 (6)
C100.0669 (4)0.8930 (4)0.4081 (3)0.0722 (13)
H10A0.01650.90340.37240.108*
H10B0.09300.90070.35320.108*
H10C0.10360.95740.46440.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0162 (3)0.01328 (18)0.01519 (18)0.0000.0061 (2)0.000
Cr10.0194 (3)0.0213 (3)0.0185 (2)0.0000.0089 (3)0.000
S10.0297 (4)0.0188 (2)0.0256 (3)0.0041 (3)0.0143 (3)0.0073 (2)
S20.0309 (3)0.0248 (3)0.0281 (3)0.0080 (3)0.0117 (3)0.0012 (2)
S30.0362 (4)0.0268 (3)0.0304 (3)0.0103 (3)0.0184 (3)0.0061 (2)
N10.0233 (11)0.0172 (8)0.0203 (8)0.0005 (9)0.0093 (9)0.0012 (7)
N20.0158 (9)0.0164 (7)0.0151 (7)0.0005 (8)0.0054 (8)0.0011 (6)
N30.0195 (10)0.0200 (8)0.0208 (9)0.0005 (7)0.0099 (9)0.0014 (9)
N40.0242 (11)0.0261 (9)0.0218 (9)0.0000 (8)0.0108 (9)0.0016 (10)
N50.0229 (11)0.0273 (10)0.0266 (10)0.0007 (8)0.0122 (10)0.0013 (10)
N60.0259 (11)0.0289 (10)0.0205 (9)0.0005 (10)0.0099 (9)0.0026 (7)
N70.0356 (15)0.0469 (15)0.0336 (12)0.0052 (14)0.0136 (13)0.0113 (11)
C10.0152 (10)0.0174 (9)0.0186 (9)0.0020 (9)0.0076 (10)0.0033 (7)
C20.0211 (11)0.0180 (9)0.0168 (9)0.0004 (9)0.0095 (10)0.0012 (7)
C30.0287 (13)0.0149 (9)0.0201 (10)0.0011 (11)0.0091 (11)0.0008 (8)
C40.0286 (13)0.0204 (10)0.0191 (9)0.0019 (11)0.0085 (11)0.0053 (8)
C50.0241 (12)0.0254 (10)0.0147 (9)0.0002 (12)0.0069 (11)0.0007 (8)
C60.0196 (11)0.0186 (9)0.0183 (9)0.0013 (11)0.0064 (10)0.0031 (8)
C70.0193 (11)0.0236 (10)0.0139 (11)0.0040 (9)0.0051 (9)0.0020 (9)
C80.0221 (11)0.0220 (11)0.0187 (13)0.0028 (9)0.0069 (10)0.0029 (8)
C90.0253 (15)0.0644 (19)0.0212 (12)0.0008 (16)0.0069 (12)0.0024 (13)
C100.044 (2)0.104 (3)0.062 (2)0.026 (2)0.0195 (19)0.045 (2)
Geometric parameters (Å, º) top
Co1—N11.8929 (17)N3—H3C0.9100
Co1—N1i1.8929 (17)N4—C71.155 (3)
Co1—N2i1.9236 (16)N5—C81.164 (3)
Co1—N21.9236 (16)N6—H6A0.9100
Co1—N3i1.9572 (17)N6—H6B0.9100
Co1—N31.9571 (17)N6—H6C0.9100
Cr1—N41.9979 (19)N7—C91.130 (4)
Cr1—N4ii1.9980 (19)C2—C2i1.469 (4)
Cr1—N5ii1.9884 (19)C2—C31.386 (3)
Cr1—N51.988 (2)C3—H30.9500
Cr1—N62.0682 (18)C3—C41.381 (3)
Cr1—N6ii2.0682 (18)C4—H40.9500
S1—C11.624 (2)C4—C51.378 (3)
S2—C71.627 (2)C5—H50.9500
S3—C81.624 (3)C5—C61.378 (3)
N1—C11.164 (3)C6—H60.9500
N2—C21.354 (3)C9—C101.467 (5)
N2—C61.346 (3)C10—H10A0.9800
N3—H3A0.9100C10—H10B0.9800
N3—H3B0.9100C10—H10C0.9800
N1i—Co1—N189.74 (11)H3A—N3—H3B109.5
N1i—Co1—N2i93.51 (7)H3A—N3—H3C109.5
N1—Co1—N2i176.59 (8)H3B—N3—H3C109.5
N1i—Co1—N2176.59 (8)C7—N4—Cr1174.5 (2)
N1—Co1—N293.51 (7)C8—N5—Cr1170.8 (2)
N1—Co1—N388.23 (9)Cr1—N6—H6A109.5
N1i—Co1—N3i88.23 (9)Cr1—N6—H6B109.5
N1i—Co1—N389.34 (9)Cr1—N6—H6C109.5
N1—Co1—N3i89.35 (9)H6A—N6—H6B109.5
N2—Co1—N2i83.26 (10)H6A—N6—H6C109.5
N2i—Co1—N3i91.77 (9)H6B—N6—H6C109.5
N2—Co1—N3i90.79 (9)N1—C1—S1178.3 (2)
N2i—Co1—N390.79 (9)N2—C2—C2i113.66 (10)
N2—Co1—N391.77 (9)N2—C2—C3121.47 (17)
N3—Co1—N3i176.58 (10)C3—C2—C2i124.86 (12)
N4—Cr1—N4ii87.77 (11)C2—C3—H3120.6
N4—Cr1—N6ii89.90 (9)C4—C3—C2118.82 (19)
N4ii—Cr1—N6ii91.73 (9)C4—C3—H3120.6
N4—Cr1—N691.73 (9)C3—C4—H4120.3
N4ii—Cr1—N689.90 (9)C5—C4—C3119.4 (2)
N5—Cr1—N490.94 (8)C5—C4—H4120.3
N5ii—Cr1—N4ii90.94 (8)C4—C5—H5120.2
N5ii—Cr1—N4178.72 (8)C4—C5—C6119.60 (18)
N5—Cr1—N4ii178.72 (8)C6—C5—H5120.2
N5ii—Cr1—N590.34 (11)N2—C6—C5121.32 (18)
N5ii—Cr1—N6ii90.12 (9)N2—C6—H6119.3
N5—Cr1—N6ii88.28 (10)C5—C6—H6119.3
N5ii—Cr1—N688.28 (10)N4—C7—S2178.6 (2)
N5—Cr1—N690.12 (10)N5—C8—S3178.5 (2)
N6ii—Cr1—N6177.73 (11)N7—C9—C10177.5 (4)
C1—N1—Co1171.81 (19)C9—C10—H10A109.5
C2—N2—Co1114.71 (13)C9—C10—H10B109.5
C6—N2—Co1125.92 (14)C9—C10—H10C109.5
C6—N2—C2119.36 (17)H10A—C10—H10B109.5
Co1—N3—H3A109.5H10A—C10—H10C109.5
Co1—N3—H3B109.5H10B—C10—H10C109.5
Co1—N3—H3C109.5
Co1—N2—C2—C2i0.0 (4)N3i—Co1—N2—C687.5 (2)
Co1—N2—C2—C3178.6 (2)N3—Co1—N2—C690.2 (2)
Co1—N2—C6—C5178.1 (2)C2—N2—C6—C51.1 (4)
N1—Co1—N2—C2178.9 (2)C2i—C2—C3—C4178.5 (4)
N1—Co1—N2—C61.8 (2)C2—C3—C4—C50.1 (5)
N2i—Co1—N2—C20.00 (16)C3—C4—C5—C60.4 (5)
N2i—Co1—N2—C6179.2 (3)C4—C5—C6—N21.0 (4)
N2—C2—C3—C40.0 (5)C6—N2—C2—C2i179.3 (3)
N3i—Co1—N2—C291.7 (2)C6—N2—C2—C30.6 (4)
N3—Co1—N2—C290.6 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S3iii0.912.693.591 (2)173
N3—H3B···S1iii0.912.603.513 (2)176
N3—H3C···N7iv0.912.583.330 (4)140
N6—H6A···N7iii0.912.263.172 (3)179
N6—H6C···S10.912.613.498 (3)167
C4—H4···S1v0.952.783.523 (2)135
C5—H5···S30.952.823.681 (2)151
C6—H6···N10.952.432.940 (3)113
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C10H8N2)(NH3)2][Cr(NCS)4(NH3)2]·2C2H3N
Mr765.90
Crystal system, space groupMonoclinic, P2/c
Temperature (K)100
a, b, c (Å)13.2923 (7), 10.7155 (3), 13.8745 (7)
β (°) 118.592 (6)
V3)1735.21 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.32 × 0.08 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.913, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15857, 5538, 4555
Rint0.037
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.02
No. of reflections5538
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—N11.8929 (17)Cr1—N41.9979 (19)
Co1—N21.9236 (16)Cr1—N51.988 (2)
Co1—N31.9571 (17)Cr1—N62.0682 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S3i0.912.693.591 (2)173
N3—H3B···S1i0.912.603.513 (2)176
N3—H3C···N7ii0.912.583.330 (4)140
N6—H6A···N7i0.912.263.172 (3)179
N6—H6C···S10.912.613.498 (3)167
C4—H4···S1iii0.952.783.523 (2)135
C5—H5···S30.952.823.681 (2)151
C6—H6···N10.952.432.940 (3)113
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1/2; (iii) x, y1, z.
 

References

First citationCherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611–615.  CAS Google Scholar
First citationCucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903–907.  Web of Science CSD CrossRef Google Scholar
First citationKokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287–312.  CAS Google Scholar
First citationKolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255–1266.  Web of Science CSD CrossRef Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265–1272.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L.W., Chen, Xu, Y., Wang, Z., Zhong, Z.J. & You, X.-Z. (2001). Polyhedron, 20, 2033–2036.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1021-m1022
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds