organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-3,3′,4,5′-Tetra­meth­­oxy­stilbene

aDepartment of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: yanrian@netease.com

(Received 20 June 2011; accepted 29 June 2011; online 9 July 2011)

The title compound, C18H20O4, was synthesized by a Wittig–Horner reaction of diethyl 3,4-dimeth­oxy­benzyl­phosphate and 3,5-dimeth­oxy­benzaldehyde. In the crystal, the dihedral angle between the two aromatic rings is 2.47 (12)°. All the meth­oxy groups are almost coplanar with the aromatic ring to which they are attached [C—C—O—C torsion angles = −2.8 (3), −5.2 (4), −176.3 (2) and −178.0 (2)°].

Related literature

For the bioactivity of stilbene-based compounds, see: Nam et al. (2001[Nam, K. A., Kim, S., Hoe, Y. H. & Lee, S. K. (2001). Arch. Pharm. Res. 24, 441-445.]); Belleri et al. (2005[Belleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L. A. & Presta, M. (2005). Mol. Pharmacol. 67, 1451-1459.]); Gosslau et al. (2005[Gosslau, A., Chen, M., Ho, C. T. & Chen, K. Y. (2005). Br. J. Cancer, 92, 513-521.]); Sale et al. (2004[Sale, S., Verschoyle, R. D., Boocock, D., Jones, D. J. L., Wilsher, N., Ruparelia, K. C., Potter, G. A., Farmer, P. B., Steward, W. P. & Gescher, A. J. (2004). Br. J. Cancer, 90, 736-744]). For reference structural data, see: Piao et al. (2002[Piao, Z.-S., Wang, L., Feng, Y.-B. & Zhao, Z.-Z. (2002). Chin. Chem. Lett. 13, 521-524.]); Shibutani et al. (2004[Shibutani, S., Samejima, M. & Doi, S. (2004). J. Wood Sci. 50, 439-444.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4

  • Mr = 300.34

  • Orthorhombic, P 21 21 21

  • a = 5.2431 (2) Å

  • b = 11.9840 (7) Å

  • c = 25.6315 (11) Å

  • V = 1610.51 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.42 × 0.11 × 0.07 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.781, Tmax = 1.000

  • 2952 measured reflections

  • 2032 independent reflections

  • 1791 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.13

  • 2032 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Many stilbene-based compounds show important bioactivity, acting as anti-angiogenesis (Belleri et al., 2005) and anti-cancer (Gosslau et al., 2005; Sale et al., 2004; Nam et al., 2001) agents.

In the crystal struture of the title compound, the dihedral angle between the two aromatic rings is 2.47 (12)°. All methoxy groups are almost coplanar with their parent aromatic rings (torsion angles -2.8 (3)°, -5.2 (4)°, -176.3 (2)°, 178.0 (2)° for C10—C11—O3—C18, C12—C13—O4—C17, C2—C1—O1—C16, C1—C2—O2—C15, respectively).

Related literature top

For the bioactivity of stilbene-based compounds, see: Nam et al. (2001); Belleri et al. (2005); Gosslau et al. (2005); Sale et al. (2004). For reference structural data, see: Piao et al. (2002); Shibutani et al. (2004).

Experimental top

Sodium methoxide (17.00g, 314.0mmol) was added to a well-stirred suspension of the diethyl 3, 4-dimethoxybenzylphosphate (33.00g, 114.0mmol) in dry DMF (130 ml) at 268K. After 30 min, the 3,5-dimethoxybenzaldehyde (11.00g, 66.0mmol) in dry DMF (60 ml) was added dropwise, and the reaction mixture was allowed to stir at room temperature for 12h. The mixture was then poured into ice-water. After filtration, the precipitate was collected as a yellow solid. Then the impure was recrystallized with ethanol to yield the title compound(m.p.339K, yield 59.1%). The product was dissolved in the mixture of ethyl acetate (15%) and petroleum ether (85%), colorless crystals suitable for X-ray analysis were obtained when the solution was exposed to air at room temperature for 6 d.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H distances 0.98 Å (CH3),Uiso(H) = 1.5Ueq(C); 0.95 Å (CH),Uiso(H) =1.2Ueq(C);

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
trans-3,3',4,5'-Tetramethoxystilbene top
Crystal data top
C18H20O4Dx = 1.239 Mg m3
Mr = 300.34Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 1273 reflections
a = 5.2431 (2) Åθ = 3.5–62.6°
b = 11.9840 (7) ŵ = 0.71 mm1
c = 25.6315 (11) ÅT = 293 K
V = 1610.51 (14) Å3Needle, light colourless
Z = 40.42 × 0.11 × 0.07 mm
F(000) = 640
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2032 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1791 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 16.0288 pixels mm-1θmax = 62.7°, θmin = 3.5°
ω scansh = 35
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1311
Tmin = 0.781, Tmax = 1.000l = 1729
2952 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
2032 reflections(Δ/σ)max = 0.005
203 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H20O4V = 1610.51 (14) Å3
Mr = 300.34Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.2431 (2) ŵ = 0.71 mm1
b = 11.9840 (7) ÅT = 293 K
c = 25.6315 (11) Å0.42 × 0.11 × 0.07 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2032 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1791 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 1.000Rint = 0.020
2952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.13Δρmax = 0.13 e Å3
2032 reflectionsΔρmin = 0.15 e Å3
203 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies (2010). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2225 (4)0.53444 (16)0.41963 (6)0.0686 (5)
O30.4129 (3)0.05952 (15)0.78118 (6)0.0590 (5)
O40.2862 (3)0.29517 (15)0.82410 (6)0.0604 (5)
O10.1078 (4)0.59508 (15)0.48866 (6)0.0628 (5)
C40.3989 (5)0.3431 (2)0.52589 (10)0.0555 (6)
H40.51690.28730.53320.067*
C50.2240 (5)0.3738 (2)0.56362 (8)0.0481 (6)
C70.2275 (5)0.3164 (2)0.61401 (9)0.0533 (6)
H70.36210.26740.61960.064*
C80.0604 (5)0.3265 (2)0.65256 (9)0.0519 (6)
H80.07660.37420.64670.062*
C100.2460 (5)0.1874 (2)0.71574 (9)0.0475 (6)
H100.36310.16370.69080.057*
C180.5886 (5)0.0176 (2)0.74345 (11)0.0649 (7)
H18A0.49620.01220.71430.097*
H18B0.69040.04020.75890.097*
H18C0.69740.07700.73180.097*
C140.1071 (5)0.3027 (2)0.74094 (8)0.0467 (5)
H140.22840.35670.73290.056*
C170.3087 (6)0.2439 (3)0.87367 (9)0.0762 (9)
H17A0.33810.16540.86930.114*
H17B0.44910.27640.89230.114*
H17C0.15420.25510.89310.114*
C130.1035 (5)0.25517 (19)0.79054 (8)0.0467 (6)
C120.0729 (5)0.17448 (19)0.80283 (9)0.0476 (6)
H120.07550.14300.83600.057*
C20.2307 (5)0.4775 (2)0.46577 (8)0.0505 (6)
C30.4011 (5)0.3941 (2)0.47741 (9)0.0562 (6)
H30.51930.37170.45250.067*
C60.0495 (5)0.4586 (2)0.55153 (8)0.0489 (6)
H60.06980.48030.57640.059*
C10.0516 (5)0.51025 (19)0.50366 (9)0.0470 (6)
C110.2464 (4)0.14063 (19)0.76539 (9)0.0458 (5)
C160.2818 (5)0.6360 (2)0.52633 (11)0.0659 (7)
H16A0.38020.69560.51150.099*
H16B0.18930.66320.55600.099*
H16C0.39390.57690.53700.099*
C150.4072 (7)0.5055 (3)0.38112 (10)0.0841 (10)
H15A0.39100.55480.35180.126*
H15B0.37970.43000.37000.126*
H15C0.57510.51240.39570.126*
C90.0682 (5)0.27030 (18)0.70361 (8)0.0449 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0870 (13)0.0752 (13)0.0434 (9)0.0076 (12)0.0101 (9)0.0135 (9)
O30.0593 (10)0.0559 (10)0.0617 (10)0.0104 (10)0.0042 (9)0.0068 (9)
O40.0648 (10)0.0701 (11)0.0464 (9)0.0110 (10)0.0090 (8)0.0026 (9)
O10.0669 (11)0.0672 (11)0.0542 (10)0.0155 (11)0.0045 (9)0.0121 (9)
C40.0592 (15)0.0524 (14)0.0548 (14)0.0072 (14)0.0026 (14)0.0046 (13)
C50.0507 (13)0.0497 (14)0.0439 (12)0.0002 (13)0.0001 (11)0.0043 (11)
C70.0600 (15)0.0520 (15)0.0478 (13)0.0057 (13)0.0002 (12)0.0050 (12)
C80.0566 (13)0.0502 (14)0.0490 (13)0.0045 (13)0.0000 (12)0.0045 (12)
C100.0483 (13)0.0482 (13)0.0459 (13)0.0053 (12)0.0028 (11)0.0017 (11)
C180.0560 (14)0.0570 (16)0.0816 (18)0.0096 (15)0.0003 (15)0.0009 (15)
C140.0504 (13)0.0438 (12)0.0459 (12)0.0006 (12)0.0013 (11)0.0014 (11)
C170.090 (2)0.093 (2)0.0449 (14)0.0152 (19)0.0171 (14)0.0093 (15)
C130.0501 (13)0.0501 (14)0.0399 (12)0.0048 (12)0.0010 (11)0.0025 (11)
C120.0527 (13)0.0527 (14)0.0374 (11)0.0015 (13)0.0032 (11)0.0042 (11)
C20.0609 (15)0.0519 (14)0.0388 (11)0.0039 (14)0.0018 (11)0.0050 (11)
C30.0622 (14)0.0581 (15)0.0484 (13)0.0069 (14)0.0117 (13)0.0010 (13)
C60.0515 (13)0.0535 (14)0.0417 (12)0.0013 (12)0.0044 (11)0.0008 (12)
C10.0506 (14)0.0462 (13)0.0443 (12)0.0005 (12)0.0026 (11)0.0034 (11)
C110.0460 (12)0.0415 (12)0.0499 (12)0.0013 (12)0.0086 (11)0.0014 (11)
C160.0627 (16)0.0653 (18)0.0697 (16)0.0142 (15)0.0000 (14)0.0005 (15)
C150.108 (2)0.095 (2)0.0490 (14)0.002 (2)0.0240 (17)0.0076 (16)
C90.0501 (13)0.0434 (13)0.0413 (12)0.0072 (12)0.0032 (11)0.0021 (11)
Geometric parameters (Å, º) top
O2—C21.366 (3)C18—H18C0.9600
O2—C151.425 (3)C14—H140.9300
O3—C181.427 (3)C14—C131.393 (3)
O3—C111.368 (3)C14—C91.383 (3)
O4—C171.416 (3)C17—H17A0.9600
O4—C131.374 (3)C17—H17B0.9600
O1—C11.371 (3)C17—H17C0.9600
O1—C161.416 (3)C13—C121.375 (3)
C4—H40.9300C12—H120.9300
C4—C51.382 (3)C12—C111.383 (3)
C4—C31.385 (3)C2—C31.373 (3)
C5—C71.463 (3)C2—C11.407 (3)
C5—C61.403 (3)C3—H30.9300
C7—H70.9300C6—H60.9300
C7—C81.326 (3)C6—C11.374 (3)
C8—H80.9300C16—H16A0.9600
C8—C91.472 (3)C16—H16B0.9600
C10—H100.9300C16—H16C0.9600
C10—C111.391 (3)C15—H15A0.9600
C10—C91.398 (3)C15—H15B0.9600
C18—H18A0.9600C15—H15C0.9600
C18—H18B0.9600
C2—O2—C15117.2 (2)C12—C13—O4124.8 (2)
C11—O3—C18117.51 (19)C12—C13—C14120.4 (2)
C13—O4—C17117.9 (2)C13—C12—H12120.3
C1—O1—C16117.27 (19)C13—C12—C11119.3 (2)
C5—C4—H4119.5C11—C12—H12120.3
C5—C4—C3121.0 (2)O2—C2—C3124.9 (2)
C3—C4—H4119.5O2—C2—C1115.9 (2)
C4—C5—C7119.0 (2)C3—C2—C1119.2 (2)
C4—C5—C6118.1 (2)C4—C3—H3119.6
C6—C5—C7122.9 (2)C2—C3—C4120.7 (2)
C5—C7—H7116.3C2—C3—H3119.6
C8—C7—C5127.4 (2)C5—C6—H6119.4
C8—C7—H7116.3C1—C6—C5121.2 (2)
C7—C8—H8116.5C1—C6—H6119.4
C7—C8—C9127.0 (2)O1—C1—C2114.9 (2)
C9—C8—H8116.5O1—C1—C6125.4 (2)
C11—C10—H10120.3C6—C1—C2119.7 (2)
C11—C10—C9119.4 (2)O3—C11—C10123.9 (2)
C9—C10—H10120.3O3—C11—C12115.0 (2)
O3—C18—H18A109.5C12—C11—C10121.1 (2)
O3—C18—H18B109.5O1—C16—H16A109.5
O3—C18—H18C109.5O1—C16—H16B109.5
H18A—C18—H18B109.5O1—C16—H16C109.5
H18A—C18—H18C109.5H16A—C16—H16B109.5
H18B—C18—H18C109.5H16A—C16—H16C109.5
C13—C14—H14119.8H16B—C16—H16C109.5
C9—C14—H14119.8O2—C15—H15A109.5
C9—C14—C13120.5 (2)O2—C15—H15B109.5
O4—C17—H17A109.5O2—C15—H15C109.5
O4—C17—H17B109.5H15A—C15—H15B109.5
O4—C17—H17C109.5H15A—C15—H15C109.5
H17A—C17—H17B109.5H15B—C15—H15C109.5
H17A—C17—H17C109.5C10—C9—C8122.8 (2)
H17B—C17—H17C109.5C14—C9—C8117.9 (2)
O4—C13—C14114.8 (2)C14—C9—C10119.3 (2)

Experimental details

Crystal data
Chemical formulaC18H20O4
Mr300.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.2431 (2), 11.9840 (7), 25.6315 (11)
V3)1610.51 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.42 × 0.11 × 0.07
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.781, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2952, 2032, 1791
Rint0.020
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.13
No. of reflections2032
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank the Key Areas Breakthroughs in Key Projects Foundation of Hong Kong and Guangdong Province (No. 2009205200022) and the Science and Technology Achievements Transformation Projects Foundation of Guangdong University (No. cgzhzd 0805) for generously supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBelleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L. A. & Presta, M. (2005). Mol. Pharmacol. 67, 1451–1459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGosslau, A., Chen, M., Ho, C. T. & Chen, K. Y. (2005). Br. J. Cancer, 92, 513–521.  Web of Science PubMed CAS Google Scholar
First citationNam, K. A., Kim, S., Hoe, Y. H. & Lee, S. K. (2001). Arch. Pharm. Res. 24, 441–445.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPiao, Z.-S., Wang, L., Feng, Y.-B. & Zhao, Z.-Z. (2002). Chin. Chem. Lett. 13, 521–524.  CAS Google Scholar
First citationSale, S., Verschoyle, R. D., Boocock, D., Jones, D. J. L., Wilsher, N., Ruparelia, K. C., Potter, G. A., Farmer, P. B., Steward, W. P. & Gescher, A. J. (2004). Br. J. Cancer, 90, 736–744  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibutani, S., Samejima, M. & Doi, S. (2004). J. Wood Sci. 50, 439–444.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds