organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl-1,2,3,3a-tetra­hydro­benzo[e]pyrrolo­[2,1-b][1,3]oxazepin-10(5H)-one

aChemistry Department, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: tj_zrh@163.com

(Received 21 June 2011; accepted 4 July 2011; online 9 July 2011)

The asymmetric unit of the title compound, C13H15NO2, the main product of a photoreaction, contains two crystallographically independent mol­ecules. In both mol­ecules, the conformation of the seven-membered ring is twist sofa and that of the five-membered rings is envelope. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to asymmetric photochemical reactions, see: Aubert et al. (2000[Aubert, C., Vos, M. H., Mathias, P., Eker, A. M. & Brettle, K. (2000). Nature (London), 407, 926.]); Gratzel (2001[Gratzel, M. (2001). Pure Appl. Chem. 73, 459-467. Griesbeck, A. G., Heinrich, T., Oelgemöller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561-4577.]); Korzeniewski & Zoladz (2001[Korzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 17-34.]). For photo-induced cyclizations, see Griesbeck et al. (2002[Griesbeck, A. G., Heinrich, T., Oelgemo ller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561-4577.]); Henz et al. (1995[Henz, A., Griesbeck, A. G. & Peters, K. (1995). Angew. Chem. Int. Ed. 34, 474-491.]); For related structures, see: Basarić et al. (2008[Basarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965-3968.]); Griesbeck et al. (1997[Griesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowshi, F. & Oelgemöller, M. (1997). Helv. Chim. Acta, 80, 912-933.], 1999[Griesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213-5217.]); Jin et al. (2011a[Jin, Y.-Z., Liu, C.-E., Zhang, R.-H., Fu, D.-X. & Lv, Y.-K. (2011a). Acta Cryst. E67, o1593.],b[Jin, Y.-Z., Zhang, R.-H., Fu, D.-X. & Lv, Y.-K. (2011b). Acta Cryst. E67, o1594.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO2

  • Mr = 217.26

  • Orthorhombic, P 21 21 21

  • a = 10.410 (4) Å

  • b = 12.688 (5) Å

  • c = 17.124 (7) Å

  • V = 2261.8 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.97, Tmax = 0.99

  • 19530 measured reflections

  • 2918 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.108

  • S = 0.99

  • 2918 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.54 3.293 (4) 139
C16—H16A⋯O4ii 0.93 2.58 3.243 (3) 129
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In modern organic chemistry preparative organic photochemistry is an important tool to synthesize the compounds in one step which cannot be gained in common reactions. (Aubert et al. 2000; Gratzel, 2001; Korzeniewski & Zoladz, 2001). Benzophenone acylamide derivatives can form the seven-membered ring through the intramolecular photoinduced decarboxylation and cyclization (Griesbeck et al., 2002; Henz et al.,1995). Recently, we have reported two seven-membered ring compounds prepared by photochemical reaction (Jin et al., 2011a; Jin et al., 2011b).

We report herein the crystal structure and synthesis of the title compound. Single crystal X–ray analysis revealed that the title compound crystallizes in orthorhombic, chiral space group P212121. The asymmetric unit contains two crystallographically independent molecules. As shown in Fig.1, the two molecules, which have the opposite absolute configuration, have the same molecular formula containing one seven-membered ring, one five-membered ring and one six-membered ring. The enantiomers have slightly different bond lengths and bond angles and atoms C8, C10, C21, C26 are chiral centers. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to asymmetric photochemical reactions, see: Aubert et al. (2000); Gratzel (2001); Korzeniewski & Zoladz (2001). For photo-induced cyclizations, see Griesbeck et al. (2002); Henz et al. (1995); For related structures, see: Basarić et al. (2008); Griesbeck et al. (1997, 1999); Jin et al. (2011a,b).

Experimental top

The title compound, C13H15NO2, was the main product from the photoreaction of (S)-1-(2-acetylbenzoyl) pyrrolidine-2-carboxylic acid under N2 for 10 h. The compound was purified by flash column chromatography (silica gel column, petroleum ether/ethyl acetate=6/1). Colourless crystals for the X-ray crystallographic studies were gained by slow evaporation of a dichloromethane solution.

Refinement top

The structure was solved by direct methods and expanded with difference Fourier techniques. All non-hydrogen atoms were refined anisotropically by the full matrix least-squares on the F2. The hydrogen atoms attached to carbon atoms were located by geometrical calculation using a riding model [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing the C—H···O interactions.
5-methyl-1,2,3,3a-tetrahydrobenzo[e]pyrrolo[2,1-b][1,3]oxazepin- 10(5H)-one top
Crystal data top
C13H15NO2F(000) = 928
Mr = 217.26Dx = 1.276 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7042 reflections
a = 10.410 (4) Åθ = 2.3–27.5°
b = 12.688 (5) ŵ = 0.09 mm1
c = 17.124 (7) ÅT = 296 K
V = 2261.8 (15) Å3Prism, colourless
Z = 80.23 × 0.20 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.97, Tmax = 0.99k = 1611
19530 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2918 reflectionsΔρmax = 0.42 e Å3
291 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
C13H15NO2V = 2261.8 (15) Å3
Mr = 217.26Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 10.410 (4) ŵ = 0.09 mm1
b = 12.688 (5) ÅT = 296 K
c = 17.124 (7) Å0.23 × 0.20 × 0.18 mm
Data collection top
Rigaku SCXmini
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2555 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.074
19530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.99Δρmax = 0.42 e Å3
2918 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23788 (19)0.54319 (13)0.26755 (12)0.0777 (6)
O20.37121 (17)0.22737 (13)0.22168 (10)0.0620 (5)
O30.03656 (17)0.37491 (12)0.02903 (10)0.0593 (4)
O40.09595 (19)0.70473 (12)0.01621 (11)0.0678 (5)
N10.37387 (19)0.40475 (15)0.26863 (11)0.0521 (5)
N20.01054 (19)0.56105 (15)0.04280 (11)0.0522 (5)
C10.1473 (2)0.37156 (18)0.28097 (13)0.0507 (5)
C20.0459 (3)0.3994 (2)0.33027 (14)0.0626 (6)
H2A0.04920.46290.35730.075*
C30.0590 (3)0.3341 (2)0.33938 (17)0.0734 (8)
H3A0.12490.35240.37340.088*
C40.0649 (3)0.2418 (3)0.29778 (17)0.0772 (8)
H4A0.13610.19800.30290.093*
C50.0341 (3)0.2136 (2)0.24836 (16)0.0674 (7)
H5A0.02810.15090.22040.081*
C60.1429 (2)0.27645 (18)0.23933 (13)0.0525 (5)
C70.2558 (2)0.44788 (18)0.27247 (13)0.0538 (5)
C80.2520 (3)0.24980 (19)0.18309 (14)0.0583 (6)
H8A0.26570.31110.14930.070*
C90.2278 (3)0.1548 (2)0.13068 (18)0.0870 (10)
H9A0.30070.14390.09730.104*
H9B0.15290.16730.09930.104*
H9C0.21450.09330.16240.104*
C100.4018 (2)0.29467 (18)0.28521 (14)0.0535 (6)
H10A0.35710.27180.33260.064*
C110.5462 (3)0.2946 (2)0.29797 (15)0.0670 (7)
H11A0.58400.22880.28060.080*
H11B0.56690.30520.35260.080*
C120.5938 (3)0.3866 (2)0.24849 (17)0.0748 (8)
H12A0.67460.41350.26840.090*
H12B0.60560.36530.19460.090*
C130.4909 (3)0.4675 (2)0.25502 (16)0.0635 (6)
H13A0.50730.51490.29830.076*
H13B0.48390.50830.20730.076*
C140.2354 (2)0.55960 (15)0.01113 (11)0.0448 (5)
C150.3450 (2)0.61538 (18)0.03210 (13)0.0531 (6)
H15A0.33890.68690.04350.064*
C160.4622 (3)0.56595 (19)0.03615 (15)0.0590 (6)
H16A0.53520.60350.05060.071*
C170.4708 (2)0.4595 (2)0.01856 (14)0.0591 (6)
H17A0.54960.42520.02210.071*
C180.3631 (2)0.40425 (18)0.00418 (14)0.0536 (5)
H18A0.37050.33320.01660.064*
C190.2441 (2)0.45249 (16)0.00882 (12)0.0449 (5)
C200.1086 (2)0.61564 (17)0.01078 (13)0.0494 (5)
C210.1226 (2)0.39619 (18)0.03595 (14)0.0540 (6)
H21A0.07750.44390.07170.065*
C220.1428 (3)0.2944 (2)0.07828 (17)0.0746 (8)
H22A0.06120.26630.09400.090*
H22B0.18510.24520.04440.090*
H22C0.19500.30660.12360.090*
C230.1212 (2)0.6019 (2)0.04741 (17)0.0662 (7)
H23A0.15480.61760.00410.079*
H23B0.12510.66500.07930.079*
C240.1937 (3)0.5125 (2)0.0848 (2)0.0869 (10)
H24A0.25950.53950.11960.104*
H24B0.23440.46910.04530.104*
C250.0971 (3)0.4498 (2)0.12943 (16)0.0693 (7)
H25A0.12320.37660.13320.083*
H25B0.08620.47790.18170.083*
C260.0263 (2)0.46025 (18)0.08272 (13)0.0533 (5)
H26A0.10090.46220.11760.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0809 (13)0.0451 (10)0.1070 (15)0.0058 (9)0.0035 (12)0.0016 (10)
O20.0678 (11)0.0560 (9)0.0622 (10)0.0146 (8)0.0134 (9)0.0095 (8)
O30.0592 (10)0.0500 (9)0.0688 (10)0.0100 (8)0.0036 (8)0.0016 (7)
O40.0801 (12)0.0481 (9)0.0753 (11)0.0147 (8)0.0024 (10)0.0140 (8)
N10.0540 (11)0.0476 (10)0.0548 (11)0.0012 (8)0.0003 (9)0.0018 (8)
N20.0474 (11)0.0525 (11)0.0567 (11)0.0062 (8)0.0044 (8)0.0079 (9)
C10.0525 (13)0.0529 (12)0.0467 (11)0.0061 (10)0.0077 (10)0.0023 (10)
C20.0630 (16)0.0695 (16)0.0552 (13)0.0061 (13)0.0069 (12)0.0021 (12)
C30.0585 (17)0.097 (2)0.0652 (17)0.0001 (16)0.0028 (13)0.0068 (15)
C40.0639 (17)0.091 (2)0.0769 (19)0.0153 (16)0.0126 (15)0.0127 (16)
C50.0754 (19)0.0584 (14)0.0684 (15)0.0086 (13)0.0205 (14)0.0023 (12)
C60.0608 (14)0.0487 (12)0.0480 (12)0.0023 (10)0.0131 (10)0.0027 (9)
C70.0616 (15)0.0482 (13)0.0516 (12)0.0015 (11)0.0053 (11)0.0029 (10)
C80.0725 (17)0.0528 (13)0.0495 (12)0.0060 (12)0.0113 (12)0.0018 (9)
C90.106 (3)0.0815 (19)0.0736 (18)0.004 (2)0.0170 (18)0.0301 (15)
C100.0611 (14)0.0525 (13)0.0469 (12)0.0028 (11)0.0067 (11)0.0017 (10)
C110.0612 (16)0.0827 (19)0.0571 (15)0.0086 (14)0.0092 (12)0.0003 (13)
C120.0594 (16)0.086 (2)0.0786 (18)0.0076 (15)0.0072 (14)0.0154 (16)
C130.0668 (16)0.0638 (15)0.0599 (13)0.0108 (12)0.0080 (12)0.0059 (11)
C140.0531 (12)0.0396 (10)0.0418 (10)0.0011 (9)0.0011 (9)0.0024 (8)
C150.0600 (15)0.0437 (12)0.0556 (13)0.0056 (10)0.0052 (11)0.0003 (10)
C160.0544 (14)0.0601 (15)0.0626 (14)0.0112 (12)0.0070 (12)0.0044 (11)
C170.0470 (13)0.0639 (14)0.0665 (14)0.0035 (12)0.0003 (11)0.0066 (12)
C180.0600 (14)0.0414 (11)0.0593 (13)0.0031 (10)0.0024 (11)0.0002 (10)
C190.0501 (12)0.0407 (10)0.0441 (10)0.0034 (9)0.0009 (9)0.0014 (8)
C200.0565 (13)0.0462 (12)0.0454 (11)0.0019 (10)0.0035 (10)0.0006 (9)
C210.0592 (14)0.0493 (12)0.0536 (13)0.0088 (11)0.0052 (11)0.0016 (10)
C220.091 (2)0.0621 (16)0.0712 (17)0.0203 (15)0.0019 (15)0.0138 (13)
C230.0501 (14)0.0775 (17)0.0710 (16)0.0133 (13)0.0096 (12)0.0073 (14)
C240.0487 (16)0.103 (2)0.109 (2)0.0010 (16)0.0019 (17)0.0183 (19)
C250.0567 (16)0.0806 (18)0.0707 (16)0.0025 (14)0.0090 (13)0.0142 (15)
C260.0525 (13)0.0550 (13)0.0525 (12)0.0013 (11)0.0036 (10)0.0074 (10)
Geometric parameters (Å, º) top
O1—C71.226 (3)C11—H11B0.9700
O2—C101.419 (3)C12—C131.488 (4)
O2—C81.434 (3)C12—H12A0.9700
O3—C261.424 (3)C12—H12B0.9700
O3—C211.453 (3)C13—H13A0.9700
O4—C201.228 (3)C13—H13B0.9700
N1—C71.347 (3)C14—C151.390 (3)
N1—C101.455 (3)C14—C191.404 (3)
N1—C131.474 (3)C14—C201.499 (3)
N2—C201.350 (3)C15—C161.374 (3)
N2—C261.459 (3)C15—H15A0.9300
N2—C231.468 (3)C16—C171.387 (3)
C1—C21.397 (3)C16—H16A0.9300
C1—C61.402 (3)C17—C181.379 (3)
C1—C71.495 (3)C17—H17A0.9300
C2—C31.380 (4)C18—C191.384 (3)
C2—H2A0.9300C18—H18A0.9300
C3—C41.372 (4)C19—C211.526 (3)
C3—H3A0.9300C21—C221.495 (3)
C4—C51.381 (4)C21—H21A0.9800
C4—H4A0.9300C22—H22A0.9600
C5—C61.394 (4)C22—H22B0.9600
C5—H5A0.9300C22—H22C0.9600
C6—C81.527 (3)C23—C241.506 (4)
C8—C91.524 (3)C23—H23A0.9700
C8—H8A0.9800C23—H23B0.9700
C9—H9A0.9600C24—C251.492 (4)
C9—H9B0.9600C24—H24A0.9700
C9—H9C0.9600C24—H24B0.9700
C10—C111.519 (4)C25—C261.519 (3)
C10—H10A0.9800C25—H25A0.9700
C11—C121.525 (4)C25—H25B0.9700
C11—H11A0.9700C26—H26A0.9800
C10—O2—C8115.35 (17)C12—C13—H13A111.0
C26—O3—C21113.53 (16)N1—C13—H13B111.0
C7—N1—C10124.3 (2)C12—C13—H13B111.0
C7—N1—C13122.85 (19)H13A—C13—H13B109.0
C10—N1—C13112.6 (2)C15—C14—C19120.2 (2)
C20—N2—C26123.71 (19)C15—C14—C20118.83 (19)
C20—N2—C23123.17 (19)C19—C14—C20120.99 (19)
C26—N2—C23112.89 (19)C16—C15—C14120.7 (2)
C2—C1—C6120.1 (2)C16—C15—H15A119.7
C2—C1—C7117.7 (2)C14—C15—H15A119.7
C6—C1—C7122.2 (2)C15—C16—C17119.4 (2)
C3—C2—C1120.9 (2)C15—C16—H16A120.3
C3—C2—H2A119.5C17—C16—H16A120.3
C1—C2—H2A119.5C18—C17—C16120.3 (2)
C4—C3—C2119.3 (3)C18—C17—H17A119.9
C4—C3—H3A120.3C16—C17—H17A119.9
C2—C3—H3A120.3C17—C18—C19121.3 (2)
C3—C4—C5120.4 (3)C17—C18—H18A119.4
C3—C4—H4A119.8C19—C18—H18A119.4
C5—C4—H4A119.8C18—C19—C14118.16 (19)
C4—C5—C6121.7 (3)C18—C19—C21123.6 (2)
C4—C5—H5A119.1C14—C19—C21118.27 (19)
C6—C5—H5A119.1O4—C20—N2122.9 (2)
C5—C6—C1117.5 (2)O4—C20—C14122.2 (2)
C5—C6—C8123.2 (2)N2—C20—C14114.88 (18)
C1—C6—C8119.1 (2)O3—C21—C22107.30 (19)
O1—C7—N1122.4 (2)O3—C21—C19111.39 (18)
O1—C7—C1122.0 (2)C22—C21—C19115.8 (2)
N1—C7—C1115.5 (2)O3—C21—H21A107.3
O2—C8—C9104.9 (2)C22—C21—H21A107.3
O2—C8—C6113.38 (18)C19—C21—H21A107.3
C9—C8—C6115.0 (2)C21—C22—H22A109.5
O2—C8—H8A107.7C21—C22—H22B109.5
C9—C8—H8A107.7H22A—C22—H22B109.5
C6—C8—H8A107.7C21—C22—H22C109.5
C8—C9—H9A109.5H22A—C22—H22C109.5
C8—C9—H9B109.5H22B—C22—H22C109.5
H9A—C9—H9B109.5N2—C23—C24103.0 (2)
C8—C9—H9C109.5N2—C23—H23A111.2
H9A—C9—H9C109.5C24—C23—H23A111.2
H9B—C9—H9C109.5N2—C23—H23B111.2
O2—C10—N1112.53 (18)C24—C23—H23B111.2
O2—C10—C11109.4 (2)H23A—C23—H23B109.1
N1—C10—C11103.1 (2)C25—C24—C23106.3 (2)
O2—C10—H10A110.5C25—C24—H24A110.5
N1—C10—H10A110.5C23—C24—H24A110.5
C11—C10—H10A110.5C25—C24—H24B110.5
C10—C11—C12104.0 (2)C23—C24—H24B110.5
C10—C11—H11A111.0H24A—C24—H24B108.7
C12—C11—H11A111.0C24—C25—C26104.7 (2)
C10—C11—H11B111.0C24—C25—H25A110.8
C12—C11—H11B111.0C26—C25—H25A110.8
H11A—C11—H11B109.0C24—C25—H25B110.8
C13—C12—C11104.6 (2)C26—C25—H25B110.8
C13—C12—H12A110.8H25A—C25—H25B108.9
C11—C12—H12A110.8O3—C26—N2111.86 (18)
C13—C12—H12B110.8O3—C26—C25109.7 (2)
C11—C12—H12B110.8N2—C26—C25103.2 (2)
H12A—C12—H12B108.9O3—C26—H26A110.6
N1—C13—C12103.6 (2)N2—C26—H26A110.6
N1—C13—H13A111.0C25—C26—H26A110.6
C6—C1—C2—C30.6 (3)C19—C14—C15—C162.2 (3)
C7—C1—C2—C3178.3 (2)C20—C14—C15—C16177.4 (2)
C1—C2—C3—C41.7 (4)C14—C15—C16—C170.4 (4)
C2—C3—C4—C51.2 (4)C15—C16—C17—C181.2 (4)
C3—C4—C5—C60.4 (4)C16—C17—C18—C191.1 (4)
C4—C5—C6—C11.6 (4)C17—C18—C19—C140.7 (3)
C4—C5—C6—C8177.7 (2)C17—C18—C19—C21178.1 (2)
C2—C1—C6—C51.0 (3)C15—C14—C19—C182.3 (3)
C7—C1—C6—C5176.6 (2)C20—C14—C19—C18177.32 (19)
C2—C1—C6—C8177.4 (2)C15—C14—C19—C21176.5 (2)
C7—C1—C6—C80.3 (3)C20—C14—C19—C213.9 (3)
C10—N1—C7—O1170.8 (2)C26—N2—C20—O4173.0 (2)
C13—N1—C7—O12.6 (3)C23—N2—C20—O41.0 (4)
C10—N1—C7—C110.8 (3)C26—N2—C20—C146.5 (3)
C13—N1—C7—C1175.8 (2)C23—N2—C20—C14179.5 (2)
C2—C1—C7—O140.6 (3)C15—C14—C20—O443.3 (3)
C6—C1—C7—O1137.2 (2)C19—C14—C20—O4137.1 (2)
C2—C1—C7—N1141.0 (2)C15—C14—C20—N2136.3 (2)
C6—C1—C7—N141.2 (3)C19—C14—C20—N243.3 (3)
C10—O2—C8—C9168.0 (2)C26—O3—C21—C22169.6 (2)
C10—O2—C8—C641.7 (3)C26—O3—C21—C1941.9 (3)
C5—C6—C8—O2114.7 (2)C18—C19—C21—O3106.7 (2)
C1—C6—C8—O269.2 (3)C14—C19—C21—O374.5 (2)
C5—C6—C8—C96.1 (3)C18—C19—C21—C2216.2 (3)
C1—C6—C8—C9170.0 (2)C14—C19—C21—C22162.5 (2)
C8—O2—C10—N142.3 (3)C20—N2—C23—C24178.4 (2)
C8—O2—C10—C11156.2 (2)C26—N2—C23—C247.0 (3)
C7—N1—C10—O279.5 (3)N2—C23—C24—C2524.1 (3)
C13—N1—C10—O2106.5 (2)C23—C24—C25—C2632.2 (3)
C7—N1—C10—C11162.7 (2)C21—O3—C26—N245.1 (3)
C13—N1—C10—C1111.3 (3)C21—O3—C26—C25158.96 (19)
O2—C10—C11—C1291.7 (3)C20—N2—C26—O379.9 (3)
N1—C10—C11—C1228.2 (3)C23—N2—C26—O3105.5 (2)
C10—C11—C12—C1335.7 (3)C20—N2—C26—C25162.3 (2)
C7—N1—C13—C12175.2 (2)C23—N2—C26—C2512.4 (3)
C10—N1—C13—C1210.8 (3)C24—C25—C26—O392.5 (3)
C11—C12—C13—N128.2 (3)C24—C25—C26—N226.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.543.293 (4)139
C16—H16A···O4ii0.932.583.243 (3)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC13H15NO2
Mr217.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.410 (4), 12.688 (5), 17.124 (7)
V3)2261.8 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
19530, 2918, 2555
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.108, 0.99
No. of reflections2918
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.543.293 (4)139
C16—H16A···O4ii0.932.583.243 (3)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China is gratefully acknowledged.

References

First citationAubert, C., Vos, M. H., Mathias, P., Eker, A. M. & Brettle, K. (2000). Nature (London), 407, 926.  Web of Science CrossRef Google Scholar
First citationBasarić, N., Horvat, M., Mlinarić-Majerski, K., Zimmermann, E., Neudörfl, J. & Griesbeck, A. G. (2008). Org. Lett. 10, 3965–3968.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGratzel, M. (2001). Pure Appl. Chem. 73, 459-467. Griesbeck, A. G., Heinrich, T., Oelgemöller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561–4577.  Google Scholar
First citationGriesbeck, A. G., Heinrich, T., Oelgemo ller, M., Molis, A. & Heidtann, A. (2002). Helv. Chim. Acta, 85, 4561–4577.  Web of Science CrossRef CAS Google Scholar
First citationGriesbeck, A. G., Henz, A., Kramer, W., Lex, J., Nerowshi, F. & Oelgemöller, M. (1997). Helv. Chim. Acta, 80, 912–933.  CSD CrossRef CAS Web of Science Google Scholar
First citationGriesbeck, A. G., Nerowski, F. & Lex, J. (1999). J. Org. Chem. 64, 5213–5217.  Web of Science CSD CrossRef CAS Google Scholar
First citationHenz, A., Griesbeck, A. G. & Peters, K. (1995). Angew. Chem. Int. Ed. 34, 474–491.  Google Scholar
First citationJin, Y.-Z., Liu, C.-E., Zhang, R.-H., Fu, D.-X. & Lv, Y.-K. (2011a). Acta Cryst. E67, o1593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Y.-Z., Zhang, R.-H., Fu, D.-X. & Lv, Y.-K. (2011b). Acta Cryst. E67, o1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorzeniewski, B. & Zoladz, J. A. (2001). Biophys. Chem. 92, 17–34.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds