organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-nitro-1,3-benzo­thia­zol-3-ium hydrogen sulfate

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: qhf@njut.edu.cn

(Received 8 July 2011; accepted 11 July 2011; online 16 July 2011)

In the title molecular salt, C7H6N3O2S+·HSO4, the 2-amino-6-nitro-1,3-benzothia­zole ring system is essentially planar [mean deviation = 0.0605 (4) Å]. In the crystal, N—H⋯O and O—H⋯O hydrogen-bonding inter­actions result in a layer motif.

Related literature

For related compounds, see Glidewell et al. (2001[Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209-1211.]); Lynch (2002[Lynch, D. E. (2002). Acta Cryst. E58, o1139-o1141.]); Lynch & Duckhouse (2001[Lynch, D. E. & Duckhouse, H. L. (2001). Acta Cryst. C57, 1036-1038.]); You et al. (2009[You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N3O2S+·HSO4

  • Mr = 293.28

  • Monoclinic, P 21 /n

  • a = 7.849 (6) Å

  • b = 16.219 (12) Å

  • c = 9.191 (7) Å

  • β = 108.584 (10)°

  • V = 1109.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 291 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.942

  • 5436 measured reflections

  • 1958 independent reflections

  • 1586 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.159

  • S = 0.98

  • 1958 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 1.97 2.825 (4) 171
N2—H2A⋯O6i 0.86 2.02 2.867 (4) 170
N2—H2B⋯O6ii 0.86 2.10 2.888 (4) 151
O3—H3A⋯O4iii 0.82 1.86 2.664 (4) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There have been three single-crystal structural investigations on 2-amino-6-nitro-1,3-benzothiazole, namely 2-amino-6-nitro-1,3-benzothiazole (Glidewell et al., 2001),its monohydrate (Lynch et al., 2002) and its PtCl2 complex (Lynch & Duckhouse, 2001). We have previously reported the single-crystal structure of 2-aminobenzimidazolium hydrogen sulfate (You et al., 2009). In this work, we describe the single-crystal structure of a hydrogen sulfate salt of 2-amino-6-nitro-1,3-benzothiazole.

The atom-numbering scheme of the title compound is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The 2-amino-6-nitro-1,3-benzothiazole skeleton of the title compound is is essentially planar with the mean deviation of 0.0605 (4) Å. The proton is delocalized within the thiozole ring although it is added to the nitrogen atom. With regard to the hydrogen sulfate anion, the hydrogen atom is added to the O3 atom of SO4 group due to the obviously longer O3–S2 bond length. In the crystal packing, N—H···O and O—H···O hydrogen-bond interactions are found between adjacent molecules giving rise to a layer motif.

Related literature top

For related compounds, see Glidewell et al. (2001); Lynch et al. (2002); Lynch & Duckhouse (2001); You et al. (2009).

Experimental top

The treatment of 2-amino-6-nitro-1,3-benzothiazole dissolved in methanol with an excess of sulfuric acid yields the title compound. Single crystals suitable for X-ray diffraction measurement were obtained after 7 days' slow evaporation of the mother liquid at room temperature in air. Anal. Calcd. For C7H6N3O2S+.HSO4-: C, 28.67; H, 2.41; N, 14.33%. Found: C, 28.53; H, 2.66; N, 14.44%.

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms bonded with carbon, nitrogen and oxygen atoms were placed in geometrically idealized positions (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and 1.2U~eq~(N) and Uĩso~(H) = 1.5U~eq~(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-Amino-6-nitro-1,3-benzothiazol-3-ium hydrogen sulfate top
Crystal data top
C7H6N3O2S+·HSO4F(000) = 600
Mr = 293.28Dx = 1.757 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2618 reflections
a = 7.849 (6) Åθ = 2.3–28.0°
b = 16.219 (12) ŵ = 0.51 mm1
c = 9.191 (7) ÅT = 291 K
β = 108.584 (10)°Block, colourless
V = 1109.0 (14) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker 1K CCD area-detector
diffractometer
1958 independent reflections
Radiation source: fine-focus sealed tube1586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 96
Tmin = 0.923, Tmax = 0.942k = 1918
5436 measured reflectionsl = 810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1126P)2]
where P = (Fo2 + 2Fc2)/3
1958 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C7H6N3O2S+·HSO4V = 1109.0 (14) Å3
Mr = 293.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.849 (6) ŵ = 0.51 mm1
b = 16.219 (12) ÅT = 291 K
c = 9.191 (7) Å0.16 × 0.14 × 0.12 mm
β = 108.584 (10)°
Data collection top
Bruker 1K CCD area-detector
diffractometer
1958 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1586 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.942Rint = 0.097
5436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.98Δρmax = 0.52 e Å3
1958 reflectionsΔρmin = 0.60 e Å3
163 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7190 (4)0.12918 (17)0.4541 (3)0.0400 (7)
C20.7416 (4)0.00938 (16)0.5027 (3)0.0379 (7)
C30.7086 (5)0.09352 (18)0.4792 (4)0.0483 (8)
H30.62940.11310.38740.058*
C40.7959 (5)0.14661 (19)0.5950 (4)0.0501 (8)
H40.77900.20320.58150.060*
C50.9089 (4)0.11571 (17)0.7315 (4)0.0427 (7)
C60.9441 (4)0.03251 (17)0.7588 (3)0.0427 (7)
H61.02070.01320.85200.051*
C70.8588 (4)0.02045 (17)0.6393 (3)0.0387 (7)
N10.6668 (3)0.05352 (15)0.4010 (3)0.0412 (6)
H1A0.59270.04470.31070.049*
N20.6630 (4)0.19655 (15)0.3774 (3)0.0524 (8)
H2A0.58740.19410.28610.063*
H2B0.70140.24360.41780.063*
N30.9911 (4)0.17264 (18)0.8562 (3)0.0538 (7)
O11.0531 (3)0.14566 (16)0.9864 (3)0.0651 (7)
O20.9914 (5)0.24573 (18)0.8252 (3)0.0885 (10)
O30.4172 (3)0.88694 (13)1.0011 (3)0.0602 (7)
H3A0.39340.93051.03570.090*
O40.6040 (3)0.96348 (13)0.8861 (2)0.0479 (6)
O50.7360 (3)0.90117 (14)1.1335 (3)0.0607 (7)
O60.6226 (3)0.81597 (13)0.9086 (3)0.0549 (7)
S10.87176 (11)0.12757 (5)0.63686 (9)0.0506 (3)
S20.60859 (9)0.89227 (4)0.98544 (8)0.0401 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (16)0.0359 (15)0.0280 (16)0.0021 (12)0.0003 (13)0.0006 (12)
C20.0509 (16)0.0330 (14)0.0274 (15)0.0023 (12)0.0092 (13)0.0000 (11)
C30.067 (2)0.0398 (16)0.0321 (16)0.0075 (15)0.0077 (14)0.0101 (13)
C40.072 (2)0.0347 (15)0.0430 (19)0.0010 (15)0.0172 (16)0.0014 (14)
C50.0461 (16)0.0434 (17)0.0365 (17)0.0047 (13)0.0103 (14)0.0073 (13)
C60.0451 (16)0.0452 (16)0.0315 (16)0.0033 (13)0.0034 (13)0.0035 (13)
C70.0449 (15)0.0351 (15)0.0312 (15)0.0024 (12)0.0053 (12)0.0006 (11)
N10.0530 (14)0.0383 (13)0.0239 (12)0.0053 (11)0.0005 (10)0.0023 (10)
N20.0697 (18)0.0341 (13)0.0363 (15)0.0036 (12)0.0073 (13)0.0003 (11)
N30.0579 (16)0.0541 (17)0.0479 (19)0.0046 (13)0.0149 (14)0.0168 (14)
O10.0650 (15)0.0766 (18)0.0433 (16)0.0019 (13)0.0025 (12)0.0191 (13)
O20.131 (3)0.0496 (15)0.073 (2)0.0216 (16)0.0161 (17)0.0176 (14)
O30.0525 (14)0.0479 (13)0.081 (2)0.0029 (10)0.0230 (14)0.0050 (12)
O40.0656 (14)0.0382 (11)0.0354 (12)0.0087 (10)0.0099 (10)0.0037 (9)
O50.0633 (15)0.0678 (16)0.0346 (13)0.0024 (11)0.0077 (11)0.0017 (11)
O60.0696 (15)0.0379 (12)0.0450 (14)0.0118 (10)0.0013 (11)0.0044 (10)
S10.0641 (6)0.0364 (5)0.0329 (5)0.0078 (3)0.0104 (4)0.0014 (3)
S20.0452 (5)0.0362 (5)0.0297 (5)0.0029 (3)0.0010 (4)0.0023 (3)
Geometric parameters (Å, º) top
C1—N21.299 (4)C6—H60.9300
C1—N11.336 (3)C7—S11.741 (3)
C1—S11.725 (3)N1—H1A0.8600
C2—N11.382 (3)N2—H2A0.8600
C2—C71.386 (4)N2—H2B0.8600
C2—C31.393 (4)N3—O11.220 (4)
C3—C41.370 (4)N3—O21.220 (4)
C3—H30.9300O3—S21.557 (3)
C4—C51.380 (5)O3—H3A0.8200
C4—H40.9300O4—S21.466 (2)
C5—C61.384 (4)O5—S21.416 (2)
C5—N31.453 (4)O6—S21.446 (2)
C6—C71.387 (4)
N2—C1—N1124.2 (3)C2—C7—S1111.2 (2)
N2—C1—S1123.5 (2)C6—C7—S1127.8 (2)
N1—C1—S1112.3 (2)C1—N1—C2114.6 (2)
N1—C2—C7111.8 (2)C1—N1—H1A122.7
N1—C2—C3126.9 (3)C2—N1—H1A122.7
C7—C2—C3121.3 (3)C1—N2—H2A120.0
C4—C3—C2118.2 (3)C1—N2—H2B120.0
C4—C3—H3120.9H2A—N2—H2B120.0
C2—C3—H3120.9O1—N3—O2123.3 (3)
C3—C4—C5119.7 (3)O1—N3—C5118.9 (3)
C3—C4—H4120.2O2—N3—C5117.8 (3)
C5—C4—H4120.2S2—O3—H3A109.5
C4—C5—C6123.5 (3)C1—S1—C790.14 (13)
C4—C5—N3118.8 (3)O5—S2—O6114.58 (14)
C6—C5—N3117.6 (3)O5—S2—O4112.84 (14)
C5—C6—C7116.2 (3)O6—S2—O4111.16 (15)
C5—C6—H6121.9O5—S2—O3108.89 (16)
C7—C6—H6121.9O6—S2—O3102.90 (14)
C2—C7—C6121.0 (3)O4—S2—O3105.57 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.972.825 (4)171
N2—H2A···O6i0.862.022.867 (4)170
N2—H2B···O6ii0.862.102.888 (4)151
O3—H3A···O4iii0.821.862.664 (4)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC7H6N3O2S+·HSO4
Mr293.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.849 (6), 16.219 (12), 9.191 (7)
β (°) 108.584 (10)
V3)1109.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.923, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
5436, 1958, 1586
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.159, 0.98
No. of reflections1958
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.60

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.972.825 (4)171
N2—H2A···O6i0.862.022.867 (4)170
N2—H2B···O6ii0.862.102.888 (4)151
O3—H3A···O4iii0.821.862.664 (4)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+2, z+2.
 

Acknowledgements

We would like to acknowledge the National Natural Science Foundation of China (No. 20871065) and the Jiangsu Province Department of Science and Technology (No. BK2009226) for financial aid.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. C57, 1209–1211.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. (2002). Acta Cryst. E58, o1139–o1141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Duckhouse, H. L. (2001). Acta Cryst. C57, 1036–1038.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds