organic compounds
A correction has been published for this article. To view the correction, click here.
N-tert-Butyl-2-methylpropanamide
aDepartment of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
*Correspondence e-mail: cora.macbeth@emory.edu
The title compound, C8H17NO, crystallizes with two independent molecules in the In the crystal, intermolecular N—H⋯O hydrogen bonding is observed between neighboring molecules, forming continuous molecular chains along the c-axis direction.
Related literature
For the synthesis of the title compound, see: De Kimpe et al. (1978); Christensen et al. (1989); Yasuhara et al. (2000); Li et al. (2003). For its use as a ligand in Zr and Ti complexes, see: Li et al. (2003). For background to the coordination modes of see: Lee & Schafer (2007).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811028947/fj2438sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028947/fj2438Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028947/fj2438Isup3.cml
The title molecule was synthesized using a modified literature procedure (Li et al., 2003). Under a nitrogen atmosphere, a 100 ml round bottom flask was charged with 50 ml of dichloromethane, 4.31 ml (41.0 mmol) tert-butylamine, 8.55 ml (61.5 mmol) of triethylamine and a stir bar. The solution was cooled to 0 °C and 5.20 ml (49.2 mmol) of isobutyryl chloride was added dropwise. The solution was slowly warmed to room temperature overnight. The resulting pink solution was extracted three times with 50 ml of 0.10 M HCl. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to dryness to yield the desired product in 60% yield. X-ray quality crystals were obtained by slowly evaporating a chloroform solution of the product. The spectroscopic data (NMR, IR, and ESI-MS) match well with the reported values (Li et al., 2003).
The structures were solved using
and difference Fourier techniques (SHELXTL, V6.12) (Sheldrick, 2008). Hydrogen atoms were added with the HFIX command. These were included in the final cycles of least squares with isotropic Uij's that were determined by the riding model. All non-hydrogen atoms in the main residues were refined anisotropically, but residual solvent molecules in the unit cells were refined isotropically. Structure solution, and generation of publication materials were performed by using SHELX, V6.12 software.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H17NO | F(000) = 320 |
Mr = 143.23 | Dx = 1.008 Mg m−3 |
Monoclinic, P21 | Melting point: 393 K |
Hall symbol: P 2yb | Cu Kα radiation, λ = 1.54178 Å |
a = 9.0378 (6) Å | Cell parameters from 4549 reflections |
b = 11.3939 (8) Å | θ = 4.8–69.1° |
c = 9.5390 (6) Å | µ = 0.51 mm−1 |
β = 106.133 (3)° | T = 173 K |
V = 943.60 (11) Å3 | Block, colourless |
Z = 4 | 0.31 × 0.20 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2662 independent reflections |
Radiation source: fine-focus sealed tube | 2624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 69.1°, θmin = 4.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.858, Tmax = 0.941 | k = −13→12 |
6358 measured reflections | l = −11→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.088P)2 + 0.0504P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2662 reflections | Δρmax = 0.19 e Å−3 |
181 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 812 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.3 (2) |
C8H17NO | V = 943.60 (11) Å3 |
Mr = 143.23 | Z = 4 |
Monoclinic, P21 | Cu Kα radiation |
a = 9.0378 (6) Å | µ = 0.51 mm−1 |
b = 11.3939 (8) Å | T = 173 K |
c = 9.5390 (6) Å | 0.31 × 0.20 × 0.12 mm |
β = 106.133 (3)° |
Bruker APEXII CCD diffractometer | 2662 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2624 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 0.941 | Rint = 0.014 |
6358 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.106 | Δρmax = 0.19 e Å−3 |
S = 1.00 | Δρmin = −0.16 e Å−3 |
2662 reflections | Absolute structure: Flack (1983), 812 Friedel pairs |
181 parameters | Absolute structure parameter: 0.3 (2) |
1 restraint |
Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.30615 (14) | 0.07943 (12) | 0.55844 (13) | 0.0364 (3) | |
H1A | 0.2841 | 0.0677 | 0.6416 | 0.044* | |
N2 | 0.17705 (14) | 0.08317 (12) | 1.04274 (12) | 0.0355 (3) | |
H2A | 0.1857 | 0.1191 | 1.1263 | 0.043* | |
O1 | 0.23057 (13) | 0.17773 (11) | 0.34325 (11) | 0.0394 (3) | |
O2 | 0.27727 (15) | 0.06614 (13) | 0.85203 (12) | 0.0498 (3) | |
C1 | 0.1354 (2) | 0.35161 (16) | 0.5354 (2) | 0.0541 (5) | |
H1B | 0.0593 | 0.3932 | 0.5728 | 0.081* | |
H1C | 0.1322 | 0.3819 | 0.4385 | 0.081* | |
H1D | 0.2385 | 0.3638 | 0.6018 | 0.081* | |
C2 | 0.09866 (19) | 0.22154 (14) | 0.52483 (17) | 0.0383 (4) | |
H2B | 0.1043 | 0.1912 | 0.6246 | 0.046* | |
C3 | −0.0618 (2) | 0.19845 (19) | 0.4252 (3) | 0.0582 (5) | |
H3A | −0.1379 | 0.2398 | 0.4627 | 0.087* | |
H3B | −0.0829 | 0.1140 | 0.4220 | 0.087* | |
H3C | −0.0680 | 0.2266 | 0.3267 | 0.087* | |
C4 | 0.21920 (17) | 0.15640 (14) | 0.46654 (15) | 0.0342 (3) | |
C5 | 0.43590 (17) | 0.01194 (14) | 0.53402 (15) | 0.0350 (3) | |
C6 | 0.56316 (19) | 0.09591 (16) | 0.5211 (2) | 0.0447 (4) | |
H6A | 0.5246 | 0.1463 | 0.4354 | 0.067* | |
H6B | 0.6517 | 0.0507 | 0.5105 | 0.067* | |
H6C | 0.5948 | 0.1446 | 0.6090 | 0.067* | |
C7 | 0.3832 (2) | −0.06553 (16) | 0.39919 (17) | 0.0428 (4) | |
H7A | 0.3015 | −0.1183 | 0.4102 | 0.064* | |
H7B | 0.4704 | −0.1120 | 0.3879 | 0.064* | |
H7C | 0.3437 | −0.0162 | 0.3127 | 0.064* | |
C8 | 0.4953 (2) | −0.06704 (17) | 0.66758 (18) | 0.0466 (4) | |
H8A | 0.4130 | −0.1203 | 0.6759 | 0.070* | |
H8B | 0.5277 | −0.0185 | 0.7556 | 0.070* | |
H8C | 0.5832 | −0.1129 | 0.6568 | 0.070* | |
C9 | 0.4281 (2) | 0.28811 (19) | 0.9455 (3) | 0.0580 (5) | |
H9A | 0.5106 | 0.3416 | 0.9961 | 0.087* | |
H9B | 0.3314 | 0.3318 | 0.9116 | 0.087* | |
H9C | 0.4542 | 0.2529 | 0.8617 | 0.087* | |
C10 | 0.40976 (18) | 0.19187 (15) | 1.04972 (17) | 0.0380 (3) | |
H10A | 0.3831 | 0.2280 | 1.1351 | 0.046* | |
C11 | 0.5592 (2) | 0.12282 (19) | 1.1036 (2) | 0.0519 (4) | |
H11A | 0.6423 | 0.1759 | 1.1538 | 0.078* | |
H11B | 0.5851 | 0.0865 | 1.0204 | 0.078* | |
H11C | 0.5462 | 0.0616 | 1.1714 | 0.078* | |
C12 | 0.28088 (17) | 0.10794 (14) | 0.97174 (15) | 0.0343 (3) | |
C13 | 0.04849 (19) | −0.00018 (18) | 0.99122 (18) | 0.0442 (4) | |
C14 | −0.0612 (2) | 0.0436 (2) | 0.8479 (2) | 0.0677 (6) | |
H14A | −0.0073 | 0.0448 | 0.7718 | 0.102* | |
H14B | −0.0963 | 0.1231 | 0.8618 | 0.102* | |
H14C | −0.1503 | −0.0090 | 0.8183 | 0.102* | |
C15 | 0.1083 (3) | −0.1214 (2) | 0.9736 (3) | 0.0666 (6) | |
H15A | 0.1785 | −0.1470 | 1.0665 | 0.100* | |
H15B | 0.1635 | −0.1196 | 0.8985 | 0.100* | |
H15C | 0.0216 | −0.1762 | 0.9442 | 0.100* | |
C16 | −0.0360 (3) | −0.0012 (3) | 1.1101 (3) | 0.0796 (8) | |
H16B | −0.1251 | −0.0539 | 1.0810 | 0.119* | |
H16C | −0.0710 | 0.0783 | 1.1234 | 0.119* | |
H16A | 0.0341 | −0.0289 | 1.2020 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0423 (7) | 0.0407 (7) | 0.0305 (5) | 0.0064 (6) | 0.0173 (5) | 0.0040 (5) |
N2 | 0.0331 (6) | 0.0460 (8) | 0.0282 (5) | −0.0053 (5) | 0.0099 (4) | −0.0068 (5) |
O1 | 0.0445 (5) | 0.0478 (7) | 0.0295 (5) | 0.0060 (5) | 0.0159 (4) | 0.0053 (5) |
O2 | 0.0592 (7) | 0.0643 (8) | 0.0309 (5) | −0.0154 (6) | 0.0208 (5) | −0.0115 (5) |
C1 | 0.0598 (11) | 0.0418 (10) | 0.0689 (12) | −0.0012 (8) | 0.0318 (9) | −0.0113 (9) |
C2 | 0.0438 (8) | 0.0397 (9) | 0.0361 (7) | 0.0048 (7) | 0.0192 (6) | 0.0048 (6) |
C3 | 0.0375 (9) | 0.0540 (11) | 0.0866 (14) | 0.0021 (8) | 0.0229 (9) | −0.0120 (10) |
C4 | 0.0373 (7) | 0.0372 (8) | 0.0306 (6) | −0.0009 (6) | 0.0135 (5) | −0.0003 (6) |
C5 | 0.0390 (7) | 0.0344 (8) | 0.0327 (7) | 0.0047 (6) | 0.0115 (6) | 0.0030 (6) |
C6 | 0.0389 (8) | 0.0390 (9) | 0.0580 (9) | 0.0021 (7) | 0.0168 (7) | 0.0003 (8) |
C7 | 0.0493 (9) | 0.0380 (8) | 0.0429 (8) | 0.0040 (7) | 0.0158 (7) | −0.0035 (7) |
C8 | 0.0488 (9) | 0.0495 (10) | 0.0419 (8) | 0.0126 (8) | 0.0134 (6) | 0.0090 (8) |
C9 | 0.0492 (10) | 0.0450 (10) | 0.0796 (13) | −0.0033 (8) | 0.0175 (9) | 0.0128 (10) |
C10 | 0.0388 (7) | 0.0406 (8) | 0.0378 (7) | −0.0043 (7) | 0.0159 (6) | −0.0073 (6) |
C11 | 0.0429 (9) | 0.0549 (11) | 0.0519 (9) | −0.0034 (8) | 0.0031 (7) | −0.0001 (8) |
C12 | 0.0379 (7) | 0.0401 (8) | 0.0263 (6) | 0.0010 (6) | 0.0111 (5) | 0.0001 (6) |
C13 | 0.0363 (7) | 0.0559 (10) | 0.0412 (8) | −0.0106 (7) | 0.0120 (6) | −0.0078 (8) |
C14 | 0.0457 (10) | 0.0811 (15) | 0.0627 (12) | −0.0095 (10) | −0.0075 (8) | −0.0083 (11) |
C15 | 0.0647 (13) | 0.0491 (11) | 0.0838 (15) | −0.0171 (10) | 0.0172 (10) | −0.0049 (10) |
C16 | 0.0562 (12) | 0.120 (2) | 0.0741 (13) | −0.0411 (14) | 0.0373 (10) | −0.0240 (15) |
N1—C4 | 1.331 (2) | C7—H7C | 0.9800 |
N1—C5 | 1.4739 (19) | C8—H8A | 0.9800 |
N1—H1A | 0.8800 | C8—H8B | 0.9800 |
N2—C12 | 1.3312 (19) | C8—H8C | 0.9800 |
N2—C13 | 1.475 (2) | C9—C10 | 1.520 (3) |
N2—H2A | 0.8800 | C9—H9A | 0.9800 |
O1—C4 | 1.2328 (18) | C9—H9B | 0.9800 |
O2—C12 | 1.2293 (19) | C9—H9C | 0.9800 |
C1—C2 | 1.516 (2) | C10—C11 | 1.523 (2) |
C1—H1B | 0.9800 | C10—C12 | 1.531 (2) |
C1—H1C | 0.9800 | C10—H10A | 1.0000 |
C1—H1D | 0.9800 | C11—H11A | 0.9800 |
C2—C3 | 1.519 (2) | C11—H11B | 0.9800 |
C2—C4 | 1.544 (2) | C11—H11C | 0.9800 |
C2—H2B | 1.0000 | C13—C15 | 1.509 (3) |
C3—H3A | 0.9800 | C13—C14 | 1.533 (3) |
C3—H3B | 0.9800 | C13—C16 | 1.533 (3) |
C3—H3C | 0.9800 | C14—H14A | 0.9800 |
C5—C7 | 1.523 (2) | C14—H14B | 0.9800 |
C5—C6 | 1.527 (2) | C14—H14C | 0.9800 |
C5—C8 | 1.530 (2) | C15—H15A | 0.9800 |
C6—H6A | 0.9800 | C15—H15B | 0.9800 |
C6—H6B | 0.9800 | C15—H15C | 0.9800 |
C6—H6C | 0.9800 | C16—H16B | 0.9800 |
C7—H7A | 0.9800 | C16—H16C | 0.9800 |
C7—H7B | 0.9800 | C16—H16A | 0.9800 |
C4—N1—C5 | 126.13 (11) | C5—C8—H8C | 109.5 |
C4—N1—H1A | 116.9 | H8A—C8—H8C | 109.5 |
C5—N1—H1A | 116.9 | H8B—C8—H8C | 109.5 |
C12—N2—C13 | 124.63 (13) | C10—C9—H9A | 109.5 |
C12—N2—H2A | 117.7 | C10—C9—H9B | 109.5 |
C13—N2—H2A | 117.7 | H9A—C9—H9B | 109.5 |
C2—C1—H1B | 109.5 | C10—C9—H9C | 109.5 |
C2—C1—H1C | 109.5 | H9A—C9—H9C | 109.5 |
H1B—C1—H1C | 109.5 | H9B—C9—H9C | 109.5 |
C2—C1—H1D | 109.5 | C9—C10—C11 | 110.23 (15) |
H1B—C1—H1D | 109.5 | C9—C10—C12 | 109.85 (13) |
H1C—C1—H1D | 109.5 | C11—C10—C12 | 108.96 (14) |
C1—C2—C3 | 111.37 (16) | C9—C10—H10A | 109.3 |
C1—C2—C4 | 109.28 (14) | C11—C10—H10A | 109.3 |
C3—C2—C4 | 109.74 (14) | C12—C10—H10A | 109.3 |
C1—C2—H2B | 108.8 | C10—C11—H11A | 109.5 |
C3—C2—H2B | 108.8 | C10—C11—H11B | 109.5 |
C4—C2—H2B | 108.8 | H11A—C11—H11B | 109.5 |
C2—C3—H3A | 109.5 | C10—C11—H11C | 109.5 |
C2—C3—H3B | 109.5 | H11A—C11—H11C | 109.5 |
H3A—C3—H3B | 109.5 | H11B—C11—H11C | 109.5 |
C2—C3—H3C | 109.5 | O2—C12—N2 | 123.37 (15) |
H3A—C3—H3C | 109.5 | O2—C12—C10 | 120.91 (14) |
H3B—C3—H3C | 109.5 | N2—C12—C10 | 115.72 (13) |
O1—C4—N1 | 124.59 (14) | N2—C13—C15 | 110.67 (15) |
O1—C4—C2 | 120.20 (14) | N2—C13—C14 | 110.00 (16) |
N1—C4—C2 | 115.22 (12) | C15—C13—C14 | 111.19 (18) |
N1—C5—C7 | 111.09 (12) | N2—C13—C16 | 105.46 (15) |
N1—C5—C6 | 109.64 (12) | C15—C13—C16 | 110.0 (2) |
C7—C5—C6 | 111.15 (14) | C14—C13—C16 | 109.32 (18) |
N1—C5—C8 | 106.60 (12) | C13—C14—H14A | 109.5 |
C7—C5—C8 | 108.50 (14) | C13—C14—H14B | 109.5 |
C6—C5—C8 | 109.75 (13) | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 109.5 | C13—C14—H14C | 109.5 |
C5—C6—H6B | 109.5 | H14A—C14—H14C | 109.5 |
H6A—C6—H6B | 109.5 | H14B—C14—H14C | 109.5 |
C5—C6—H6C | 109.5 | C13—C15—H15A | 109.5 |
H6A—C6—H6C | 109.5 | C13—C15—H15B | 109.5 |
H6B—C6—H6C | 109.5 | H15A—C15—H15B | 109.5 |
C5—C7—H7A | 109.5 | C13—C15—H15C | 109.5 |
C5—C7—H7B | 109.5 | H15A—C15—H15C | 109.5 |
H7A—C7—H7B | 109.5 | H15B—C15—H15C | 109.5 |
C5—C7—H7C | 109.5 | C13—C16—H16B | 109.5 |
H7A—C7—H7C | 109.5 | C13—C16—H16C | 109.5 |
H7B—C7—H7C | 109.5 | H16B—C16—H16C | 109.5 |
C5—C8—H8A | 109.5 | C13—C16—H16A | 109.5 |
C5—C8—H8B | 109.5 | H16B—C16—H16A | 109.5 |
H8A—C8—H8B | 109.5 | H16C—C16—H16A | 109.5 |
C5—N1—C4—O1 | 3.9 (3) | C13—N2—C12—O2 | 2.5 (3) |
C5—N1—C4—C2 | −175.58 (14) | C13—N2—C12—C10 | −176.63 (15) |
C1—C2—C4—O1 | −63.0 (2) | C9—C10—C12—O2 | 49.6 (2) |
C3—C2—C4—O1 | 59.4 (2) | C11—C10—C12—O2 | −71.2 (2) |
C1—C2—C4—N1 | 116.50 (17) | C9—C10—C12—N2 | −131.26 (16) |
C3—C2—C4—N1 | −121.10 (17) | C11—C10—C12—N2 | 107.89 (17) |
C4—N1—C5—C7 | −60.1 (2) | C12—N2—C13—C15 | 59.7 (2) |
C4—N1—C5—C6 | 63.11 (19) | C12—N2—C13—C14 | −63.5 (2) |
C4—N1—C5—C8 | −178.15 (16) | C12—N2—C13—C16 | 178.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.88 | 2.03 | 2.8880 (16) | 166 |
N2—H2A···O1i | 0.88 | 2.10 | 2.9735 (16) | 169 |
Symmetry code: (i) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H17NO |
Mr | 143.23 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 173 |
a, b, c (Å) | 9.0378 (6), 11.3939 (8), 9.5390 (6) |
β (°) | 106.133 (3) |
V (Å3) | 943.60 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.51 |
Crystal size (mm) | 0.31 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.858, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6358, 2662, 2624 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.106, 1.00 |
No. of reflections | 2662 |
No. of parameters | 181 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.16 |
Absolute structure | Flack (1983), 812 Friedel pairs |
Absolute structure parameter | 0.3 (2) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.88 | 2.03 | 2.8880 (16) | 166 |
N2—H2A···O1i | 0.88 | 2.10 | 2.9735 (16) | 169 |
Symmetry code: (i) x, y, z+1. |
Acknowledgements
We acknowledge the Emory University Center for X-ray Crystallography for assistance with data collection.
References
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Christensen, D. & Jorgensen, K. A. (1989). J. Org. Chem. 54, 126–131. CrossRef CAS Web of Science Google Scholar
De Kimpe, N., Verhe, R., De Buyck, L., Chys, J. & Schamp, N. (1978). Org. Prep. Proc. Intl. 10, 149–156. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lee, A. & Schafer, L. L. (2007). Eur. J. Inorg. Chem. pp. 2243–2255. Google Scholar
Li, C., Thomson, R. K., Gillon, B., Patrick, B. O. & Schafer, L. L. (2003). Chem. Commun. pp. 2462–2463. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yasuhara, T., Nagaoka, Y. & Tomioka, K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2901–2902. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carboxamides can be deprotonated to form monoanionic amidate ligands. These species can coordinate to transition metal ions through a variety of different coordination modes, including monodentate and bidentate coordination modes, and therefore are coordinatively versatile ligands (Lee & Schafer, 2007). The ease of synthesis of carboxamides make them attractive ligands for a variety of transition metal mediated catalytic reactions, see: Li et al. (2003) and Lee & Schafer (2007). Although the synthesis of this compound has been previously described, its solid-state structure has not been reported. The two molecules (A and B) of N-tert-butyl-2-methylpropanamide (Fig. 1) are stabilized by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).