organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

N-tert-Butyl-2-methyl­propanamide

aDepartment of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
*Correspondence e-mail: cora.macbeth@emory.edu

(Received 21 June 2011; accepted 18 July 2011; online 30 July 2011)

The title compound, C8H17NO, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, inter­molecular N—H⋯O hydrogen bonding is observed between neighboring mol­ecules, forming continuous mol­ecular chains along the c-axis direction.

Related literature

For the synthesis of the title compound, see: De Kimpe et al. (1978[De Kimpe, N., Verhe, R., De Buyck, L., Chys, J. & Schamp, N. (1978). Org. Prep. Proc. Intl. 10, 149-156.]); Christensen et al. (1989[Christensen, D. & Jorgensen, K. A. (1989). J. Org. Chem. 54, 126-131.]); Yasuhara et al. (2000[Yasuhara, T., Nagaoka, Y. & Tomioka, K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2901-2902.]); Li et al. (2003[Li, C., Thomson, R. K., Gillon, B., Patrick, B. O. & Schafer, L. L. (2003). Chem. Commun. pp. 2462-2463.]). For its use as a ligand in Zr and Ti complexes, see: Li et al. (2003[Li, C., Thomson, R. K., Gillon, B., Patrick, B. O. & Schafer, L. L. (2003). Chem. Commun. pp. 2462-2463.]). For background to the coordination modes of carboxamides, see: Lee & Schafer (2007[Lee, A. & Schafer, L. L. (2007). Eur. J. Inorg. Chem. pp. 2243-2255.]).

[Scheme 1]

Experimental

Crystal data
  • C8H17NO

  • Mr = 143.23

  • Monoclinic, P 21

  • a = 9.0378 (6) Å

  • b = 11.3939 (8) Å

  • c = 9.5390 (6) Å

  • β = 106.133 (3)°

  • V = 943.60 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.51 mm−1

  • T = 173 K

  • 0.31 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.858, Tmax = 0.941

  • 6358 measured reflections

  • 2662 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.00

  • 2662 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 812 Friedel pairs

  • Flack parameter: 0.3 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.88 2.03 2.8880 (16) 166
N2—H2A⋯O1i 0.88 2.10 2.9735 (16) 169
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxamides can be deprotonated to form monoanionic amidate ligands. These species can coordinate to transition metal ions through a variety of different coordination modes, including monodentate and bidentate coordination modes, and therefore are coordinatively versatile ligands (Lee & Schafer, 2007). The ease of synthesis of carboxamides make them attractive ligands for a variety of transition metal mediated catalytic reactions, see: Li et al. (2003) and Lee & Schafer (2007). Although the synthesis of this compound has been previously described, its solid-state structure has not been reported. The two molecules (A and B) of N-tert-butyl-2-methylpropanamide (Fig. 1) are stabilized by intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the synthesis of the title compound, see: De Kimpe et al. (1978); Christensen et al. (1989); Yasuhara et al. (2000); Li et al. (2003). For its use as a ligand in Zr and Ti complexes, see: Li et al. (2003).For background to the coordination modes of carboxamides, see: Lee & Schafer (2007).

Experimental top

The title molecule was synthesized using a modified literature procedure (Li et al., 2003). Under a nitrogen atmosphere, a 100 ml round bottom flask was charged with 50 ml of dichloromethane, 4.31 ml (41.0 mmol) tert-butylamine, 8.55 ml (61.5 mmol) of triethylamine and a stir bar. The solution was cooled to 0 °C and 5.20 ml (49.2 mmol) of isobutyryl chloride was added dropwise. The solution was slowly warmed to room temperature overnight. The resulting pink solution was extracted three times with 50 ml of 0.10 M HCl. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to dryness to yield the desired product in 60% yield. X-ray quality crystals were obtained by slowly evaporating a chloroform solution of the product. The spectroscopic data (NMR, IR, and ESI-MS) match well with the reported values (Li et al., 2003).

Refinement top

The structures were solved using Direct Methods and difference Fourier techniques (SHELXTL, V6.12) (Sheldrick, 2008). Hydrogen atoms were added with the HFIX command. These were included in the final cycles of least squares refinement, with isotropic Uij's that were determined by the riding model. All non-hydrogen atoms in the main residues were refined anisotropically, but residual solvent molecules in the unit cells were refined isotropically. Structure solution, refinement, and generation of publication materials were performed by using SHELX, V6.12 software.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule A and Molecule B of N-tert-butyl-2-methylpropanamide. H atoms except H1A and H2A were omitted for clarity. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. Molecular packing and hydrogen bonding (dashed lines) network of N-tert- butyl-2-methylpropanamide viewed down the b axis.
N-tert-butyl-2-methylpropanamide top
Crystal data top
C8H17NOF(000) = 320
Mr = 143.23Dx = 1.008 Mg m3
Monoclinic, P21Melting point: 393 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 9.0378 (6) ÅCell parameters from 4549 reflections
b = 11.3939 (8) Åθ = 4.8–69.1°
c = 9.5390 (6) ŵ = 0.51 mm1
β = 106.133 (3)°T = 173 K
V = 943.60 (11) Å3Block, colourless
Z = 40.31 × 0.20 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2662 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 69.1°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.858, Tmax = 0.941k = 1312
6358 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.088P)2 + 0.0504P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2662 reflectionsΔρmax = 0.19 e Å3
181 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (2)
Crystal data top
C8H17NOV = 943.60 (11) Å3
Mr = 143.23Z = 4
Monoclinic, P21Cu Kα radiation
a = 9.0378 (6) ŵ = 0.51 mm1
b = 11.3939 (8) ÅT = 173 K
c = 9.5390 (6) Å0.31 × 0.20 × 0.12 mm
β = 106.133 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2624 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.941Rint = 0.014
6358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.16 e Å3
2662 reflectionsAbsolute structure: Flack (1983), 812 Friedel pairs
181 parametersAbsolute structure parameter: 0.3 (2)
1 restraint
Special details top

Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30615 (14)0.07943 (12)0.55844 (13)0.0364 (3)
H1A0.28410.06770.64160.044*
N20.17705 (14)0.08317 (12)1.04274 (12)0.0355 (3)
H2A0.18570.11911.12630.043*
O10.23057 (13)0.17773 (11)0.34325 (11)0.0394 (3)
O20.27727 (15)0.06614 (13)0.85203 (12)0.0498 (3)
C10.1354 (2)0.35161 (16)0.5354 (2)0.0541 (5)
H1B0.05930.39320.57280.081*
H1C0.13220.38190.43850.081*
H1D0.23850.36380.60180.081*
C20.09866 (19)0.22154 (14)0.52483 (17)0.0383 (4)
H2B0.10430.19120.62460.046*
C30.0618 (2)0.19845 (19)0.4252 (3)0.0582 (5)
H3A0.13790.23980.46270.087*
H3B0.08290.11400.42200.087*
H3C0.06800.22660.32670.087*
C40.21920 (17)0.15640 (14)0.46654 (15)0.0342 (3)
C50.43590 (17)0.01194 (14)0.53402 (15)0.0350 (3)
C60.56316 (19)0.09591 (16)0.5211 (2)0.0447 (4)
H6A0.52460.14630.43540.067*
H6B0.65170.05070.51050.067*
H6C0.59480.14460.60900.067*
C70.3832 (2)0.06553 (16)0.39919 (17)0.0428 (4)
H7A0.30150.11830.41020.064*
H7B0.47040.11200.38790.064*
H7C0.34370.01620.31270.064*
C80.4953 (2)0.06704 (17)0.66758 (18)0.0466 (4)
H8A0.41300.12030.67590.070*
H8B0.52770.01850.75560.070*
H8C0.58320.11290.65680.070*
C90.4281 (2)0.28811 (19)0.9455 (3)0.0580 (5)
H9A0.51060.34160.99610.087*
H9B0.33140.33180.91160.087*
H9C0.45420.25290.86170.087*
C100.40976 (18)0.19187 (15)1.04972 (17)0.0380 (3)
H10A0.38310.22801.13510.046*
C110.5592 (2)0.12282 (19)1.1036 (2)0.0519 (4)
H11A0.64230.17591.15380.078*
H11B0.58510.08651.02040.078*
H11C0.54620.06161.17140.078*
C120.28088 (17)0.10794 (14)0.97174 (15)0.0343 (3)
C130.04849 (19)0.00018 (18)0.99122 (18)0.0442 (4)
C140.0612 (2)0.0436 (2)0.8479 (2)0.0677 (6)
H14A0.00730.04480.77180.102*
H14B0.09630.12310.86180.102*
H14C0.15030.00900.81830.102*
C150.1083 (3)0.1214 (2)0.9736 (3)0.0666 (6)
H15A0.17850.14701.06650.100*
H15B0.16350.11960.89850.100*
H15C0.02160.17620.94420.100*
C160.0360 (3)0.0012 (3)1.1101 (3)0.0796 (8)
H16B0.12510.05391.08100.119*
H16C0.07100.07831.12340.119*
H16A0.03410.02891.20200.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0423 (7)0.0407 (7)0.0305 (5)0.0064 (6)0.0173 (5)0.0040 (5)
N20.0331 (6)0.0460 (8)0.0282 (5)0.0053 (5)0.0099 (4)0.0068 (5)
O10.0445 (5)0.0478 (7)0.0295 (5)0.0060 (5)0.0159 (4)0.0053 (5)
O20.0592 (7)0.0643 (8)0.0309 (5)0.0154 (6)0.0208 (5)0.0115 (5)
C10.0598 (11)0.0418 (10)0.0689 (12)0.0012 (8)0.0318 (9)0.0113 (9)
C20.0438 (8)0.0397 (9)0.0361 (7)0.0048 (7)0.0192 (6)0.0048 (6)
C30.0375 (9)0.0540 (11)0.0866 (14)0.0021 (8)0.0229 (9)0.0120 (10)
C40.0373 (7)0.0372 (8)0.0306 (6)0.0009 (6)0.0135 (5)0.0003 (6)
C50.0390 (7)0.0344 (8)0.0327 (7)0.0047 (6)0.0115 (6)0.0030 (6)
C60.0389 (8)0.0390 (9)0.0580 (9)0.0021 (7)0.0168 (7)0.0003 (8)
C70.0493 (9)0.0380 (8)0.0429 (8)0.0040 (7)0.0158 (7)0.0035 (7)
C80.0488 (9)0.0495 (10)0.0419 (8)0.0126 (8)0.0134 (6)0.0090 (8)
C90.0492 (10)0.0450 (10)0.0796 (13)0.0033 (8)0.0175 (9)0.0128 (10)
C100.0388 (7)0.0406 (8)0.0378 (7)0.0043 (7)0.0159 (6)0.0073 (6)
C110.0429 (9)0.0549 (11)0.0519 (9)0.0034 (8)0.0031 (7)0.0001 (8)
C120.0379 (7)0.0401 (8)0.0263 (6)0.0010 (6)0.0111 (5)0.0001 (6)
C130.0363 (7)0.0559 (10)0.0412 (8)0.0106 (7)0.0120 (6)0.0078 (8)
C140.0457 (10)0.0811 (15)0.0627 (12)0.0095 (10)0.0075 (8)0.0083 (11)
C150.0647 (13)0.0491 (11)0.0838 (15)0.0171 (10)0.0172 (10)0.0049 (10)
C160.0562 (12)0.120 (2)0.0741 (13)0.0411 (14)0.0373 (10)0.0240 (15)
Geometric parameters (Å, º) top
N1—C41.331 (2)C7—H7C0.9800
N1—C51.4739 (19)C8—H8A0.9800
N1—H1A0.8800C8—H8B0.9800
N2—C121.3312 (19)C8—H8C0.9800
N2—C131.475 (2)C9—C101.520 (3)
N2—H2A0.8800C9—H9A0.9800
O1—C41.2328 (18)C9—H9B0.9800
O2—C121.2293 (19)C9—H9C0.9800
C1—C21.516 (2)C10—C111.523 (2)
C1—H1B0.9800C10—C121.531 (2)
C1—H1C0.9800C10—H10A1.0000
C1—H1D0.9800C11—H11A0.9800
C2—C31.519 (2)C11—H11B0.9800
C2—C41.544 (2)C11—H11C0.9800
C2—H2B1.0000C13—C151.509 (3)
C3—H3A0.9800C13—C141.533 (3)
C3—H3B0.9800C13—C161.533 (3)
C3—H3C0.9800C14—H14A0.9800
C5—C71.523 (2)C14—H14B0.9800
C5—C61.527 (2)C14—H14C0.9800
C5—C81.530 (2)C15—H15A0.9800
C6—H6A0.9800C15—H15B0.9800
C6—H6B0.9800C15—H15C0.9800
C6—H6C0.9800C16—H16B0.9800
C7—H7A0.9800C16—H16C0.9800
C7—H7B0.9800C16—H16A0.9800
C4—N1—C5126.13 (11)C5—C8—H8C109.5
C4—N1—H1A116.9H8A—C8—H8C109.5
C5—N1—H1A116.9H8B—C8—H8C109.5
C12—N2—C13124.63 (13)C10—C9—H9A109.5
C12—N2—H2A117.7C10—C9—H9B109.5
C13—N2—H2A117.7H9A—C9—H9B109.5
C2—C1—H1B109.5C10—C9—H9C109.5
C2—C1—H1C109.5H9A—C9—H9C109.5
H1B—C1—H1C109.5H9B—C9—H9C109.5
C2—C1—H1D109.5C9—C10—C11110.23 (15)
H1B—C1—H1D109.5C9—C10—C12109.85 (13)
H1C—C1—H1D109.5C11—C10—C12108.96 (14)
C1—C2—C3111.37 (16)C9—C10—H10A109.3
C1—C2—C4109.28 (14)C11—C10—H10A109.3
C3—C2—C4109.74 (14)C12—C10—H10A109.3
C1—C2—H2B108.8C10—C11—H11A109.5
C3—C2—H2B108.8C10—C11—H11B109.5
C4—C2—H2B108.8H11A—C11—H11B109.5
C2—C3—H3A109.5C10—C11—H11C109.5
C2—C3—H3B109.5H11A—C11—H11C109.5
H3A—C3—H3B109.5H11B—C11—H11C109.5
C2—C3—H3C109.5O2—C12—N2123.37 (15)
H3A—C3—H3C109.5O2—C12—C10120.91 (14)
H3B—C3—H3C109.5N2—C12—C10115.72 (13)
O1—C4—N1124.59 (14)N2—C13—C15110.67 (15)
O1—C4—C2120.20 (14)N2—C13—C14110.00 (16)
N1—C4—C2115.22 (12)C15—C13—C14111.19 (18)
N1—C5—C7111.09 (12)N2—C13—C16105.46 (15)
N1—C5—C6109.64 (12)C15—C13—C16110.0 (2)
C7—C5—C6111.15 (14)C14—C13—C16109.32 (18)
N1—C5—C8106.60 (12)C13—C14—H14A109.5
C7—C5—C8108.50 (14)C13—C14—H14B109.5
C6—C5—C8109.75 (13)H14A—C14—H14B109.5
C5—C6—H6A109.5C13—C14—H14C109.5
C5—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
C5—C6—H6C109.5C13—C15—H15A109.5
H6A—C6—H6C109.5C13—C15—H15B109.5
H6B—C6—H6C109.5H15A—C15—H15B109.5
C5—C7—H7A109.5C13—C15—H15C109.5
C5—C7—H7B109.5H15A—C15—H15C109.5
H7A—C7—H7B109.5H15B—C15—H15C109.5
C5—C7—H7C109.5C13—C16—H16B109.5
H7A—C7—H7C109.5C13—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
C5—C8—H8A109.5C13—C16—H16A109.5
C5—C8—H8B109.5H16B—C16—H16A109.5
H8A—C8—H8B109.5H16C—C16—H16A109.5
C5—N1—C4—O13.9 (3)C13—N2—C12—O22.5 (3)
C5—N1—C4—C2175.58 (14)C13—N2—C12—C10176.63 (15)
C1—C2—C4—O163.0 (2)C9—C10—C12—O249.6 (2)
C3—C2—C4—O159.4 (2)C11—C10—C12—O271.2 (2)
C1—C2—C4—N1116.50 (17)C9—C10—C12—N2131.26 (16)
C3—C2—C4—N1121.10 (17)C11—C10—C12—N2107.89 (17)
C4—N1—C5—C760.1 (2)C12—N2—C13—C1559.7 (2)
C4—N1—C5—C663.11 (19)C12—N2—C13—C1463.5 (2)
C4—N1—C5—C8178.15 (16)C12—N2—C13—C16178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.882.032.8880 (16)166
N2—H2A···O1i0.882.102.9735 (16)169
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H17NO
Mr143.23
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.0378 (6), 11.3939 (8), 9.5390 (6)
β (°) 106.133 (3)
V3)943.60 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.51
Crystal size (mm)0.31 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.858, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
6358, 2662, 2624
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.00
No. of reflections2662
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 812 Friedel pairs
Absolute structure parameter0.3 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.882.032.8880 (16)166
N2—H2A···O1i0.882.102.9735 (16)169
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We acknowledge the Emory University Center for X-ray Crystallography for assistance with data collection.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChristensen, D. & Jorgensen, K. A. (1989). J. Org. Chem. 54, 126–131.  CrossRef CAS Web of Science Google Scholar
First citationDe Kimpe, N., Verhe, R., De Buyck, L., Chys, J. & Schamp, N. (1978). Org. Prep. Proc. Intl. 10, 149–156.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, A. & Schafer, L. L. (2007). Eur. J. Inorg. Chem. pp. 2243–2255.  Google Scholar
First citationLi, C., Thomson, R. K., Gillon, B., Patrick, B. O. & Schafer, L. L. (2003). Chem. Commun. pp. 2462–2463.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasuhara, T., Nagaoka, Y. & Tomioka, K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2901–2902.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds