metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Quinolin-8-yl)ferrocene-1-carbox­amide

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China
*Correspondence e-mail: lixia@hncj.edu.cn

(Received 29 June 2011; accepted 3 July 2011; online 23 July 2011)

In the title compound, [Fe(C5H5)(C15H11N2O)], the cyclo­penta­dienyl rings are essentially eclipsed, and the dihedral angle between the cyclo­penta­dienyl ring planes is 0.632 (10)°. The Fe atom is slightly closer to the substituted cyclo­penta­dienyl ring, with an Fe–centroid distance of 1.6374 (3) Å [1.6494 (3) Å for the unsubstituted ring]. The amide group is essentially coplanar with the substituted cyclo­penta­dienyl ring, with an N—C(O)—C—C torsion angle of 2.3 (3)°.

Related literature

For background to the chemical, stereochemical and electrochemical properties of ferrocene, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH Publishers.]). Ferrocene has been extensively incorporated into larger compounds in order to take advantage of these properties, see: Abd-El-Aziz & Manners (2007[Abd-El-Aziz, A. S. & Manners, I. (2007). In Frontiers in Transition Metal-Containing Polymers. Hoboken, NJ: Wiley.]); Fang et al. (2001[Fang, C. J., Duan, C. Y., Guo, D., He, C., Meng, Q. J., Wang, Z. M. & Yan, C. H. (2001). Chem. Commun. pp. 2540-2541.]); Mata et al. (2001[Mata, J. A., Peris, E., Asselberghs, I., Van Boxel, R. & Persoons, A. (2001). New J. Chem. 25, 1043-1046.]). For our research on ferrocenyl derivatives and their metal complexes, see: Li et al. (2008[Li, X., Liu, W., Zhang, H. Y. & Wu, B. L. (2008). J. Organomet. Chem. 693, 3295-3302.], 2009[Li, X., Wu, B. L., Liu, W., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). J. Coord. Chem. 62, 3142-3156.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H11N2O)]

  • Mr = 356.20

  • Orthorhombic, P b c a

  • a = 10.1680 (17) Å

  • b = 12.133 (2) Å

  • c = 26.079 (4) Å

  • V = 3217.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 296 K

  • 0.46 × 0.37 × 0.25 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.668, Tmax = 0.795

  • 18658 measured reflections

  • 3940 independent reflections

  • 2996 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.01

  • 3940 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to its special chemical, stereochemical and electrochemical properties (Togni et al., 1995), ferrocene has been extensively incorporated into larger compounds in order to take advantage of these properties (Mata et al., 2001; Abd-El-Aziz et al., 2007; Fang et al., 2001). As a continuation of our research related to ferrocenyl derivatives and their metal complexes (Li et al., 2008; Li et al., 2009), herein we report the crystal structure of 8-(Ferrocenoylamino)quinoline.

The molecular structure of the title compound is composed of a ferrocenyl group and a quinolyl group joined by an organic amide spacer. The Fe—C bond distances within the ferrocene group are in the range of 2.0259 (19)–2.048 (2) Å for the substituted cyclopentadienyl (Cp) ring [C1—C5] and 2.026 (2)–2.039 (2) Å for the unsubstituted Cp ring [C6—C10]. The planar cyclopentadienyl rings of the ferrocenyl unit are nearly parallel to each other [the interplanar angle is 0.632 (10) °]. The Cp rings are essentially eclipsed and the Fe-centroid distances are 1.6374 (3) Å (Cg1) and 1.6494 (3) Å (Cg2) with Cg1 and Cg2 are the centroids of the [C1—C5] and [C6—C10] rings. The [Cg1—Fe1—Cg2] angle is 179.324 (17) °. The carbamoyl group is essentially coplanar with the substituted cyclopentadienyl ring with a deviation of 4.9 (2) °. The angle formed by the carbamoyl group and the quinolyl group system is 9.4 (3) °.

Related literature top

For background to the chemical, stereochemical and electrochemical properties of ferrocene, see: Togni & Hayashi (1995). Ferrocene has been extensively incorporated into larger compounds in order to take advantage of these properties, see: Abd-El-Aziz & Manners (2007); Fang et al. (2001); Mata et al. (2001). For our research on ferrocenyl derivatives and their metal complexes, see: Li et al. (2008, 2009).

Experimental top

A solution of Chlorocarbonyl ferrocene (0.248 g, 1 mmol) in CH2Cl2 (20 ml) was added dropwise to a vigorously stirred solution of the 8-Aminoquinoline (0.144 g, 1 mmol) in CH2Cl2 (20 ml) containing pyridine (0.5 ml). The stirred reaction mixture was maintained at room temperature for 4 h. Removal of the solvent afforded the crude amide and the residue was recrystallized in dichloromethane/ether to give orange crystals 0.325 g. Yield 91.3%.

Refinement top

H atom bonded to N atom was located from difference Fourier maps and refined with a DFIX restraint of 0.86 (2) Å. Aromatic H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
N-(Quinolin-8-yl)ferrocene-1-carboxamide top
Crystal data top
[Fe(C5H5)(C15H11N2O)]F(000) = 1472
Mr = 356.20Dx = 1.471 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 1.6–28.3°
a = 10.1680 (17) ŵ = 0.95 mm1
b = 12.133 (2) ÅT = 296 K
c = 26.079 (4) ÅBlock, orange
V = 3217.4 (10) Å30.46 × 0.37 × 0.25 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
3940 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1313
Tmin = 0.668, Tmax = 0.795k = 1215
18658 measured reflectionsl = 3429
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.P)2 + 1.0596P]
where P = (Fo2 + 2Fc2)/3
3940 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Fe(C5H5)(C15H11N2O)]V = 3217.4 (10) Å3
Mr = 356.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.1680 (17) ŵ = 0.95 mm1
b = 12.133 (2) ÅT = 296 K
c = 26.079 (4) Å0.46 × 0.37 × 0.25 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3940 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2996 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.795Rint = 0.031
18658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
3940 reflectionsΔρmin = 0.37 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.08194 (2)0.61371 (2)0.324077 (9)0.03985 (12)
O10.14938 (18)0.85691 (16)0.34733 (7)0.0757 (5)
N10.02468 (18)0.87266 (15)0.40153 (7)0.0471 (4)
N20.19232 (16)0.94139 (13)0.47326 (6)0.0433 (4)
C10.04130 (18)0.69359 (18)0.37255 (7)0.0432 (4)
C20.1135 (2)0.6191 (2)0.34083 (8)0.0509 (5)
H20.18110.63840.31860.061*
C30.0656 (2)0.5119 (2)0.34881 (8)0.0580 (6)
H30.09590.44830.33280.070*
C40.0368 (2)0.5175 (2)0.38554 (8)0.0585 (6)
H40.08560.45810.39770.070*
C50.0521 (2)0.62850 (18)0.40057 (7)0.0484 (5)
H50.11220.65490.42450.058*
C60.1656 (3)0.7278 (2)0.27759 (10)0.0756 (8)
H60.14600.80270.27720.091*
C70.1037 (2)0.6449 (3)0.24815 (9)0.0741 (8)
H70.03550.65500.22490.089*
C80.1644 (3)0.5444 (3)0.26050 (10)0.0736 (8)
H80.14370.47580.24680.088*
C90.2604 (3)0.5657 (3)0.29680 (10)0.0767 (8)
H90.31530.51330.31170.092*
C100.2614 (2)0.6765 (3)0.30727 (11)0.0775 (8)
H100.31710.71150.33040.093*
C110.06124 (18)0.81347 (19)0.37209 (7)0.0475 (5)
C120.02430 (18)0.98542 (16)0.41223 (7)0.0419 (4)
C130.0553 (2)1.0624 (2)0.38937 (8)0.0525 (5)
H130.11441.04060.36410.063*
C140.0483 (2)1.1737 (2)0.40382 (9)0.0602 (6)
H140.10211.22470.38750.072*
C150.0351 (2)1.20882 (19)0.44113 (9)0.0583 (5)
H150.03741.28290.45030.070*
C160.1185 (2)1.13215 (16)0.46605 (7)0.0437 (4)
C170.11420 (17)1.02001 (15)0.45129 (6)0.0381 (4)
C180.2047 (2)1.16091 (17)0.50584 (8)0.0506 (5)
H180.21071.23380.51660.061*
C190.2793 (2)1.08233 (18)0.52850 (8)0.0512 (5)
H190.33511.10000.55550.061*
C200.2707 (2)0.97401 (17)0.51045 (7)0.0489 (5)
H200.32410.92130.52580.059*
H10.078 (2)0.8400 (19)0.4191 (8)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03308 (17)0.0496 (2)0.03683 (16)0.00552 (11)0.00144 (10)0.00378 (11)
O10.0693 (11)0.0826 (12)0.0752 (11)0.0229 (10)0.0350 (9)0.0182 (9)
N10.0441 (9)0.0508 (10)0.0464 (9)0.0082 (8)0.0110 (7)0.0072 (7)
N20.0460 (9)0.0388 (9)0.0451 (8)0.0007 (7)0.0054 (7)0.0007 (7)
C10.0344 (9)0.0619 (13)0.0334 (8)0.0037 (9)0.0001 (7)0.0077 (8)
C20.0341 (10)0.0756 (16)0.0431 (10)0.0137 (10)0.0019 (8)0.0091 (10)
C30.0572 (13)0.0613 (15)0.0554 (12)0.0254 (11)0.0076 (10)0.0071 (11)
C40.0674 (14)0.0551 (13)0.0530 (12)0.0080 (11)0.0008 (10)0.0106 (10)
C50.0501 (11)0.0597 (13)0.0356 (9)0.0065 (10)0.0038 (8)0.0002 (9)
C60.0774 (18)0.0681 (17)0.0813 (17)0.0078 (14)0.0356 (15)0.0080 (14)
C70.0482 (13)0.133 (3)0.0411 (11)0.0043 (15)0.0088 (9)0.0110 (14)
C80.0768 (18)0.0833 (19)0.0608 (14)0.0106 (15)0.0243 (13)0.0214 (13)
C90.0494 (14)0.106 (2)0.0749 (16)0.0155 (15)0.0118 (12)0.0030 (16)
C100.0445 (13)0.113 (3)0.0748 (16)0.0260 (15)0.0118 (12)0.0170 (16)
C110.0408 (10)0.0643 (14)0.0374 (9)0.0060 (9)0.0037 (8)0.0098 (9)
C120.0406 (10)0.0467 (11)0.0385 (9)0.0054 (8)0.0056 (7)0.0018 (8)
C130.0492 (12)0.0625 (14)0.0457 (10)0.0110 (10)0.0004 (9)0.0057 (10)
C140.0623 (14)0.0544 (14)0.0640 (13)0.0192 (11)0.0068 (11)0.0163 (11)
C150.0645 (14)0.0443 (12)0.0660 (13)0.0077 (11)0.0078 (11)0.0087 (10)
C160.0476 (10)0.0360 (10)0.0475 (10)0.0009 (8)0.0121 (8)0.0050 (8)
C170.0390 (9)0.0388 (10)0.0366 (8)0.0017 (8)0.0064 (7)0.0027 (7)
C180.0603 (13)0.0368 (10)0.0548 (11)0.0077 (9)0.0087 (10)0.0059 (9)
C190.0599 (13)0.0455 (11)0.0483 (10)0.0104 (10)0.0063 (9)0.0018 (9)
C200.0562 (12)0.0390 (10)0.0515 (10)0.0009 (9)0.0102 (9)0.0011 (8)
Geometric parameters (Å, º) top
Fe1—C102.026 (2)C6—C101.391 (4)
Fe1—C52.0258 (19)C6—C71.413 (4)
Fe1—C12.0268 (19)C6—H60.9300
Fe1—C62.028 (2)C7—C81.404 (4)
Fe1—C72.028 (2)C7—H70.9300
Fe1—C92.034 (2)C8—C91.384 (4)
Fe1—C42.036 (2)C8—H80.9300
Fe1—C22.036 (2)C9—C101.372 (4)
Fe1—C82.039 (2)C9—H90.9300
Fe1—C32.048 (2)C10—H100.9300
O1—C111.224 (2)C12—C131.372 (3)
N1—C111.367 (3)C12—C171.432 (3)
N1—C121.396 (3)C13—C141.405 (4)
N1—H10.81 (2)C13—H130.9300
N2—C201.316 (2)C14—C151.359 (3)
N2—C171.367 (2)C14—H140.9300
C1—C21.429 (3)C15—C161.417 (3)
C1—C51.435 (3)C15—H150.9300
C1—C111.469 (3)C16—C181.402 (3)
C2—C31.404 (3)C16—C171.415 (3)
C2—H20.9300C18—C191.354 (3)
C3—C41.417 (3)C18—H180.9300
C3—H30.9300C19—C201.399 (3)
C4—C51.412 (3)C19—H190.9300
C4—H40.9300C20—H200.9300
C5—H50.9300
C10—Fe1—C5108.35 (10)C5—C4—H4125.8
C10—Fe1—C1120.82 (10)C3—C4—H4125.8
C5—Fe1—C141.47 (8)Fe1—C4—H4126.3
C10—Fe1—C640.16 (12)C4—C5—C1108.12 (18)
C5—Fe1—C6126.24 (11)C4—C5—Fe170.04 (12)
C1—Fe1—C6107.81 (10)C1—C5—Fe169.30 (10)
C10—Fe1—C767.67 (11)C4—C5—H5125.9
C5—Fe1—C7164.01 (13)C1—C5—H5125.9
C1—Fe1—C7125.97 (11)Fe1—C5—H5126.3
C6—Fe1—C740.79 (11)C10—C6—C7107.2 (3)
C10—Fe1—C939.50 (13)C10—C6—Fe169.85 (15)
C5—Fe1—C9120.23 (10)C7—C6—Fe169.62 (15)
C1—Fe1—C9155.04 (10)C10—C6—H6126.4
C6—Fe1—C967.18 (12)C7—C6—H6126.4
C7—Fe1—C967.32 (11)Fe1—C6—H6125.7
C10—Fe1—C4126.11 (12)C8—C7—C6107.4 (2)
C5—Fe1—C440.68 (9)C8—C7—Fe170.25 (14)
C1—Fe1—C469.13 (10)C6—C7—Fe169.59 (14)
C6—Fe1—C4163.18 (11)C8—C7—H7126.3
C7—Fe1—C4154.22 (12)C6—C7—H7126.3
C9—Fe1—C4108.19 (11)Fe1—C7—H7125.4
C10—Fe1—C2156.06 (12)C9—C8—C7107.7 (3)
C5—Fe1—C268.87 (8)C9—C8—Fe169.94 (14)
C1—Fe1—C241.18 (8)C7—C8—Fe169.38 (14)
C6—Fe1—C2121.07 (11)C9—C8—H8126.1
C7—Fe1—C2108.08 (10)C7—C8—H8126.1
C9—Fe1—C2162.73 (11)Fe1—C8—H8126.1
C4—Fe1—C268.23 (10)C10—C9—C8108.9 (3)
C10—Fe1—C866.96 (11)C10—C9—Fe169.91 (14)
C5—Fe1—C8153.99 (11)C8—C9—Fe170.33 (14)
C1—Fe1—C8163.43 (10)C10—C9—H9125.5
C6—Fe1—C867.85 (12)C8—C9—H9125.5
C7—Fe1—C840.38 (12)Fe1—C9—H9125.8
C9—Fe1—C839.72 (11)C9—C10—C6108.8 (2)
C4—Fe1—C8119.76 (12)C9—C10—Fe170.60 (15)
C2—Fe1—C8126.08 (10)C6—C10—Fe170.00 (14)
C10—Fe1—C3162.78 (13)C9—C10—H10125.6
C5—Fe1—C368.49 (9)C6—C10—H10125.6
C1—Fe1—C368.83 (9)Fe1—C10—H10125.4
C6—Fe1—C3155.20 (12)O1—C11—N1122.5 (2)
C7—Fe1—C3120.02 (11)O1—C11—C1122.14 (19)
C9—Fe1—C3126.23 (12)N1—C11—C1115.31 (17)
C4—Fe1—C340.59 (9)C13—C12—N1125.55 (19)
C2—Fe1—C340.22 (9)C13—C12—C17119.11 (19)
C8—Fe1—C3107.98 (10)N1—C12—C17115.32 (16)
C11—N1—C12128.71 (18)C12—C13—C14120.5 (2)
C11—N1—H1119.1 (16)C12—C13—H13119.7
C12—N1—H1111.5 (16)C14—C13—H13119.7
C20—N2—C17116.78 (17)C15—C14—C13121.7 (2)
C2—C1—C5106.7 (2)C15—C14—H14119.2
C2—C1—C11123.43 (18)C13—C14—H14119.2
C5—C1—C11129.84 (17)C14—C15—C16119.8 (2)
C2—C1—Fe169.76 (11)C14—C15—H15120.1
C5—C1—Fe169.23 (11)C16—C15—H15120.1
C11—C1—Fe1123.63 (14)C18—C16—C17117.39 (18)
C3—C2—C1108.78 (19)C18—C16—C15123.4 (2)
C3—C2—Fe170.34 (12)C17—C16—C15119.2 (2)
C1—C2—Fe169.06 (11)N2—C17—C16122.62 (17)
C3—C2—H2125.6N2—C17—C12117.68 (17)
C1—C2—H2125.6C16—C17—C12119.70 (17)
Fe1—C2—H2126.6C19—C18—C16119.8 (2)
C2—C3—C4108.1 (2)C19—C18—H18120.1
C2—C3—Fe169.44 (12)C16—C18—H18120.1
C4—C3—Fe169.24 (12)C18—C19—C20118.7 (2)
C2—C3—H3125.9C18—C19—H19120.7
C4—C3—H3125.9C20—C19—H19120.7
Fe1—C3—H3127.0N2—C20—C19124.65 (19)
C5—C4—C3108.3 (2)N2—C20—H20117.7
C5—C4—Fe169.29 (12)C19—C20—H20117.7
C3—C4—Fe170.16 (12)
C10—Fe1—C1—C2159.14 (15)C5—Fe1—C6—C7167.14 (16)
C5—Fe1—C1—C2117.82 (19)C1—Fe1—C6—C7124.89 (16)
C6—Fe1—C1—C2117.14 (16)C9—Fe1—C6—C781.22 (18)
C7—Fe1—C1—C275.68 (18)C4—Fe1—C6—C7158.4 (3)
C9—Fe1—C1—C2168.8 (2)C2—Fe1—C6—C781.73 (18)
C4—Fe1—C1—C280.40 (15)C8—Fe1—C6—C738.08 (16)
C8—Fe1—C1—C245.1 (4)C3—Fe1—C6—C747.0 (3)
C3—Fe1—C1—C236.77 (13)C10—C6—C7—C80.3 (3)
C10—Fe1—C1—C583.03 (17)Fe1—C6—C7—C860.39 (16)
C6—Fe1—C1—C5125.04 (14)C10—C6—C7—Fe160.05 (17)
C7—Fe1—C1—C5166.50 (15)C10—Fe1—C7—C880.21 (18)
C9—Fe1—C1—C551.0 (3)C5—Fe1—C7—C8158.8 (3)
C4—Fe1—C1—C537.42 (12)C1—Fe1—C7—C8167.07 (14)
C2—Fe1—C1—C5117.82 (19)C6—Fe1—C7—C8118.2 (2)
C8—Fe1—C1—C5163.0 (3)C9—Fe1—C7—C837.31 (16)
C3—Fe1—C1—C581.05 (14)C4—Fe1—C7—C847.7 (3)
C10—Fe1—C1—C1141.8 (2)C2—Fe1—C7—C8124.92 (16)
C5—Fe1—C1—C11124.8 (2)C3—Fe1—C7—C882.58 (17)
C6—Fe1—C1—C110.25 (19)C10—Fe1—C7—C637.94 (17)
C7—Fe1—C1—C1141.7 (2)C5—Fe1—C7—C640.7 (4)
C9—Fe1—C1—C1173.8 (3)C1—Fe1—C7—C674.78 (18)
C4—Fe1—C1—C11162.22 (18)C9—Fe1—C7—C680.84 (18)
C2—Fe1—C1—C11117.4 (2)C4—Fe1—C7—C6165.9 (2)
C8—Fe1—C1—C1172.3 (4)C2—Fe1—C7—C6116.93 (17)
C3—Fe1—C1—C11154.15 (18)C8—Fe1—C7—C6118.2 (2)
C5—C1—C2—C30.4 (2)C3—Fe1—C7—C6159.27 (16)
C11—C1—C2—C3176.95 (18)C6—C7—C8—C90.3 (3)
Fe1—C1—C2—C359.31 (14)Fe1—C7—C8—C959.66 (17)
C5—C1—C2—Fe159.67 (13)C6—C7—C8—Fe159.97 (16)
C11—C1—C2—Fe1117.64 (18)C10—Fe1—C8—C936.84 (19)
C10—Fe1—C2—C3169.1 (2)C5—Fe1—C8—C947.9 (3)
C5—Fe1—C2—C381.27 (14)C1—Fe1—C8—C9158.4 (3)
C1—Fe1—C2—C3120.17 (18)C6—Fe1—C8—C980.49 (19)
C6—Fe1—C2—C3158.25 (14)C7—Fe1—C8—C9118.9 (2)
C7—Fe1—C2—C3115.40 (16)C4—Fe1—C8—C982.8 (2)
C9—Fe1—C2—C343.8 (4)C2—Fe1—C8—C9166.38 (17)
C4—Fe1—C2—C337.43 (13)C3—Fe1—C8—C9125.57 (18)
C8—Fe1—C2—C374.31 (18)C10—Fe1—C8—C782.11 (19)
C10—Fe1—C2—C148.9 (3)C5—Fe1—C8—C7166.9 (2)
C5—Fe1—C2—C138.90 (13)C1—Fe1—C8—C739.4 (4)
C6—Fe1—C2—C181.57 (16)C6—Fe1—C8—C738.46 (16)
C7—Fe1—C2—C1124.43 (16)C9—Fe1—C8—C7118.9 (2)
C9—Fe1—C2—C1164.0 (3)C4—Fe1—C8—C7158.25 (16)
C4—Fe1—C2—C182.75 (14)C2—Fe1—C8—C774.68 (19)
C8—Fe1—C2—C1165.52 (15)C3—Fe1—C8—C7115.49 (17)
C3—Fe1—C2—C1120.17 (18)C7—C8—C9—C100.2 (3)
C1—C2—C3—C40.1 (2)Fe1—C8—C9—C1059.46 (18)
Fe1—C2—C3—C458.59 (15)C7—C8—C9—Fe159.30 (16)
C1—C2—C3—Fe158.52 (14)C5—Fe1—C9—C1082.30 (19)
C10—Fe1—C3—C2164.9 (3)C1—Fe1—C9—C1045.7 (3)
C5—Fe1—C3—C282.30 (13)C6—Fe1—C9—C1037.51 (17)
C1—Fe1—C3—C237.62 (12)C7—Fe1—C9—C1081.92 (19)
C6—Fe1—C3—C249.2 (3)C4—Fe1—C9—C10125.21 (17)
C7—Fe1—C3—C282.63 (16)C2—Fe1—C9—C10159.7 (3)
C9—Fe1—C3—C2165.24 (14)C8—Fe1—C9—C10119.8 (3)
C4—Fe1—C3—C2119.84 (19)C3—Fe1—C9—C10166.61 (16)
C8—Fe1—C3—C2125.11 (15)C10—Fe1—C9—C8119.8 (3)
C10—Fe1—C3—C445.1 (4)C5—Fe1—C9—C8157.87 (17)
C5—Fe1—C3—C437.54 (14)C1—Fe1—C9—C8165.6 (2)
C1—Fe1—C3—C482.22 (15)C6—Fe1—C9—C882.32 (19)
C6—Fe1—C3—C4169.0 (2)C7—Fe1—C9—C837.91 (18)
C7—Fe1—C3—C4157.53 (16)C4—Fe1—C9—C8114.96 (18)
C9—Fe1—C3—C474.93 (18)C2—Fe1—C9—C839.9 (4)
C2—Fe1—C3—C4119.84 (19)C3—Fe1—C9—C873.6 (2)
C8—Fe1—C3—C4115.05 (16)C8—C9—C10—C60.1 (3)
C2—C3—C4—C50.3 (2)Fe1—C9—C10—C659.78 (17)
Fe1—C3—C4—C558.97 (15)C8—C9—C10—Fe159.72 (18)
C2—C3—C4—Fe158.72 (15)C7—C6—C10—C90.3 (3)
C10—Fe1—C4—C575.47 (18)Fe1—C6—C10—C960.15 (18)
C1—Fe1—C4—C538.14 (12)C7—C6—C10—Fe159.90 (16)
C6—Fe1—C4—C544.4 (4)C5—Fe1—C10—C9115.56 (16)
C7—Fe1—C4—C5169.1 (2)C1—Fe1—C10—C9159.40 (15)
C9—Fe1—C4—C5115.51 (15)C6—Fe1—C10—C9119.5 (2)
C2—Fe1—C4—C582.48 (14)C7—Fe1—C10—C980.97 (18)
C8—Fe1—C4—C5157.37 (14)C4—Fe1—C10—C973.90 (19)
C3—Fe1—C4—C5119.6 (2)C2—Fe1—C10—C9165.3 (2)
C10—Fe1—C4—C3164.95 (16)C8—Fe1—C10—C937.05 (16)
C5—Fe1—C4—C3119.6 (2)C3—Fe1—C10—C939.1 (4)
C1—Fe1—C4—C381.44 (15)C5—Fe1—C10—C6124.94 (17)
C6—Fe1—C4—C3164.0 (3)C1—Fe1—C10—C681.10 (18)
C7—Fe1—C4—C349.6 (3)C7—Fe1—C10—C638.53 (17)
C9—Fe1—C4—C3124.92 (16)C9—Fe1—C10—C6119.5 (2)
C2—Fe1—C4—C337.09 (13)C4—Fe1—C10—C6166.60 (16)
C8—Fe1—C4—C383.05 (17)C2—Fe1—C10—C645.8 (3)
C3—C4—C5—C10.5 (2)C8—Fe1—C10—C682.45 (19)
Fe1—C4—C5—C159.03 (14)C3—Fe1—C10—C6158.6 (3)
C3—C4—C5—Fe159.52 (15)C12—N1—C11—O15.3 (3)
C2—C1—C5—C40.5 (2)C12—N1—C11—C1174.16 (18)
C11—C1—C5—C4176.56 (19)C2—C1—C11—O16.2 (3)
Fe1—C1—C5—C459.49 (15)C5—C1—C11—O1177.1 (2)
C2—C1—C5—Fe160.01 (13)Fe1—C1—C11—O192.8 (2)
C11—C1—C5—Fe1117.1 (2)C2—C1—C11—N1174.32 (18)
C10—Fe1—C5—C4124.51 (17)C5—C1—C11—N12.3 (3)
C1—Fe1—C5—C4119.40 (18)Fe1—C1—C11—N187.69 (19)
C6—Fe1—C5—C4165.47 (16)C11—N1—C12—C138.9 (3)
C7—Fe1—C5—C4162.7 (3)C11—N1—C12—C17169.84 (19)
C9—Fe1—C5—C482.90 (17)N1—C12—C13—C14179.05 (19)
C2—Fe1—C5—C480.77 (15)C17—C12—C13—C140.4 (3)
C8—Fe1—C5—C449.6 (3)C12—C13—C14—C151.0 (3)
C3—Fe1—C5—C437.46 (14)C13—C14—C15—C160.6 (3)
C10—Fe1—C5—C1116.08 (15)C14—C15—C16—C18178.2 (2)
C6—Fe1—C5—C175.13 (16)C14—C15—C16—C170.5 (3)
C7—Fe1—C5—C143.3 (4)C20—N2—C17—C161.9 (3)
C9—Fe1—C5—C1157.69 (15)C20—N2—C17—C12177.45 (17)
C4—Fe1—C5—C1119.40 (18)C18—C16—C17—N21.8 (3)
C2—Fe1—C5—C138.63 (13)C15—C16—C17—N2179.49 (18)
C8—Fe1—C5—C1169.0 (2)C18—C16—C17—C12177.61 (17)
C3—Fe1—C5—C181.94 (14)C15—C16—C17—C121.1 (3)
C5—Fe1—C6—C1074.7 (2)C13—C12—C17—N2179.88 (17)
C1—Fe1—C6—C10116.98 (17)N1—C12—C17—N21.3 (2)
C7—Fe1—C6—C10118.1 (2)C13—C12—C17—C160.7 (3)
C9—Fe1—C6—C1036.91 (16)N1—C12—C17—C16178.11 (16)
C4—Fe1—C6—C1040.3 (4)C17—C16—C18—C190.1 (3)
C2—Fe1—C6—C10160.14 (15)C15—C16—C18—C19178.6 (2)
C8—Fe1—C6—C1080.05 (18)C16—C18—C19—C201.7 (3)
C3—Fe1—C6—C10165.1 (2)C17—N2—C20—C190.2 (3)
C10—Fe1—C6—C7118.1 (2)C18—C19—C20—N21.6 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H11N2O)]
Mr356.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.1680 (17), 12.133 (2), 26.079 (4)
V3)3217.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.46 × 0.37 × 0.25
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.668, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
18658, 3940, 2996
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.01
No. of reflections3940
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support from the Foundation of Henan Educational Committee (2011B150001) and the Foundation of Henan University of Urban Construction (2010JYB007).

References

First citationAbd-El-Aziz, A. S. & Manners, I. (2007). In Frontiers in Transition Metal-Containing Polymers. Hoboken, NJ: Wiley.  Google Scholar
First citationFang, C. J., Duan, C. Y., Guo, D., He, C., Meng, Q. J., Wang, Z. M. & Yan, C. H. (2001). Chem. Commun. pp. 2540–2541.  Google Scholar
First citationLi, X., Liu, W., Zhang, H. Y. & Wu, B. L. (2008). J. Organomet. Chem. 693, 3295–3302.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Wu, B. L., Liu, W., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). J. Coord. Chem. 62, 3142–3156.  Web of Science CSD CrossRef CAS Google Scholar
First citationMata, J. A., Peris, E., Asselberghs, I., Van Boxel, R. & Persoons, A. (2001). New J. Chem. 25, 1043–1046.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). In Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH Publishers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds