organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2048-o2049

2-[2-(4-Acetyl­phen­yl)hydrazinyl­­idene]-1,3-di­phenyl­propane-1,3-dione

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, cInstituto de Ciencias Moleculares y Microbiología, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, and dLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago de Chile, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 8 July 2011; accepted 9 July 2011; online 16 July 2011)

In the title compound, C23H18N2O3, the inter­planar angle between the benzoyl units is 80.51 (6)° while the dihedral angles between the hydrazinyl­idene and benzoyl groups are 43.43 (6) and 54.16 (6)°. In the crystal, a strong resonance-assisted intra­molecular N—H⋯O hydrogen bond is observed. The mol­ecules form an inversion dimer via a pair of weak C—H⋯O hydrogen bonds and a ππ inter­action [centroid–centroid distance of 3.5719 (10) Å]. These dimers are linked via weak C—H⋯O contacts, forming chains along the b axis.

Related literature

For details of the synthesis, see: Yao (1964[Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.]). For resonance-assisted hydrogen bonds and related structures see: Bertolasi et al. (1993[Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.]); Bustos, Alvarez-Thon, Barría, Cárcamo & Garland (2011[Bustos, C., Alvarez-Thon, L., Barría, D., Cárcamo, J.-G. & Garland, M. T. (2011). Acta Cryst. E67, o1830-o1831.]); Bustos, Alvarez-Thon, Barría, Garland & Sánchez (2011[Bustos, C., Alvarez-Thon, L., Barría, D., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1587.]); Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez (2011[Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.]); Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez (2011[Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Ibañez, A. & Sánchez, C. (2011). Acta Cryst. E67, o1450-o1451.]); Gilli et al. (1993[Gilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564-576.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18N2O3

  • Mr = 370.39

  • Monoclinic, P 21 /n

  • a = 12.6026 (15) Å

  • b = 11.0138 (13) Å

  • c = 14.9701 (18) Å

  • β = 114.447 (2)°

  • V = 1891.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.53 × 0.23 × 0.20 mm

Data collection
  • Bruker D8 Discover with SMART CCD area-detector diffractometer

  • 14867 measured reflections

  • 3869 independent reflections

  • 2580 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 0.97

  • 3869 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2 0.888 (15) 1.965 (15) 2.6496 (16) 132.8 (15)
C15—H15⋯O3i 0.93 2.38 3.2503 (19) 156
C21—H21⋯O1ii 0.93 2.67 3.2983 (18) 125
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

β-diketones are known to form strong intramolecular O—H···O hydrogen bonds where the decrease of the O···O contact distance (up to 2.40 Å) is correlated with the increased π-delocalization of the O—C=C—C=O heteroconjugated system; the phenomenon has been interpreted by the Resonance Assisted Hydrogen Bond (RAHB) model (Gilli et al., 1993). Besides, this concept has been applied to other heterodienic systems such as enaminones and ketohydrazones (Bertolasi et al., 1993). On the other hand, in previous works we have reported the crystalline structures of three β-diketohydrazones of the type 2-(2-(R-phenyl)hydrazinylidene)-1,3-diphenylpropane-1,3-dione (R = 4-Br, 4-NO2, 3-Cl) (Bustos, Alvarez-Thon, Cárcamo, Garland and Sánchez, 2011; Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez, 2011; Bustos, Alvarez-Thon, Barría, Garland & Sánchez, 2011) and a second polymorph of 2-(2-(4-methoxyphenyl)hydrazinylidene)-1,3-diphenylpropane-1,3-dione (Bustos, Alvarez-Thon, Barría, Cárcamo & Garland, 2011), containing this hydrogen-bonded core. Now, we present the title compound prepared using similar methodology (Yao, 1964).

The molecular structure of the title compound, (I), is shown in Fig. 1. In (I), the interplanar angle between the benzoyl units is 80.51 (6)°. The corresponding angles between the hydrazinylidene and the benzoyl groups are 43.43 (6) and 54.16 (6)°, respectively. In (I), a strong resonance-assisted intramolecular hydrogen bond N2—H1···O2 is observed (Fig. 1, Table 1). In the crystal, the entire supramolecular structure is constructed by weak intermolecular interactions. The molecules form an inversion dimer via a pair of weak C15—H15···O3i hydrogen bonds and an inter-ring π-π interaction with a centroid-centroid distance of 3.5719 (10) Å, (Fig. 2, Table1), and these dimers are linked via weak C21—H21···O1ii contacts to form chains along the b axis (Table 1, Fig. 3) [symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 2, -y, -z].

Related literature top

For details of the synthesis, see: Yao (1964). For resonance-assisted hydrogen bonds and related structures see: Bertolasi et al. (1993); Bustos, Alvarez-Thon, Barría, Cárcamo & Garland (2011); Bustos, Alvarez-Thon, Barría, Garland & Sánchez (2011); Bustos, Alvarez-Thon, Cárcamo, Garland & Sánchez (2011); Bustos, Alvarez-Thon, Cárcamo, Ibañez & Sánchez (2011); Gilli et al. (1993).

Experimental top

Chemicals: 1,3-diphenylpropane-1,3-dione, 4-aminoacetophenone and sodium nitrite were procured from Sigma-Aldrich and sodium hydroxide, hydrochloric acid, sodium acetate and solvents from Merck. These chemicals were used without previous purification.

Procedure: In a 500 ml beaker flask were dissolved 2.29 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione (98%) in 100 ml of an ethanol solution containing 0.4 g (0.01 mole) of sodium hydroxide. This solution was then buffered by adding 4.80 g of sodium acetate trihydrate. The resulting β-diketonate solution was diluted with water to a volume of about 220 ml, and stirred and cooled at -5 °C. On the other hand, in another 50 ml beaker flask, a diazonium ion solution was prepared adding 1.36 g (0.01 mole) of 4-aminoacetophenone (99%) in 8 ml of hydrochloric acid (5 mol/L), cooling at -5 °C, and adding dropwise a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite. The diazonium salt solution was then added dropwise with vigorous stirring into the buffered β-diketonate solution. During the addition an orange solid was observed. This precipitate was filtered by suction and washed with an abundant quantity of water. Yield: 95% of crude product. Single crystals suitable for X-ray studies were obtained by recrystallization from a concentrated solution of the compound in ethanol.

Refinement top

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N2 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and Uiso(H) = 1.2Ueq(aromatic C) or Uiso(H) = 1.5Ueq(aliphatic C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H1···O2) is depicted with a dashed line.
[Figure 2] Fig. 2. Part of the crystal packing showing the formation of an inversion-related dimer via C15—H15···O3i weak contacts (dashed lines) and a π-π stacking interaction (solid line) [symmetry code: (i) -x + 2, -y + 1, -z].
[Figure 3] Fig. 3. Part of the crystal packing showing the formation of a chain along the b axis, by linking dimers (see Fig. 2) through weak C21—H21···O1ii contacts (dashed lines) [symmetry code: (ii) -x + 2, -y, -z].
2-[2-(4-Acetylphenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione top
Crystal data top
C23H18N2O3F(000) = 776
Mr = 370.39Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 12.6026 (15) Åθ = 1.8–26.4°
b = 11.0138 (13) ŵ = 0.09 mm1
c = 14.9701 (18) ÅT = 297 K
β = 114.447 (2)°Polyhedron, yellow
V = 1891.6 (4) Å30.53 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
2580 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 26.4°, θmin = 1.8°
ϕ and ω scansh = 1515
14867 measured reflectionsk = 1313
3869 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C23H18N2O3V = 1891.6 (4) Å3
Mr = 370.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6026 (15) ŵ = 0.09 mm1
b = 11.0138 (13) ÅT = 297 K
c = 14.9701 (18) Å0.53 × 0.23 × 0.20 mm
β = 114.447 (2)°
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
2580 reflections with I > 2σ(I)
14867 measured reflectionsRint = 0.047
3869 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.23 e Å3
3869 reflectionsΔρmin = 0.14 e Å3
258 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.86013 (11)0.08254 (9)0.12281 (8)0.0874 (5)
O20.86709 (9)0.03801 (9)0.11984 (7)0.0738 (4)
O31.32598 (10)0.65485 (10)0.01670 (8)0.0856 (5)
N10.94625 (10)0.17881 (9)0.05722 (8)0.0550 (4)
N20.98248 (10)0.22190 (10)0.00751 (9)0.0566 (4)
C10.71117 (12)0.04300 (12)0.09060 (10)0.0568 (5)
C20.69701 (13)0.15056 (13)0.14206 (10)0.0657 (5)
C30.59340 (17)0.21286 (15)0.17400 (12)0.0821 (6)
C40.50186 (16)0.16661 (18)0.15818 (14)0.0901 (7)
C50.51404 (15)0.05861 (18)0.10926 (13)0.0870 (7)
C60.61877 (13)0.00324 (14)0.07386 (11)0.0712 (6)
C70.82231 (12)0.02578 (12)0.06118 (10)0.0566 (5)
C80.87475 (11)0.08622 (12)0.03603 (10)0.0535 (4)
C90.86337 (12)0.02835 (13)0.12137 (10)0.0598 (5)
C100.86295 (11)0.10100 (12)0.20482 (10)0.0555 (5)
C110.89533 (12)0.04458 (14)0.29535 (11)0.0667 (5)
C120.89283 (14)0.10804 (18)0.37354 (12)0.0792 (7)
C130.85639 (15)0.22591 (18)0.36290 (13)0.0833 (7)
C140.82327 (14)0.28230 (16)0.27368 (13)0.0787 (6)
C150.82714 (12)0.22093 (13)0.19482 (11)0.0635 (5)
C161.05800 (11)0.32173 (11)0.01612 (10)0.0505 (4)
C171.08787 (12)0.38540 (12)0.10315 (10)0.0561 (5)
C181.16533 (12)0.48066 (12)0.12415 (10)0.0569 (5)
C191.21201 (11)0.51695 (11)0.05924 (10)0.0525 (4)
C201.17882 (12)0.45310 (13)0.02859 (10)0.0589 (5)
C211.10363 (12)0.35601 (12)0.05004 (10)0.0575 (5)
C221.29307 (12)0.62111 (13)0.07860 (11)0.0612 (5)
C231.33418 (14)0.68561 (13)0.17546 (12)0.0749 (6)
H10.9663 (13)0.1801 (13)0.0623 (11)0.075 (5)*
H20.758000.180900.155100.0790*
H30.585500.286600.206400.0990*
H40.431500.208400.180600.1080*
H50.451100.026700.099800.1040*
H60.627200.075200.039100.0850*
H110.918700.036300.303100.0800*
H120.916200.070200.434300.0950*
H130.854000.267900.415900.1000*
H140.798000.362500.266400.0940*
H150.805700.260200.134800.0760*
H171.055900.364000.146900.0670*
H181.186900.521700.183400.0680*
H201.208100.476600.073600.0710*
H211.083500.313600.108500.0690*
H23A1.392700.744000.180000.1120*
H23B1.366500.627700.227700.1120*
H23C1.269600.726400.180600.1120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1300 (10)0.0525 (6)0.0877 (8)0.0137 (6)0.0532 (8)0.0034 (6)
O20.0706 (7)0.0888 (8)0.0710 (7)0.0153 (6)0.0383 (6)0.0177 (5)
O30.0768 (8)0.1003 (9)0.0750 (7)0.0239 (6)0.0268 (6)0.0133 (6)
N10.0558 (7)0.0521 (7)0.0599 (7)0.0007 (5)0.0269 (6)0.0023 (5)
N20.0609 (7)0.0553 (7)0.0565 (7)0.0054 (6)0.0272 (6)0.0033 (6)
C10.0557 (8)0.0551 (8)0.0575 (8)0.0020 (6)0.0213 (7)0.0008 (6)
C20.0651 (10)0.0603 (9)0.0624 (9)0.0029 (7)0.0171 (7)0.0030 (7)
C30.0845 (12)0.0659 (10)0.0779 (11)0.0140 (9)0.0155 (9)0.0068 (8)
C40.0678 (12)0.0955 (13)0.0937 (13)0.0240 (10)0.0202 (10)0.0023 (11)
C50.0634 (10)0.1010 (13)0.1007 (13)0.0049 (10)0.0382 (10)0.0007 (11)
C60.0660 (10)0.0693 (9)0.0839 (11)0.0041 (8)0.0367 (9)0.0079 (8)
C70.0568 (8)0.0532 (8)0.0631 (9)0.0026 (6)0.0281 (7)0.0019 (6)
C80.0543 (8)0.0482 (7)0.0596 (8)0.0012 (6)0.0251 (7)0.0032 (6)
C90.0611 (9)0.0534 (9)0.0659 (9)0.0073 (7)0.0272 (7)0.0019 (7)
C100.0502 (8)0.0592 (8)0.0576 (8)0.0064 (6)0.0229 (7)0.0008 (7)
C110.0641 (9)0.0706 (9)0.0678 (10)0.0048 (7)0.0296 (8)0.0065 (8)
C120.0730 (11)0.1068 (14)0.0602 (10)0.0058 (10)0.0300 (9)0.0045 (9)
C130.0783 (11)0.1076 (14)0.0682 (11)0.0035 (10)0.0346 (9)0.0178 (10)
C140.0774 (11)0.0805 (11)0.0792 (11)0.0091 (9)0.0333 (9)0.0110 (9)
C150.0605 (9)0.0684 (9)0.0604 (9)0.0038 (7)0.0239 (7)0.0005 (7)
C160.0480 (7)0.0482 (7)0.0546 (8)0.0045 (6)0.0204 (6)0.0029 (6)
C170.0609 (9)0.0552 (8)0.0573 (8)0.0005 (7)0.0295 (7)0.0027 (6)
C180.0607 (9)0.0543 (8)0.0536 (8)0.0006 (7)0.0216 (7)0.0002 (6)
C190.0456 (7)0.0527 (8)0.0564 (8)0.0050 (6)0.0183 (6)0.0061 (6)
C200.0549 (8)0.0662 (9)0.0621 (9)0.0014 (7)0.0306 (7)0.0062 (7)
C210.0605 (9)0.0604 (8)0.0545 (8)0.0001 (7)0.0267 (7)0.0036 (7)
C220.0492 (8)0.0612 (9)0.0665 (9)0.0032 (6)0.0173 (7)0.0137 (7)
C230.0701 (10)0.0671 (9)0.0803 (11)0.0129 (8)0.0239 (9)0.0044 (8)
Geometric parameters (Å, º) top
O1—C91.2225 (17)C16—C211.388 (2)
O2—C71.2321 (19)C17—C181.378 (2)
O3—C221.219 (2)C18—C191.387 (2)
N1—N21.3187 (18)C19—C201.3939 (19)
N1—C81.3099 (18)C19—C221.483 (2)
N2—C161.4004 (18)C20—C211.376 (2)
N2—H10.888 (15)C22—C231.501 (2)
C1—C21.384 (2)C2—H20.9300
C1—C61.386 (2)C3—H30.9300
C1—C71.490 (2)C4—H40.9300
C2—C31.374 (3)C5—H50.9300
C3—C41.368 (3)C6—H60.9300
C4—C51.372 (3)C11—H110.9300
C5—C61.381 (3)C12—H120.9300
C7—C81.4838 (19)C13—H130.9300
C8—C91.487 (2)C14—H140.9300
C9—C101.485 (2)C15—H150.9300
C10—C151.384 (2)C17—H170.9300
C10—C111.390 (2)C18—H180.9300
C11—C121.375 (2)C20—H200.9300
C12—C131.364 (3)C21—H210.9300
C13—C141.372 (3)C23—H23A0.9600
C14—C151.379 (2)C23—H23B0.9600
C16—C171.3874 (19)C23—H23C0.9600
O1···C12.9927 (18)C8···H62.8500
O1···C63.377 (2)C8···H152.7700
O1···C21i3.2983 (18)C9···H63.0000
O2···C8i3.2639 (19)C11···H14vii2.9900
O2···N12.8700 (15)C12···H20viii2.9100
O2···N22.6496 (16)C14···H4vi3.0300
O2···N1i3.2078 (16)C16···H2i2.8500
O3···C15ii3.2503 (19)C17···H2i2.8600
O3···C12iii3.272 (2)C18···H23C2.9700
O1···H112.5400C18···H23B2.8600
O1···H21i2.6700C23···H182.6300
O1···H1i2.898 (17)C23···H2ix3.0600
O2···H22.7200H1···O21.965 (15)
O2···H23Biv2.9200H1···C72.491 (16)
O2···H11.965 (15)H1···H212.3800
O3···H202.5000H1···O1i2.898 (17)
O3···H15ii2.3800H2···O22.7200
N1···O22.8700 (15)H2···C16i2.8500
N1···C153.045 (2)H2···C17i2.8600
N1···O2i3.2078 (16)H2···C23iv3.0600
N2···O22.6496 (16)H2···H23Civ2.5700
N1···H172.5200H4···C14vi3.0300
N1···H152.6400H5···C6vi3.0800
C1···O12.9927 (18)H6···C82.8500
C2···C16i3.439 (2)H6···C93.0000
C6···O13.377 (2)H11···O12.5400
C6···C93.266 (2)H14···C11x2.9900
C8···O2i3.2639 (19)H15···N12.6400
C9···C63.266 (2)H15···C82.7700
C12···O3v3.272 (2)H15···O3ii2.3800
C15···O3ii3.2503 (19)H17···N12.5200
C15···N13.045 (2)H18···C232.6300
C16···C19ii3.582 (2)H18···H23B2.3800
C16···C2i3.439 (2)H18···H23C2.4900
C16···C18ii3.489 (2)H18···C2ix2.9300
C17···C20ii3.550 (2)H20···O32.5000
C18···C16ii3.489 (2)H20···C12xi2.9100
C18···C21ii3.584 (2)H21···H12.3800
C19···C16ii3.582 (2)H21···O1i2.6700
C20···C17ii3.550 (2)H23B···C182.8600
C21···O1i3.2983 (18)H23B···H182.3800
C21···C18ii3.584 (2)H23B···O2ix2.9200
C2···H18iv2.9300H23C···C182.9700
C6···H5vi3.0800H23C···H182.4900
C7···H12.491 (16)H23C···H2ix2.5700
N2—N1—C8120.99 (11)C16—C21—C20119.59 (13)
N1—N2—C16120.18 (11)C19—C22—C23119.30 (13)
N1—N2—H1118.4 (10)O3—C22—C19120.71 (13)
C16—N2—H1120.9 (11)O3—C22—C23119.99 (14)
C6—C1—C7121.16 (13)C1—C2—H2120.00
C2—C1—C6119.40 (15)C3—C2—H2120.00
C2—C1—C7119.26 (14)C2—C3—H3120.00
C1—C2—C3120.42 (16)C4—C3—H3120.00
C2—C3—C4120.11 (16)C3—C4—H4120.00
C3—C4—C5119.94 (19)C5—C4—H4120.00
C4—C5—C6120.70 (19)C4—C5—H5120.00
C1—C6—C5119.37 (15)C6—C5—H5120.00
C1—C7—C8120.05 (13)C1—C6—H6120.00
O2—C7—C1119.79 (12)C5—C6—H6120.00
O2—C7—C8120.03 (13)C10—C11—H11120.00
N1—C8—C9115.27 (12)C12—C11—H11120.00
N1—C8—C7124.70 (13)C11—C12—H12120.00
C7—C8—C9119.22 (12)C13—C12—H12120.00
O1—C9—C10120.77 (13)C12—C13—H13120.00
O1—C9—C8117.34 (13)C14—C13—H13120.00
C8—C9—C10121.80 (12)C13—C14—H14120.00
C9—C10—C15122.53 (13)C15—C14—H14120.00
C11—C10—C15118.90 (13)C10—C15—H15120.00
C9—C10—C11118.52 (12)C14—C15—H15120.00
C10—C11—C12120.13 (15)C16—C17—H17120.00
C11—C12—C13120.64 (16)C18—C17—H17120.00
C12—C13—C14119.77 (17)C17—C18—H18119.00
C13—C14—C15120.49 (16)C19—C18—H18119.00
C10—C15—C14120.06 (14)C19—C20—H20119.00
N2—C16—C21118.19 (12)C21—C20—H20119.00
C17—C16—C21120.08 (13)C16—C21—H21120.00
N2—C16—C17121.73 (13)C20—C21—H21120.00
C16—C17—C18119.37 (14)C22—C23—H23A109.00
C17—C18—C19121.70 (13)C22—C23—H23B109.00
C18—C19—C20117.83 (13)C22—C23—H23C109.00
C20—C19—C22119.22 (13)H23A—C23—H23B109.00
C18—C19—C22122.94 (12)H23A—C23—H23C109.00
C19—C20—C21121.41 (14)H23B—C23—H23C109.00
C8—N1—N2—C16179.36 (13)O1—C9—C10—C1120.0 (2)
N2—N1—C8—C73.8 (2)C8—C9—C10—C11156.37 (15)
N2—N1—C8—C9165.87 (13)C8—C9—C10—C1526.3 (2)
N1—N2—C16—C176.4 (2)C9—C10—C11—C12178.17 (16)
N1—N2—C16—C21173.30 (13)C11—C10—C15—C140.4 (2)
C6—C1—C2—C31.8 (2)C15—C10—C11—C120.8 (2)
C2—C1—C7—C8141.11 (14)C9—C10—C15—C14176.90 (16)
C6—C1—C7—O2132.20 (15)C10—C11—C12—C131.4 (3)
C6—C1—C7—C843.78 (19)C11—C12—C13—C140.8 (3)
C7—C1—C2—C3176.99 (13)C12—C13—C14—C150.4 (3)
C2—C1—C6—C50.3 (2)C13—C14—C15—C101.0 (3)
C7—C1—C6—C5174.80 (14)N2—C16—C17—C18178.04 (13)
C2—C1—C7—O242.92 (19)C21—C16—C17—C181.6 (2)
C1—C2—C3—C42.4 (2)N2—C16—C21—C20179.48 (13)
C2—C3—C4—C50.8 (3)C17—C16—C21—C200.2 (2)
C3—C4—C5—C61.3 (3)C16—C17—C18—C191.8 (2)
C4—C5—C6—C11.8 (3)C17—C18—C19—C200.5 (2)
C1—C7—C8—C934.6 (2)C17—C18—C19—C22178.33 (14)
C1—C7—C8—N1156.14 (14)C18—C19—C20—C211.0 (2)
O2—C7—C8—N119.8 (2)C22—C19—C20—C21179.85 (14)
O2—C7—C8—C9149.42 (14)C18—C19—C22—O3175.13 (15)
N1—C8—C9—O1138.55 (15)C18—C19—C22—C234.6 (2)
C7—C8—C9—C10151.87 (14)C20—C19—C22—O33.7 (2)
C7—C8—C9—O131.7 (2)C20—C19—C22—C23176.60 (14)
N1—C8—C9—C1037.9 (2)C19—C20—C21—C161.1 (2)
O1—C9—C10—C15157.37 (16)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+5/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+5/2, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+3/2, y1/2, z+1/2; (viii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.888 (15)1.965 (15)2.6496 (16)132.8 (15)
C15—H15···O3ii0.932.383.2503 (19)156
C21—H21···O1i0.932.673.2983 (18)125
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H18N2O3
Mr370.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)12.6026 (15), 11.0138 (13), 14.9701 (18)
β (°) 114.447 (2)
V3)1891.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.23 × 0.20
Data collection
DiffractometerBruker D8 Discover with SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14867, 3869, 2580
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 0.97
No. of reflections3869
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-PC (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.888 (15)1.965 (15)2.6496 (16)132.8 (15)
C15—H15···O3i0.932.383.2503 (19)156
C21—H21···O1ii0.932.673.2983 (18)125
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z.
 

Acknowledgements

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06–10-R) for financial assistance.

References

First citationBertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Alvarez-Thon, L., Barría, D., Cárcamo, J.-G. & Garland, M. T. (2011). Acta Cryst. E67, o1830–o1831.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Alvarez-Thon, L., Barría, D., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Ibañez, A. & Sánchez, C. (2011). Acta Cryst. E67, o1450–o1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGilli, G., Bertolasi, V., Ferretti, V. & Gilli, P. (1993). Acta Cryst. B49, 564–576.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. C. (1964). J. Org. Chem. 29, 2959–2962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2048-o2049
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds