organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-[(Z)-3-(4-methyl­phen­ylsulfon­yl)-1,3-thia­zolidin-2-yl­­idene]benzene­sulfonamide

aDepartment of Chemical Engineering and Material Engineering, Graduate School of Materials Applied Technology, Nanya Institute of Technology, Chung-Li, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan
*Correspondence e-mail: cwyeh@cycu.org.tw

(Received 9 July 2011; accepted 17 July 2011; online 23 July 2011)

In the crystal structure of the title compound, C17H18N2O4S3, mol­ecules are connected into centrosymmetric dimers via weak inter­molecular C—H⋯π inter­actions. These dimers are further connected through a series of weak C—H⋯O hydrogen bonds, while futher C—H⋯π inter­actions involving the phenyl and thia­zoline rings are also observed. The thia­zolidine ring is twisted from the benzene rings rings by dihedral angles of 79.1 (1) and 85.0 (1)°, while the dihedral angle between two benzene rings is 76.0 (1)°.

Related literature

For background to N-heterocyclic sulfanilamide derivatives, see: Kuz'mina et al. (1962[Kuz'mina, K. K., Ostroumova, N. G., Markova, Yu. V. & Shchukina, M. N. (1962). Zhurnal Obshchei Khimii. 32, 3390-3393.]); Jensen & Thorsteinsson (1941[Jensen, K. A. & Thorsteinsson, T. (1941). Dansk Tidsskrift Farmaci, 15, 41-77.]); Hunter & Kolloff (1943[Hunter, J. H. & Kolloff, H. G. (1943). J. Am. Chem. Soc. 65, 156-159.]); Hultquist et al. (1951[Hultquist, M. E., Germann, R. P., Webb, J. S., Wright, W. B. Jr, Roth, B., Smith, J. M. Jr & SubbaRow, Y. (1951). J. Am. Chem. Soc. 73, 2558-2566.]). For a related synthesis, see: Razvodovskaya et al. (1990[Razvodovskaya, L. V., Vorob'eva, N. N., Grapov, A. F. & Mel'nikov, N. N. (1990). Zhurnal Obshchei Khimii, 60, 1518-1525.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4S3

  • Mr = 410.51

  • Monoclinic, P 21 /n

  • a = 9.3825 (2) Å

  • b = 14.4047 (2) Å

  • c = 14.2279 (3) Å

  • β = 102.666 (1)°

  • V = 1876.14 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.845

  • 17749 measured reflections

  • 4652 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.04

  • 4652 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10BCg1i 0.97 2.91 3.567 (1) 127
C2—H2BCg2ii 0.97 3.09 3.821 (1) 134
C1—H1B⋯O1ii 0.97 2.59 3.394 (3) 141
C12—H12A⋯O3iii 0.93 2.47 3.318 (2) 151
Symmetry codes: (i) -x, -y, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a series of N-heterocyclic sulfanilamide derivatives which prepared and are investigating biologically one of the compounds, 2-sulfanilyl-aminothiazoline, proved to be of particular interest, both chemically and therapeutically. (Kuz'mina et al., 1962; Jensen et al., 1941; Hunter et al., 1943; Hultquist et al., 1951). The synthesis and character the 3-substituted 2-(thiophosphorylimino)thiazolidine compounds are also reported (Razvodovskaya et al., 1990). Within this project the crystal structure of the title compound was determined. The crystal structure features inversion-related dimers linked by the weak intermolecular C—H···pi interactions in the solid state, while Cg1 and Cg2 are the centers of C4—C9 and C11—C16 and these carbon atoms of mean devition from plane are 0.0008 and 0.0043 Å. Weak C—H···O hydrogen bonds among the molecules are also observed in the solid state. The thiazolidine and the phenyl rings are not coplanar but twisted with each other by an interplanar angles of 79.1 (1) and 85.0 (1)°, respectively, while the dihedral angle between two phenyl groups is 76.0 (1)°.

Related literature top

For a background to N-heterocyclic sulfanilamide derivatives, see: Kuz'mina et al. (1962); Jensen & Thorsteinsson (1941); Hunter & Kolloff (1943); Hultquist et al. (1951). For a related synthesis, see: Razvodovskaya et al. (1990).

Experimental top

The title compound was prepared according to a published procedure (Razvodovskaya et al., 1990). Block like crystals suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution of the title compound in methanol.

Refinement top

All the hydrogen atoms were discernible in the difference Fourier maps. However, they were situated into the idealized positions and constrained by the riding atom approximation: C—Hmethyl = 0.96 Å and C—Hmethylene = 0.97 Å while the methyls and methylenes were allowed to rotate about their respective axes; C—Haryl = 0.93 Å; Uiso(Hmethyl) = 1.5Ueq(Cmethyl); Uiso(Haryl or methylene) = 1.2Ueq(Caryl or methylene).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level.
4-Methyl-N-[(Z)-3-(4-methylphenylsulfonyl)-1,3-thiazolidin-2- ylidene]benzenesulfonamide top
Crystal data top
C17H18N2O4S3F(000) = 856
Mr = 410.51Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8638 reflections
a = 9.3825 (2) Åθ = 2.4–28.2°
b = 14.4047 (2) ŵ = 0.42 mm1
c = 14.2279 (3) ÅT = 296 K
β = 102.666 (1)°Block, colourless
V = 1876.14 (6) Å30.40 × 0.40 × 0.40 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4652 independent reflections
Radiation source: fine-focus sealed tube3756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.845, Tmax = 0.845k = 1519
17749 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.6237P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4652 reflectionsΔρmax = 0.29 e Å3
236 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (9)
Crystal data top
C17H18N2O4S3V = 1876.14 (6) Å3
Mr = 410.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3825 (2) ŵ = 0.42 mm1
b = 14.4047 (2) ÅT = 296 K
c = 14.2279 (3) Å0.40 × 0.40 × 0.40 mm
β = 102.666 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3756 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.845Rint = 0.025
17749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4652 reflectionsΔρmin = 0.29 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.16502 (15)0.17067 (10)0.38640 (10)0.0446 (3)
N20.08736 (15)0.26664 (10)0.25505 (10)0.0448 (3)
S10.34585 (5)0.17353 (4)0.27357 (4)0.06158 (16)
S20.10549 (5)0.31474 (3)0.15432 (3)0.04983 (13)
S30.01808 (5)0.19186 (3)0.43270 (3)0.04805 (13)
O10.00727 (19)0.38361 (9)0.13422 (10)0.0693 (4)
O20.25206 (18)0.34381 (12)0.15775 (11)0.0739 (4)
O30.04496 (18)0.13807 (11)0.51854 (10)0.0702 (4)
O40.00217 (15)0.28956 (9)0.43817 (10)0.0580 (3)
C10.2585 (2)0.08847 (14)0.41762 (15)0.0590 (5)
H1A0.20910.03210.39090.071*
H1B0.28180.08360.48730.071*
C20.3947 (2)0.10280 (16)0.38077 (16)0.0664 (6)
H2A0.43350.04360.36560.080*
H2B0.46840.13380.42900.080*
C30.18420 (17)0.21042 (11)0.30207 (11)0.0407 (3)
C40.06041 (19)0.22754 (11)0.06650 (12)0.0431 (4)
C50.08309 (19)0.19554 (12)0.04084 (13)0.0481 (4)
H5A0.15330.21770.07230.058*
C60.1198 (2)0.13072 (13)0.03153 (14)0.0534 (4)
H6A0.21560.10940.04860.064*
C70.0173 (2)0.09647 (13)0.07954 (13)0.0542 (4)
C80.1244 (2)0.12907 (15)0.05287 (14)0.0607 (5)
H8A0.19430.10680.08440.073*
C90.1647 (2)0.19422 (14)0.01986 (14)0.0538 (4)
H9A0.26060.21520.03700.065*
C100.0606 (3)0.02670 (16)0.15964 (16)0.0787 (7)
H10A0.16230.01190.16750.118*
H10B0.00340.02870.14390.118*
H10C0.04380.05240.21850.118*
C110.12963 (18)0.14496 (12)0.34887 (12)0.0460 (4)
C120.1544 (2)0.04982 (13)0.35063 (15)0.0578 (5)
H12A0.09650.01240.39710.069*
C130.2660 (2)0.01228 (15)0.28240 (17)0.0652 (5)
H13A0.28370.05120.28360.078*
C140.3526 (2)0.06605 (15)0.21206 (15)0.0579 (5)
C150.3267 (2)0.16119 (15)0.21243 (15)0.0557 (5)
H15A0.38500.19860.16610.067*
C160.21635 (19)0.20075 (13)0.28026 (14)0.0507 (4)
H16A0.20020.26440.28000.061*
C170.4719 (3)0.0231 (2)0.13607 (19)0.0864 (8)
H17A0.47380.04270.14610.130*
H17B0.45360.03540.07350.130*
H17C0.56440.04940.14030.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0461 (7)0.0435 (7)0.0418 (7)0.0049 (6)0.0045 (6)0.0002 (6)
N20.0453 (7)0.0459 (8)0.0429 (7)0.0017 (6)0.0095 (6)0.0013 (6)
S10.0508 (3)0.0734 (3)0.0623 (3)0.0140 (2)0.0163 (2)0.0073 (2)
S20.0627 (3)0.0401 (2)0.0470 (2)0.00536 (18)0.0128 (2)0.00129 (17)
S30.0555 (3)0.0491 (3)0.0406 (2)0.00057 (18)0.01281 (18)0.00071 (17)
O10.1039 (12)0.0425 (7)0.0589 (8)0.0189 (7)0.0122 (8)0.0043 (6)
O20.0802 (10)0.0758 (10)0.0684 (9)0.0367 (8)0.0217 (8)0.0044 (8)
O30.0878 (11)0.0805 (10)0.0427 (7)0.0010 (8)0.0149 (7)0.0108 (7)
O40.0645 (8)0.0504 (7)0.0619 (8)0.0006 (6)0.0197 (7)0.0130 (6)
C10.0684 (12)0.0496 (10)0.0521 (10)0.0146 (9)0.0017 (9)0.0011 (8)
C20.0637 (12)0.0655 (13)0.0631 (12)0.0251 (10)0.0009 (10)0.0143 (10)
C30.0399 (8)0.0402 (8)0.0402 (8)0.0027 (6)0.0052 (6)0.0082 (6)
C40.0484 (9)0.0396 (8)0.0416 (8)0.0018 (7)0.0110 (7)0.0055 (7)
C50.0472 (9)0.0468 (9)0.0520 (10)0.0050 (7)0.0144 (7)0.0031 (8)
C60.0529 (10)0.0479 (10)0.0546 (10)0.0025 (8)0.0014 (8)0.0027 (8)
C70.0726 (12)0.0458 (10)0.0403 (9)0.0106 (9)0.0041 (8)0.0038 (7)
C80.0659 (12)0.0680 (13)0.0519 (11)0.0153 (10)0.0210 (9)0.0008 (9)
C90.0484 (9)0.0636 (11)0.0512 (10)0.0007 (8)0.0153 (8)0.0020 (8)
C100.1124 (19)0.0631 (13)0.0513 (12)0.0143 (13)0.0025 (12)0.0083 (10)
C110.0473 (9)0.0452 (9)0.0478 (9)0.0052 (7)0.0155 (7)0.0038 (7)
C120.0651 (12)0.0470 (10)0.0626 (12)0.0066 (9)0.0171 (9)0.0100 (9)
C130.0710 (13)0.0470 (11)0.0826 (15)0.0152 (9)0.0279 (11)0.0052 (10)
C140.0491 (10)0.0687 (12)0.0607 (11)0.0102 (9)0.0226 (9)0.0147 (10)
C150.0441 (9)0.0665 (12)0.0578 (11)0.0001 (8)0.0139 (8)0.0053 (9)
C160.0467 (9)0.0451 (9)0.0622 (11)0.0022 (7)0.0157 (8)0.0064 (8)
C170.0689 (14)0.0996 (19)0.0894 (18)0.0144 (13)0.0148 (13)0.0413 (15)
Geometric parameters (Å, º) top
N1—C31.376 (2)C6—H6A0.9300
N1—C11.483 (2)C7—C81.382 (3)
N1—S31.6811 (15)C7—C101.507 (3)
N2—C31.289 (2)C8—C91.387 (3)
N2—S21.6340 (15)C8—H8A0.9300
S1—C31.7368 (16)C9—H9A0.9300
S1—C21.808 (2)C10—H10A0.9600
S2—O21.4282 (15)C10—H10B0.9600
S2—O11.4327 (15)C10—H10C0.9600
S2—C41.7566 (17)C11—C161.383 (3)
S3—O41.4192 (14)C11—C121.391 (3)
S3—O31.4215 (14)C12—C131.373 (3)
S3—C111.7536 (18)C12—H12A0.9300
C1—C21.498 (3)C13—C141.380 (3)
C1—H1A0.9700C13—H13A0.9300
C1—H1B0.9700C14—C151.392 (3)
C2—H2A0.9700C14—C171.508 (3)
C2—H2B0.9700C15—C161.375 (3)
C4—C91.383 (2)C15—H15A0.9300
C4—C51.394 (2)C16—H16A0.9300
C5—C61.377 (3)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—C71.386 (3)C17—H17C0.9600
C3—N1—C1114.30 (15)C7—C6—H6A119.2
C3—N1—S3122.77 (11)C8—C7—C6118.23 (17)
C1—N1—S3120.66 (13)C8—C7—C10121.2 (2)
C3—N2—S2121.62 (12)C6—C7—C10120.6 (2)
C3—S1—C292.76 (9)C7—C8—C9121.55 (18)
O2—S2—O1117.85 (10)C7—C8—H8A119.2
O2—S2—N2112.27 (9)C9—C8—H8A119.2
O1—S2—N2104.73 (8)C4—C9—C8119.15 (18)
O2—S2—C4108.29 (9)C4—C9—H9A120.4
O1—S2—C4107.52 (9)C8—C9—H9A120.4
N2—S2—C4105.40 (8)C7—C10—H10A109.5
O4—S3—O3119.63 (9)C7—C10—H10B109.5
O4—S3—N1107.86 (8)H10A—C10—H10B109.5
O3—S3—N1103.39 (8)C7—C10—H10C109.5
O4—S3—C11110.02 (9)H10A—C10—H10C109.5
O3—S3—C11109.83 (9)H10B—C10—H10C109.5
N1—S3—C11104.90 (8)C16—C11—C12120.69 (18)
N1—C1—C2106.21 (17)C16—C11—S3120.74 (14)
N1—C1—H1A110.5C12—C11—S3118.52 (15)
C2—C1—H1A110.5C13—C12—C11118.67 (19)
N1—C1—H1B110.5C13—C12—H12A120.7
C2—C1—H1B110.5C11—C12—H12A120.7
H1A—C1—H1B108.7C12—C13—C14121.87 (19)
C1—C2—S1107.17 (13)C12—C13—H13A119.1
C1—C2—H2A110.3C14—C13—H13A119.1
S1—C2—H2A110.3C13—C14—C15118.41 (19)
C1—C2—H2B110.3C13—C14—C17121.1 (2)
S1—C2—H2B110.3C15—C14—C17120.5 (2)
H2A—C2—H2B108.5C16—C15—C14120.96 (19)
N2—C3—N1120.10 (15)C16—C15—H15A119.5
N2—C3—S1128.55 (13)C14—C15—H15A119.5
N1—C3—S1111.35 (12)C15—C16—C11119.39 (17)
C9—C4—C5120.25 (17)C15—C16—H16A120.3
C9—C4—S2120.28 (14)C11—C16—H16A120.3
C5—C4—S2119.40 (13)C14—C17—H17A109.5
C6—C5—C4119.28 (17)C14—C17—H17B109.5
C6—C5—H5A120.4H17A—C17—H17B109.5
C4—C5—H5A120.4C14—C17—H17C109.5
C5—C6—C7121.53 (18)H17A—C17—H17C109.5
C5—C6—H6A119.2H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg1i0.972.913.567 (1)127
C2—H2B···Cg2ii0.973.093.821 (1)134
C1—H1B···O1ii0.972.593.394 (3)141
C12—H12A···O3iii0.932.473.318 (2)151
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O4S3
Mr410.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.3825 (2), 14.4047 (2), 14.2279 (3)
β (°) 102.666 (1)
V3)1876.14 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.845, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
17749, 4652, 3756
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.04
No. of reflections4652
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C4–C9 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10B···Cg1i0.972.913.567 (1)127
C2—H2B···Cg2ii0.973.093.821 (1)134
C1—H1B···O1ii0.972.593.394 (3)141
C12—H12A···O3iii0.932.473.318 (2)151
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHultquist, M. E., Germann, R. P., Webb, J. S., Wright, W. B. Jr, Roth, B., Smith, J. M. Jr & SubbaRow, Y. (1951). J. Am. Chem. Soc. 73, 2558–2566.  CrossRef CAS Web of Science Google Scholar
First citationHunter, J. H. & Kolloff, H. G. (1943). J. Am. Chem. Soc. 65, 156–159.  CrossRef CAS Google Scholar
First citationJensen, K. A. & Thorsteinsson, T. (1941). Dansk Tidsskrift Farmaci, 15, 41–77.  CAS Google Scholar
First citationKuz'mina, K. K., Ostroumova, N. G., Markova, Yu. V. & Shchukina, M. N. (1962). Zhurnal Obshchei Khimii. 32, 3390–3393.  CAS Google Scholar
First citationRazvodovskaya, L. V., Vorob'eva, N. N., Grapov, A. F. & Mel'nikov, N. N. (1990). Zhurnal Obshchei Khimii, 60, 1518–1525.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds