organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(4-Methylphenylsulfonyl)piperazin-1-yl]-1-(4,5,6,7-tetra­hydrothieno[3,2-c]pyridin-5-yl)ethanone

aTianjin Medical University, Tianjin 300070, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 27 June 2011; accepted 17 July 2011; online 23 July 2011)

In the title thienopyridine derivative, C20H25N3O3S2, the piperazine ring exhibits a chair conformation and the tetra­hydro­pyridine ring exhibits a half-chair conformation. The folded conformation of the mol­ecule is defined by the N—C—C—N torsion angle of −70.20 (2) °. Inter­molecular C—H⋯S and C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For background to the bioactivity and applications of the title compound, see: Cattaneo (2009[Cattaneo, M. (2009). J. Thromb. Haemost. 7, Suppl. 1, 262-265.]); Wallentin (2009[Wallentin, L. (2009). Eur. Heart J. 30, 1964-1977.]). For a related structure, see: Zhi et al. (2011[Zhi, S., Mu, S., Liu, Y. & Liu, D.-K. (2011). Acta Cryst. E67, o1490.]). For the synthesis of the title compound, see: Liu et al. (2008[Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25N3O3S2

  • Mr = 419.55

  • Orthorhombic, P b c a

  • a = 13.062 (2) Å

  • b = 15.710 (3) Å

  • c = 19.798 (3) Å

  • V = 4062.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.934, Tmax = 0.950

  • 49454 measured reflections

  • 4844 independent reflections

  • 4463 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.14

  • 4844 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯S1i 0.99 2.77 3.469 (2) 128
C6—H6A⋯O1ii 0.99 2.52 3.470 (3) 161
C6—H6B⋯O2iii 0.99 2.51 3.346 (3) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x, -y+2, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

As a thienopyridine derivative, the title compound(I) can be used as an irreversible P2Y12 antagonist to inhibit ADP, which induces platelet aggregation and decreases the risk of arterial occlusion. (Cattaneo 2009; Wallentin 2009).

The piperazine ring exhibits a chair conformation and the tetrahydropyridine ring exhibits a half chair conformation (Fig. 1). The folded conformation of the molecule is defined by the N1—C8—C9—N2 torsion angle of -70.20 (2) °. The dihedral angles formed between the tetrahydropyridine plane and the phenyl ring and the C10—C11—C12—C13 plane are 85.47 (6) ° and 56.38 (9) °, respectively. The crystal is stabilized by intermolecular C—H···S and C—H···O hydrogen bonds (Table1, Fig.2).

Related literature top

For background to the bioactivity and applications of the title compound, see: Cattaneo (2009); Wallentin (2009). For a related structure, see: Zhi et al. (2011). For the synthesis of the title compound, see: Liu et al. (2008).

Experimental top

2-Chloroacetyl chloride was added dropwise into a mixture of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine, dichloromethane and TEA at 263k-273k. After stirring for 3 h, the solvent was evaporated and a light yellow oily substance was obtained by silica gel column chromatography. The light yellow oily substance was then dissloved in a mixture of acetonitrile, TEA and 1-tosylpiperazine. After stirring for 5 h, the title compound was obtained by silica gel column chromatography. Crystallization of the resultingg white solid from methanol afforded white crystals suitble for X-ray analysis.

Refinement top

The H atoms were positioned geometrioncally and refined using a riding model with d(C—H)=0.95–0.99 Å, and Uiso(H)=1.2Ueq(CH and CH2) or 1.5Ueq(CH3) of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I) with hydrogen bonds drawn as dashed lines.
2-[4-(4-Methylphenylsulfonyl)piperazin-1-yl]-1-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone top
Crystal data top
C20H25N3O3S2F(000) = 1776
Mr = 419.55Dx = 1.372 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12748 reflections
a = 13.062 (2) Åθ = 1.7–28.0°
b = 15.710 (3) ŵ = 0.29 mm1
c = 19.798 (3) ÅT = 113 K
V = 4062.8 (11) Å3Prism, colorless
Z = 80.24 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4844 independent reflections
Radiation source: rotating anode4463 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.054
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 1717
Absorption correction: multi-scan
CrystalClear
k = 2020
Tmin = 0.934, Tmax = 0.950l = 2625
49454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0665P)2 + 2.3859P]
where P = (Fo2 + 2Fc2)/3
4844 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H25N3O3S2V = 4062.8 (11) Å3
Mr = 419.55Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.062 (2) ŵ = 0.29 mm1
b = 15.710 (3) ÅT = 113 K
c = 19.798 (3) Å0.24 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4844 independent reflections
Absorption correction: multi-scan
CrystalClear
4463 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.950Rint = 0.054
49454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.14Δρmax = 1.17 e Å3
4844 reflectionsΔρmin = 0.34 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12585 (4)0.69571 (4)0.50761 (3)0.03055 (16)
S20.51658 (4)1.09372 (3)0.30610 (3)0.03065 (16)
O10.13122 (12)1.01184 (10)0.57588 (8)0.0348 (4)
O20.58272 (13)1.14367 (10)0.34791 (9)0.0400 (4)
O30.48630 (14)1.12484 (11)0.24122 (9)0.0420 (4)
N10.12333 (13)0.89002 (11)0.51535 (9)0.0273 (4)
N20.23688 (12)1.01546 (10)0.41984 (8)0.0244 (4)
N30.41057 (13)1.07905 (11)0.34905 (9)0.0271 (4)
C10.11495 (17)0.69019 (14)0.59285 (13)0.0329 (5)
H10.16010.65790.62040.039*
C20.03617 (16)0.73600 (13)0.61798 (11)0.0293 (4)
H20.01860.73900.66450.035*
C30.01696 (15)0.77916 (12)0.56530 (10)0.0240 (4)
C40.10712 (17)0.83828 (14)0.57598 (11)0.0306 (5)
H4A0.09370.87580.61520.037*
H4B0.16940.80450.58570.037*
C50.11965 (16)0.84157 (14)0.45193 (11)0.0278 (4)
H5A0.17050.79490.45380.033*
H5B0.13840.87950.41390.033*
C60.01385 (16)0.80409 (14)0.43904 (10)0.0277 (4)
H6A0.03420.84950.42490.033*
H6B0.01740.76100.40260.033*
C70.02224 (15)0.76393 (13)0.50316 (11)0.0252 (4)
C80.13226 (14)0.97516 (13)0.52092 (11)0.0266 (4)
C90.13997 (15)1.02709 (14)0.45566 (12)0.0302 (5)
H9A0.08311.01060.42530.036*
H9B0.13161.08820.46670.036*
C100.32177 (15)1.05628 (13)0.45626 (11)0.0260 (4)
H10A0.32811.03090.50180.031*
H10B0.30721.11770.46170.031*
C110.42175 (15)1.04500 (14)0.41822 (10)0.0264 (4)
H11A0.47741.07550.44200.032*
H11B0.43990.98390.41630.032*
C120.32501 (17)1.03841 (14)0.31276 (11)0.0306 (5)
H12A0.33780.97660.30810.037*
H12B0.31831.06320.26700.037*
C130.22808 (17)1.05332 (15)0.35261 (11)0.0321 (5)
H13A0.21551.11520.35680.039*
H13B0.16931.02780.32850.039*
C140.57571 (17)0.99377 (13)0.29458 (10)0.0273 (4)
C150.66141 (17)0.97308 (14)0.33228 (11)0.0305 (5)
H150.68601.01120.36580.037*
C160.71122 (18)0.89631 (15)0.32094 (12)0.0344 (5)
H160.77050.88250.34650.041*
C170.67544 (18)0.83934 (14)0.27257 (11)0.0335 (5)
C180.58779 (19)0.86056 (14)0.23633 (11)0.0334 (5)
H180.56170.82150.20400.040*
C190.53773 (18)0.93727 (14)0.24632 (11)0.0304 (5)
H190.47850.95120.22070.037*
C200.7307 (2)0.75663 (16)0.25933 (14)0.0474 (6)
H20A0.79810.75810.28100.071*
H20B0.73920.74880.21050.071*
H20C0.69070.70930.27780.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (3)0.0310 (3)0.0345 (3)0.0073 (2)0.0029 (2)0.0032 (2)
S20.0320 (3)0.0252 (3)0.0348 (3)0.0070 (2)0.0075 (2)0.0003 (2)
O10.0353 (9)0.0313 (8)0.0377 (9)0.0053 (7)0.0024 (7)0.0032 (7)
O20.0348 (9)0.0328 (8)0.0523 (10)0.0150 (7)0.0129 (7)0.0125 (7)
O30.0482 (10)0.0385 (9)0.0391 (9)0.0008 (8)0.0106 (8)0.0138 (8)
N10.0287 (9)0.0259 (9)0.0274 (9)0.0068 (7)0.0013 (7)0.0031 (7)
N20.0197 (8)0.0239 (8)0.0295 (9)0.0049 (6)0.0029 (6)0.0043 (7)
N30.0251 (9)0.0267 (9)0.0296 (9)0.0061 (7)0.0007 (7)0.0000 (7)
C10.0266 (11)0.0255 (10)0.0466 (13)0.0001 (8)0.0003 (9)0.0044 (9)
C20.0326 (11)0.0271 (10)0.0281 (11)0.0028 (9)0.0004 (8)0.0047 (8)
C30.0261 (10)0.0202 (9)0.0258 (10)0.0021 (7)0.0017 (8)0.0020 (7)
C40.0348 (11)0.0304 (11)0.0266 (11)0.0048 (9)0.0019 (8)0.0035 (9)
C50.0266 (10)0.0281 (10)0.0287 (11)0.0057 (8)0.0007 (8)0.0012 (8)
C60.0290 (10)0.0304 (11)0.0238 (10)0.0041 (8)0.0012 (8)0.0015 (8)
C70.0246 (10)0.0219 (9)0.0290 (10)0.0001 (8)0.0009 (8)0.0023 (8)
C80.0159 (9)0.0266 (10)0.0372 (12)0.0027 (7)0.0010 (8)0.0012 (9)
C90.0197 (9)0.0280 (10)0.0428 (13)0.0018 (8)0.0005 (8)0.0067 (9)
C100.0225 (9)0.0252 (9)0.0302 (10)0.0060 (8)0.0009 (8)0.0014 (8)
C110.0219 (9)0.0288 (10)0.0286 (10)0.0053 (8)0.0025 (8)0.0017 (8)
C120.0328 (11)0.0309 (11)0.0282 (11)0.0097 (9)0.0051 (8)0.0040 (8)
C130.0269 (10)0.0340 (11)0.0356 (12)0.0071 (9)0.0075 (9)0.0110 (9)
C140.0315 (11)0.0273 (10)0.0231 (10)0.0076 (8)0.0059 (8)0.0021 (8)
C150.0307 (11)0.0356 (11)0.0251 (10)0.0085 (9)0.0022 (8)0.0038 (9)
C160.0311 (11)0.0380 (12)0.0342 (12)0.0022 (9)0.0022 (9)0.0020 (9)
C170.0385 (12)0.0306 (11)0.0316 (11)0.0045 (9)0.0118 (9)0.0007 (9)
C180.0467 (13)0.0304 (11)0.0230 (10)0.0113 (10)0.0065 (9)0.0045 (8)
C190.0355 (11)0.0332 (11)0.0225 (10)0.0075 (9)0.0003 (8)0.0002 (8)
C200.0517 (16)0.0343 (12)0.0561 (16)0.0025 (11)0.0162 (13)0.0035 (12)
Geometric parameters (Å, º) top
S1—C11.696 (3)C6—H6B0.9900
S1—C71.729 (2)C8—C91.531 (3)
S2—O31.4302 (18)C9—H9A0.9900
S2—O21.4309 (17)C9—H9B0.9900
S2—N31.6412 (18)C10—C111.518 (3)
S2—C141.765 (2)C10—H10A0.9900
O1—C81.231 (3)C10—H10B0.9900
N1—C81.347 (3)C11—H11A0.9900
N1—C41.465 (3)C11—H11B0.9900
N1—C51.469 (3)C12—C131.510 (3)
N2—C91.462 (3)C12—H12A0.9900
N2—C131.463 (3)C12—H12B0.9900
N2—C101.470 (2)C13—H13A0.9900
N3—C121.474 (3)C13—H13B0.9900
N3—C111.478 (3)C14—C151.384 (3)
C1—C21.351 (3)C14—C191.395 (3)
C1—H10.9500C15—C161.389 (3)
C2—C31.424 (3)C15—H150.9500
C2—H20.9500C16—C171.392 (3)
C3—C71.354 (3)C16—H160.9500
C3—C41.515 (3)C17—C181.392 (3)
C4—H4A0.9900C17—C201.510 (3)
C4—H4B0.9900C18—C191.385 (3)
C5—C61.524 (3)C18—H180.9500
C5—H5A0.9900C19—H190.9500
C5—H5B0.9900C20—H20A0.9800
C6—C71.494 (3)C20—H20B0.9800
C6—H6A0.9900C20—H20C0.9800
C1—S1—C790.96 (11)N2—C9—H9B108.9
O3—S2—O2119.94 (11)C8—C9—H9B108.9
O3—S2—N3106.26 (10)H9A—C9—H9B107.7
O2—S2—N3106.67 (9)N2—C10—C11110.78 (16)
O3—S2—C14108.00 (10)N2—C10—H10A109.5
O2—S2—C14107.37 (11)C11—C10—H10A109.5
N3—S2—C14108.14 (9)N2—C10—H10B109.5
C8—N1—C4119.75 (18)C11—C10—H10B109.5
C8—N1—C5125.96 (18)H10A—C10—H10B108.1
C4—N1—C5114.08 (17)N3—C11—C10109.42 (17)
C9—N2—C13108.82 (16)N3—C11—H11A109.8
C9—N2—C10111.13 (16)C10—C11—H11A109.8
C13—N2—C10109.16 (15)N3—C11—H11B109.8
C12—N3—C11111.71 (16)C10—C11—H11B109.8
C12—N3—S2116.61 (14)H11A—C11—H11B108.2
C11—N3—S2116.59 (14)N3—C12—C13108.29 (18)
C2—C1—S1113.78 (18)N3—C12—H12A110.0
C2—C1—H1123.1C13—C12—H12A110.0
S1—C1—H1123.1N3—C12—H12B110.0
C1—C2—C3110.8 (2)C13—C12—H12B110.0
C1—C2—H2124.6H12A—C12—H12B108.4
C3—C2—H2124.6N2—C13—C12110.27 (17)
C7—C3—C2113.39 (19)N2—C13—H13A109.6
C7—C3—C4121.96 (18)C12—C13—H13A109.6
C2—C3—C4124.64 (18)N2—C13—H13B109.6
N1—C4—C3109.76 (17)C12—C13—H13B109.6
N1—C4—H4A109.7H13A—C13—H13B108.1
C3—C4—H4A109.7C15—C14—C19120.5 (2)
N1—C4—H4B109.7C15—C14—S2119.55 (16)
C3—C4—H4B109.7C19—C14—S2119.93 (18)
H4A—C4—H4B108.2C14—C15—C16119.7 (2)
N1—C5—C6111.90 (17)C14—C15—H15120.1
N1—C5—H5A109.2C16—C15—H15120.1
C6—C5—H5A109.2C15—C16—C17120.8 (2)
N1—C5—H5B109.2C15—C16—H16119.6
C6—C5—H5B109.2C17—C16—H16119.6
H5A—C5—H5B107.9C16—C17—C18118.5 (2)
C7—C6—C5107.88 (17)C16—C17—C20120.8 (2)
C7—C6—H6A110.1C18—C17—C20120.7 (2)
C5—C6—H6A110.1C19—C18—C17121.5 (2)
C7—C6—H6B110.1C19—C18—H18119.2
C5—C6—H6B110.1C17—C18—H18119.2
H6A—C6—H6B108.4C18—C19—C14118.9 (2)
C3—C7—C6125.32 (19)C18—C19—H19120.5
C3—C7—S1111.06 (16)C14—C19—H19120.5
C6—C7—S1123.52 (15)C17—C20—H20A109.5
O1—C8—N1122.4 (2)C17—C20—H20B109.5
O1—C8—C9119.81 (19)H20A—C20—H20B109.5
N1—C8—C9117.75 (19)C17—C20—H20C109.5
N2—C9—C8113.56 (17)H20A—C20—H20C109.5
N2—C9—H9A108.9H20B—C20—H20C109.5
C8—C9—H9A108.9
O3—S2—N3—C1243.28 (18)C10—N2—C9—C871.2 (2)
O2—S2—N3—C12172.33 (16)O1—C8—C9—N2112.0 (2)
C14—S2—N3—C1272.46 (17)N1—C8—C9—N270.2 (2)
O3—S2—N3—C11178.81 (15)C9—N2—C10—C11179.18 (16)
O2—S2—N3—C1152.14 (17)C13—N2—C10—C1159.1 (2)
C14—S2—N3—C1163.07 (16)C12—N3—C11—C1056.6 (2)
C7—S1—C1—C21.04 (18)S2—N3—C11—C10165.84 (13)
S1—C1—C2—C31.2 (2)N2—C10—C11—N356.3 (2)
C1—C2—C3—C70.7 (3)C11—N3—C12—C1358.5 (2)
C1—C2—C3—C4178.0 (2)S2—N3—C12—C13163.93 (14)
C8—N1—C4—C3129.51 (19)C9—N2—C13—C12177.01 (17)
C5—N1—C4—C345.7 (2)C10—N2—C13—C1261.5 (2)
C7—C3—C4—N115.1 (3)N3—C12—C13—N260.7 (2)
C2—C3—C4—N1163.44 (19)O3—S2—C14—C15140.22 (17)
C8—N1—C5—C6110.0 (2)O2—S2—C14—C159.6 (2)
C4—N1—C5—C664.8 (2)N3—S2—C14—C15105.18 (18)
N1—C5—C6—C746.2 (2)O3—S2—C14—C1937.9 (2)
C2—C3—C7—C6176.41 (19)O2—S2—C14—C19168.58 (16)
C4—C3—C7—C62.3 (3)N3—S2—C14—C1976.67 (18)
C2—C3—C7—S10.1 (2)C19—C14—C15—C161.4 (3)
C4—C3—C7—S1178.81 (16)S2—C14—C15—C16176.74 (16)
C5—C6—C7—C317.4 (3)C14—C15—C16—C170.7 (3)
C5—C6—C7—S1166.53 (15)C15—C16—C17—C180.8 (3)
C1—S1—C7—C30.62 (17)C15—C16—C17—C20178.8 (2)
C1—S1—C7—C6175.95 (18)C16—C17—C18—C191.6 (3)
C4—N1—C8—O12.8 (3)C20—C17—C18—C19178.0 (2)
C5—N1—C8—O1177.38 (19)C17—C18—C19—C140.9 (3)
C4—N1—C8—C9174.92 (17)C15—C14—C19—C180.6 (3)
C5—N1—C8—C90.4 (3)S2—C14—C19—C18177.51 (16)
C13—N2—C9—C8168.59 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···S1i0.992.773.469 (2)128
C6—H6A···O1ii0.992.523.470 (3)161
C6—H6B···O2iii0.992.513.346 (3)143
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+2, z+1; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H25N3O3S2
Mr419.55
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)13.062 (2), 15.710 (3), 19.798 (3)
V3)4062.8 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
CrystalClear
Tmin, Tmax0.934, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
49454, 4844, 4463
Rint0.054
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.14
No. of reflections4844
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···S1i0.992.773.469 (2)128.0
C6—H6A···O1ii0.992.523.470 (3)160.5
C6—H6B···O2iii0.992.513.346 (3)142.5
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+2, z+1; (iii) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determinations and helpful suggestions.

References

First citationCattaneo, M. (2009). J. Thromb. Haemost. 7, Suppl. 1, 262–265.  Google Scholar
First citationLiu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallentin, L. (2009). Eur. Heart J. 30, 1964–1977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhi, S., Mu, S., Liu, Y. & Liu, D.-K. (2011). Acta Cryst. E67, o1490.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds