organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(4-nitro­benz­yl)diselane

aDepartment of Food Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: zhouhua5460@jnu.edu.cn

(Received 7 June 2011; accepted 29 June 2011; online 6 July 2011)

The title compound, C14H12N2O4Se2, is not chiral, but the mol­ecules assume a chiral conformation in the solid state and crystallize as an aggregate. The central C—Se—Se—C torsion angle is 90.4 (2)°, while the two Se—Se—C—C fragments assume gauche conformations with values of −59.4 (5) and 67.5 (4)°. The dihedral angle between the two benzene rings is 80.74 (14)°.

Related literature

For potential applications of organoselenium compounds, see: Jung & Seo (2010[Jung, H. J. & Seo, Y. R. (2010). Biofactors, 36, 153-158.]). For the preparation, see: Saravanan et al. (2003[Saravanan, V., Porhiel, E. & Chandrasekaran, S. (2003). Tetrahedron Lett. 44, 2257-2260.]). For related structures, see: Fuller et al. (2010[Fuller, A. L., Scott-Hayward, L. A. S., Li, Y., Buhl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799-5802.]); Lari et al. (2009[Lari, A., Rominger, F. & Gleiter, R. (2009). Acta Cryst. C65, o400-o403.]); Hua et al. (2010[Hua, G., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2010). Acta Cryst. E66, o2579.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4Se2

  • Mr = 430.18

  • Orthorhombic, P 21 21 21

  • a = 5.88324 (14) Å

  • b = 14.3571 (3) Å

  • c = 18.3012 (4) Å

  • V = 1545.83 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.17 mm−1

  • T = 296 K

  • 0.3 × 0.09 × 0.09 mm

Data collection
  • Agilent Xcalibur Gemini Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.546, Tmax = 1.000

  • 3179 measured reflections

  • 2098 independent reflections

  • 2015 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.101

  • S = 1.02

  • 2098 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 659 Friedel pairs

  • Flack parameter: −0.02 (4)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Selenium is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties (Jung et al., 2010). Synthetic organoselenium compounds are less toxic and more chemopreventive than inorganic selenium compounds and natural organoseleniums. This is the reason why they have attracted our interest. The title compound assumes a chiral conformation in the solid state (Figure 1). The dihedral angle between the two benzene rings of the molecule is 80.74 (14)°. The C8—Se2—Se1—C1 torsion angle is 90.4 (2)°, while the Se2—Se1—C1—C2 and Se1—Se2—C8—C9 torsion angles are -59.4 (5) and 67.5 (4), respectively. All bond lengths and angles are similar to those in related structures (Fuller et al., 2010; Hua et al., 2010; Lari et al., 2009).

Related literature top

For potential applications of organoselenium compounds, see: Jung & Seo (2010). For the preparation, see: Saravanan et al. (2003). For related structures, see: Fuller et al. (2010); Lari et al. (2009); Hua et al. (2010).

Experimental top

To a vigorously stirred mixture of selenium powder (2.00 g, 25 mmol) and water (50 ml), sodium borohydride (0.95 g, 25 mmol) was added at 0 °C. The mixture was warmed to room temperature and stirred for 2 h. 1-(bromomethyl)-4-nitrobenzene (5.35 g, 25 mmol) was added and stirred for 2 h. O2 was passed through the solution slowly for 2 h (Saravanan et al. 2003). The mixture was extracted with ethyl acetate (200 ml) and washed three times with water (50 ml × 3). The obtained organic layer was dried over MgSO4 overnight. The organic residue was further purified by silica gel column using dichloromethane as eluent. The solvent was then evaporated and the solid residue was recrystallized from CH3OH to give the product as yellow crystals (yield: 4.83 g, 90%).

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and were refined with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
1,2-Bis(4-nitrobenzyl)diselane top
Crystal data top
C14H12N2O4Se2Dx = 1.848 Mg m3
Mr = 430.18Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 2222 reflections
a = 5.88324 (14) Åθ = 3.1–62.7°
b = 14.3571 (3) ŵ = 6.17 mm1
c = 18.3012 (4) ÅT = 296 K
V = 1545.83 (6) Å3Prism, metallic yellow
Z = 40.3 × 0.09 × 0.09 mm
F(000) = 840
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer
2098 independent reflections
Radiation source: Enhance Ultra (Cu)2015 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 16.0288 pixels mm-1θmax = 62.8°, θmin = 5.7°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1416
Tmin = 0.546, Tmax = 1.000l = 2020
3179 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2098 reflectionsΔρmax = 0.50 e Å3
199 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 659 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C14H12N2O4Se2V = 1545.83 (6) Å3
Mr = 430.18Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.88324 (14) ŵ = 6.17 mm1
b = 14.3571 (3) ÅT = 296 K
c = 18.3012 (4) Å0.3 × 0.09 × 0.09 mm
Data collection top
Agilent Xcalibur Gemini Ultra
diffractometer
2098 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2015 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 1.000Rint = 0.017
3179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.50 e Å3
S = 1.02Δρmin = 0.50 e Å3
2098 reflectionsAbsolute structure: Flack (1983), 659 Friedel pairs
199 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se23.00649 (10)1.38512 (3)1.48718 (4)0.0630 (2)
Se12.62212 (11)1.35765 (4)1.47622 (3)0.0608 (2)
N22.6203 (9)1.7770 (3)1.6536 (2)0.0574 (11)
C52.8508 (10)1.5182 (3)1.2268 (2)0.0470 (11)
C42.9801 (10)1.4419 (3)1.2412 (3)0.0515 (12)
H43.12091.43451.21880.062*
C22.6858 (9)1.3852 (3)1.3212 (3)0.0495 (11)
C62.6351 (10)1.5309 (4)1.2571 (3)0.0544 (12)
H62.54791.58301.24590.065*
O32.7429 (9)1.8188 (3)1.6950 (3)0.0934 (16)
C12.6009 (13)1.3139 (4)1.3742 (3)0.0686 (16)
H1A2.68911.25731.36880.082*
H1B2.44371.29941.36300.082*
O22.8277 (10)1.6613 (3)1.1697 (3)0.0825 (13)
C32.9010 (9)1.3758 (3)1.2891 (3)0.0510 (11)
H32.99081.32451.30040.061*
N12.9363 (10)1.5909 (4)1.1763 (3)0.0660 (13)
O13.1181 (10)1.5750 (4)1.1456 (3)0.0941 (16)
C72.5553 (10)1.4625 (4)1.3047 (3)0.0586 (13)
H72.41221.46891.32570.070*
C142.7061 (8)1.6189 (3)1.4953 (3)0.0453 (10)
H142.63001.60121.45300.054*
C132.6056 (8)1.6823 (3)1.5430 (3)0.0486 (11)
H132.46251.70671.53300.058*
C83.0283 (10)1.5164 (3)1.4576 (3)0.0554 (12)
H8A3.18741.53301.45270.066*
H8B2.95761.52381.41000.066*
C92.9178 (8)1.5818 (3)1.5104 (3)0.0465 (10)
O42.4153 (7)1.7875 (3)1.6518 (3)0.0748 (11)
C112.9349 (8)1.6723 (4)1.6212 (3)0.0501 (12)
H113.01311.69111.66280.060*
C103.0275 (8)1.6080 (3)1.5737 (3)0.0500 (11)
H103.16771.58161.58470.060*
C122.7213 (8)1.7083 (3)1.6049 (3)0.0444 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se20.0811 (4)0.0354 (3)0.0723 (4)0.0084 (3)0.0118 (3)0.0036 (2)
Se10.0845 (4)0.0429 (3)0.0549 (3)0.0137 (3)0.0117 (3)0.0030 (2)
N20.078 (3)0.039 (2)0.055 (2)0.005 (2)0.005 (2)0.001 (2)
C50.059 (3)0.042 (2)0.039 (2)0.002 (2)0.000 (2)0.004 (2)
C40.055 (3)0.053 (3)0.047 (2)0.012 (3)0.001 (2)0.010 (2)
C20.059 (3)0.039 (2)0.050 (2)0.011 (2)0.005 (2)0.008 (2)
C60.057 (3)0.052 (3)0.054 (3)0.013 (3)0.007 (2)0.005 (2)
O30.096 (3)0.078 (3)0.107 (4)0.019 (3)0.000 (3)0.041 (3)
C10.098 (4)0.048 (3)0.060 (3)0.023 (3)0.007 (3)0.011 (2)
O20.109 (3)0.054 (2)0.085 (3)0.006 (3)0.011 (3)0.021 (2)
C30.065 (3)0.037 (2)0.051 (2)0.008 (2)0.004 (2)0.005 (2)
N10.084 (3)0.058 (3)0.055 (2)0.009 (3)0.009 (3)0.003 (2)
O10.094 (3)0.102 (4)0.086 (3)0.005 (3)0.032 (3)0.022 (3)
C70.055 (3)0.064 (3)0.056 (3)0.003 (3)0.003 (2)0.005 (3)
C140.050 (2)0.038 (2)0.048 (2)0.003 (2)0.0052 (19)0.000 (2)
C130.050 (2)0.037 (2)0.059 (3)0.003 (2)0.003 (2)0.006 (2)
C80.063 (3)0.035 (2)0.068 (3)0.004 (2)0.007 (3)0.001 (2)
C90.056 (2)0.0276 (19)0.055 (2)0.006 (2)0.005 (2)0.0058 (19)
O40.067 (3)0.077 (3)0.080 (3)0.017 (2)0.006 (2)0.010 (2)
C110.056 (3)0.049 (3)0.046 (2)0.010 (2)0.008 (2)0.000 (2)
C100.049 (2)0.046 (2)0.055 (3)0.001 (2)0.000 (2)0.011 (2)
C120.055 (3)0.031 (2)0.047 (2)0.006 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Se2—Se12.3043 (8)O2—N11.201 (7)
Se2—C81.965 (5)C3—H30.9300
Se1—C11.973 (5)N1—O11.230 (8)
N2—O31.206 (6)C7—H70.9300
N2—O41.216 (7)C14—H140.9300
N2—C121.455 (6)C14—C131.393 (7)
C5—C41.360 (7)C14—C91.382 (7)
C5—C61.396 (9)C13—H130.9300
C5—N11.482 (7)C13—C121.374 (7)
C4—H40.9300C8—H8A0.9700
C4—C31.373 (7)C8—H8B0.9700
C2—C11.496 (8)C8—C91.496 (7)
C2—C31.402 (8)C9—C101.379 (7)
C2—C71.382 (7)C11—H110.9300
C6—H60.9300C11—C101.380 (7)
C6—C71.395 (8)C11—C121.391 (7)
C1—H1A0.9700C10—H100.9300
C1—H1B0.9700
C8—Se2—Se1101.78 (18)O1—N1—C5116.7 (5)
C1—Se1—Se2101.5 (2)C2—C7—C6120.9 (5)
O3—N2—O4123.2 (6)C2—C7—H7119.5
O3—N2—C12118.5 (5)C6—C7—H7119.5
O4—N2—C12118.2 (5)C13—C14—H14119.7
C4—C5—C6122.4 (5)C9—C14—H14119.7
C4—C5—N1119.9 (5)C9—C14—C13120.6 (4)
C6—C5—N1117.7 (5)C14—C13—H13120.5
C5—C4—H4120.3C12—C13—C14118.9 (4)
C5—C4—C3119.4 (5)C12—C13—H13120.5
C3—C4—H4120.3Se2—C8—H8A108.9
C3—C2—C1120.5 (5)Se2—C8—H8B108.9
C7—C2—C1120.3 (5)H8A—C8—H8B107.7
C7—C2—C3119.2 (5)C9—C8—Se2113.3 (3)
C5—C6—H6121.2C9—C8—H8A108.9
C7—C6—C5117.6 (5)C9—C8—H8B108.9
C7—C6—H6121.2C14—C9—C8120.3 (4)
Se1—C1—H1A109.2C10—C9—C14119.0 (4)
Se1—C1—H1B109.2C10—C9—C8120.7 (5)
C2—C1—Se1112.0 (3)C10—C11—H11121.0
C2—C1—H1A109.2C10—C11—C12118.1 (4)
C2—C1—H1B109.2C12—C11—H11121.0
H1A—C1—H1B107.9C9—C10—C11121.8 (5)
C4—C3—C2120.5 (5)C9—C10—H10119.1
C4—C3—H3119.8C11—C10—H10119.1
C2—C3—H3119.8C13—C12—N2119.2 (4)
O2—N1—C5118.3 (5)C13—C12—C11121.5 (4)
O2—N1—O1124.9 (6)C11—C12—N2119.3 (4)
Se2—Se1—C1—C259.4 (5)N1—C5—C4—C3178.7 (4)
Se2—C8—C9—C14102.1 (4)N1—C5—C6—C7179.8 (5)
Se2—C8—C9—C1079.7 (5)C7—C2—C1—Se175.3 (6)
Se1—Se2—C8—C967.5 (4)C7—C2—C3—C40.8 (7)
C5—C4—C3—C22.1 (7)C14—C13—C12—N2177.9 (4)
C5—C6—C7—C20.1 (8)C14—C13—C12—C110.4 (7)
C4—C5—C6—C71.2 (8)C14—C9—C10—C112.1 (7)
C4—C5—N1—O2173.5 (5)C13—C14—C9—C8177.7 (4)
C4—C5—N1—O14.8 (7)C13—C14—C9—C100.5 (6)
C6—C5—C4—C32.3 (8)C8—Se2—Se1—C190.4 (2)
C6—C5—N1—O27.5 (7)C8—C9—C10—C11176.2 (4)
C6—C5—N1—O1174.2 (5)C9—C14—C13—C120.6 (7)
O3—N2—C12—C13159.1 (5)O4—N2—C12—C1322.8 (7)
O3—N2—C12—C1119.2 (7)O4—N2—C12—C11158.9 (5)
C1—C2—C3—C4179.2 (5)C10—C11—C12—N2179.4 (4)
C1—C2—C7—C6178.1 (5)C10—C11—C12—C131.1 (7)
C3—C2—C1—Se1103.0 (5)C12—C11—C10—C92.3 (7)
C3—C2—C7—C60.2 (8)

Experimental details

Crystal data
Chemical formulaC14H12N2O4Se2
Mr430.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.88324 (14), 14.3571 (3), 18.3012 (4)
V3)1545.83 (6)
Z4
Radiation typeCu Kα
µ (mm1)6.17
Crystal size (mm)0.3 × 0.09 × 0.09
Data collection
DiffractometerAgilent Xcalibur Gemini Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.546, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3179, 2098, 2015
Rint0.017
(sin θ/λ)max1)0.577
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.101, 1.02
No. of reflections2098
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.50
Absolute structureFlack (1983), 659 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by grants from the National Natural Science Fund (No. 31000816).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFuller, A. L., Scott-Hayward, L. A. S., Li, Y., Buhl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799–5802.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHua, G., Fuller, A. L., Slawin, A. M. Z. & Woollins, J. D. (2010). Acta Cryst. E66, o2579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJung, H. J. & Seo, Y. R. (2010). Biofactors, 36, 153–158.  Web of Science CAS PubMed Google Scholar
First citationLari, A., Rominger, F. & Gleiter, R. (2009). Acta Cryst. C65, o400–o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaravanan, V., Porhiel, E. & Chandrasekaran, S. (2003). Tetrahedron Lett. 44, 2257–2260.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds