organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2010-o2011

1-(2-Naphth­yl)-3-phenyl-3-(4,5,6,7-tetra­hydro-1,2,3-benzoselena­diazol-4-yl)propan-1-one

aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, bDepartment of Bioinformatics, Alagappa University, Karaikudi 630 003, India, cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India, dDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and eDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: jjkanthan@gmail.com

(Received 11 May 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound, C25H22N2OSe, the fused six-membered cyclo­hexene ring of the 4,5,6,7-tetra­hydro-1,2,3-benzoselenadiazole group adopts a near half-chair conformation and the five-membered 1,2,3-selenadiazole ring is essentially planar (r.m.s. deviation = 0.004 Å). There are weak inter­molecular C—H⋯O and C—H⋯π inter­actions in the crystal structure. Inter­molecular ππ stacking is also observed between the naphthyl units, with a centroid–centroid distance of 3.529 (15) Å.

Related literature

For the biological importance of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.]); El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encío, I., Palop, J. A. & Sanmartín, C. (2010). Arch. Pharm. 343, 680-691.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For synthetic procedures, see: Al Arab (1989[Al Arab, M. M. (1989). J. Chem. Soc. Pak. 11, 321-326.]); Li et al. (2003[Li, J. T., Chen, G.-F., Xu, W.-Z. & Li, T.-S. (2003). Ultrason. Sonochem. 10, 115-118.]); Qian et al. (2008[Qian, Y., Xiao, S., Liu, L. & Wang, Y. (2008). Tetrahedron Asymmetry, 19, 1515-1518.]); Xu et al. (2009[Xu, D.-Z., Shi, S., Liu, Y. & Wang, Y. (2009). Tetrahedron, 65, 9344-9349.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2OSe

  • Mr = 445.41

  • Triclinic, [P \overline 1]

  • a = 8.0600 (4) Å

  • b = 10.1215 (5) Å

  • c = 13.0827 (6) Å

  • α = 81.479 (4)°

  • β = 76.478 (4)°

  • γ = 82.087 (4)°

  • V = 1020.33 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.658, Tmax = 1.000

  • 6762 measured reflections

  • 3594 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.01

  • 3594 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.93 2.56 3.381 (3) 147
C22—H22⋯O1i 0.93 2.58 3.392 (4) 146
C4—H4ACgii 0.97 2.63 3.584 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Selenium containing heterocyclic compounds are of interest due to their biological applications. They posses various beneficial activities such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), and anti-cancer (Plano et al., 2010). Considering the importances of 1,2,3-selenadiazole derivatives, we report the structure of the title compound (Fig. 1). The five-membered 1,2,3-selenadiazole moiety (C1/N1/N2/Se1/C2) of the title compound adopts a planar conformation (r.m.s. deviation = 0.004 Å). Cremer & Pople puckering analysis (Cremer & Pople, 1975) cannot be performed to this moiety, for its weighted average absolute torsion angle is 0.62°, which is less than 5.0°. However, the fused six-membered ring (C1/C2/C3/C4/C5/C6) of 4,5,6,7-tetrahydrobenzo[d][1,2,3]selenadiazole group adopts a near to half-chair conformation with puckering parameters of Q = 0.489 (3) Å, θ = 48.9 (4)° and Φ = 218.1 (5)°. The stabilization of crystal packing is mainly governed by intermolecular hydrogen bonding interactions such as C20–H20···O1 (x - 1, y, z) and C22—H22···O1 (Fig. 2). The C—H···π interaction (Fig. 3) is observed between C4—H4A···Cg (–x,1 - y,1 - z) [Cg is the centroid of C16—C21 ring, C···Cg distance: 3.584 (3) Å, H···Cg 2.63 Å, H-Perp: 2.61 Å], which also contribute to the crystal packing. The crystal packing also exhibits intermolecular ππ stacking interaction between naphthyl units with a centroid-centroid distance of 3.529 (15) Å.

Related literature top

For the biological importance of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001); El-Bahaie et al. (1990); El-Kashef et al. (1986); Plano et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975). For synthetic procedures, see: Al Arab (1989); Li et al. (2003); Qian et al. (2008); Xu et al. (2009).

Experimental top

Diastereomerically pure racemic cyclic 1,5-diketones,(2S*,1'R*)-2-[3-(2-naphthyl)-3-oxo-1-phenylpropyl]cyclohexan-1-one, were obtained via a simple Michael addition of cyclohexanone with substituted chalcones by a known method (Al Arab, 1989; Li et al., 2003; Xu et al., 2009; Qian et al., 2008). A mixture of (2S*,1'R*)- 2-[3-(2-naphthyl)-3-oxo-1-phenylpropyl]-1-cyclohexanone (1 mmol, 0.36 g) and semicarbazide hydrochloride (1 mmol, 0.11 g) in ethanol (10 ml) was refluxed for 3 h. After completion of the reaction as monitored by TLC, the mixture was poured into ice-cold water (50 ml) and the resulting mono-semicarbazone solid was filtered off. The mono-semicarbazone (1 mmol, 0.41 g) and SeO2 (2 mmol, 0.44 g) in THF(10 ml) was refluxed on a water bath for 30 minutes and on completion of the reaction the mixture was filtered to remove selenium powder. The filtrate was concentrated under vacuum, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (95:5; v/v) as eluent to afford the racemic mixture of the pure product (Yield: 70%, m.p.: 404-405 K). Dissolving the pure compound in 3:1 mixture of dichloromethane/ethyl acetate and on keeping for slow evaporation of the solvents provides crystals for X-ray analysis.

Refinement top

The hydrogen atoms were placed in calculated positions (C–H = 0.93–0.98 Å) and included in the refinement in riding-model approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A weak intermolecular C—H···O interaction in title compound.
[Figure 3] Fig. 3. A weak intermolecular C—H···π interaction in title compound. Cg is the centroid of C16—C21 ring.
1-(2-Naphthyl)-3-phenyl-3-(4,5,6,7-tetrahydro-1,2,3-benzoselenadiazol- 4-yl)propan-1-one top
Crystal data top
C25H22N2OSeZ = 2
Mr = 445.41F(000) = 456
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0600 (4) ÅCell parameters from 3065 reflections
b = 10.1215 (5) Åθ = 2.6–29.3°
c = 13.0827 (6) ŵ = 1.86 mm1
α = 81.479 (4)°T = 293 K
β = 76.478 (4)°Block, blue
γ = 82.087 (4)°0.4 × 0.3 × 0.2 mm
V = 1020.33 (9) Å3
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.658, Tmax = 1.000l = 1215
6762 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C25H22N2OSeγ = 82.087 (4)°
Mr = 445.41V = 1020.33 (9) Å3
Triclinic, P1Z = 2
a = 8.0600 (4) ÅMo Kα radiation
b = 10.1215 (5) ŵ = 1.86 mm1
c = 13.0827 (6) ÅT = 293 K
α = 81.479 (4)°0.4 × 0.3 × 0.2 mm
β = 76.478 (4)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2770 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 1.000Rint = 0.025
6762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
3594 reflectionsΔρmin = 0.41 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.62678 (4)0.82915 (3)0.61536 (3)0.06072 (16)
O10.3614 (3)0.5213 (2)0.20388 (17)0.0633 (6)
N10.5844 (3)0.6746 (2)0.48187 (19)0.0476 (6)
N20.7071 (3)0.7047 (3)0.5160 (2)0.0587 (7)
C10.4227 (3)0.7366 (2)0.5202 (2)0.0344 (6)
C20.4117 (4)0.8232 (3)0.5918 (2)0.0395 (7)
C30.2505 (4)0.8991 (3)0.6443 (2)0.0485 (7)
H3A0.24990.99340.61630.058*
H3B0.24510.89160.71970.058*
C40.0939 (4)0.8443 (3)0.62557 (19)0.0422 (7)
H4A0.07140.76290.67360.051*
H4B0.00570.90980.64060.051*
C50.1215 (3)0.8137 (3)0.5122 (2)0.0398 (6)
H5A0.14640.89470.46420.048*
H5B0.01690.78580.50160.048*
C60.2686 (3)0.7034 (3)0.48589 (19)0.0339 (6)
H60.23280.62100.53030.041*
C70.3076 (3)0.6729 (2)0.36983 (19)0.0331 (6)
H70.41130.60890.36040.040*
C80.3471 (3)0.7946 (3)0.28883 (18)0.0334 (6)
C90.5157 (4)0.8233 (3)0.2486 (2)0.0480 (7)
H90.60490.76710.27110.058*
C100.5519 (5)0.9349 (3)0.1752 (2)0.0606 (9)
H100.66510.95300.14930.073*
C110.4227 (5)1.0187 (3)0.1405 (2)0.0601 (9)
H110.44791.09330.09120.072*
C120.2555 (5)0.9919 (3)0.1790 (2)0.0533 (8)
H120.16691.04840.15600.064*
C130.2194 (4)0.8812 (3)0.2518 (2)0.0415 (7)
H130.10570.86390.27700.050*
C140.1634 (3)0.6015 (3)0.3511 (2)0.0376 (6)
H14A0.13200.53340.41050.045*
H14B0.06350.66620.34830.045*
C150.2124 (4)0.5363 (3)0.2507 (2)0.0375 (6)
C160.0773 (3)0.4844 (2)0.2104 (2)0.0334 (6)
C170.1294 (3)0.4041 (2)0.13129 (19)0.0358 (6)
H170.24630.38360.10480.043*
C180.0114 (3)0.3514 (2)0.08876 (19)0.0340 (6)
C190.1658 (3)0.3833 (3)0.12857 (19)0.0352 (6)
C200.2175 (3)0.4677 (3)0.2103 (2)0.0410 (7)
H200.33390.49060.23660.049*
C210.1000 (3)0.5157 (3)0.2508 (2)0.0367 (6)
H210.13670.56940.30550.044*
C220.2856 (4)0.3321 (3)0.0848 (2)0.0485 (8)
H220.40260.35380.10980.058*
C230.2302 (4)0.2516 (3)0.0068 (2)0.0550 (9)
H230.30950.21820.02140.066*
C240.0545 (4)0.2186 (3)0.0316 (2)0.0532 (8)
H240.01840.16230.08450.064*
C250.0639 (4)0.2670 (3)0.0068 (2)0.0441 (7)
H250.18020.24500.02050.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0506 (2)0.0778 (3)0.0659 (2)0.01457 (18)0.02624 (18)0.01871 (18)
O10.0281 (12)0.0930 (17)0.0786 (15)0.0050 (11)0.0061 (11)0.0520 (13)
N10.0352 (14)0.0520 (15)0.0575 (15)0.0042 (12)0.0141 (12)0.0141 (12)
N20.0365 (15)0.0715 (18)0.0714 (18)0.0003 (13)0.0198 (14)0.0115 (14)
C10.0340 (16)0.0341 (14)0.0349 (14)0.0014 (12)0.0092 (12)0.0025 (12)
C20.0424 (17)0.0410 (15)0.0380 (15)0.0054 (13)0.0138 (13)0.0049 (12)
C30.056 (2)0.0458 (17)0.0457 (17)0.0006 (15)0.0107 (15)0.0160 (14)
C40.0400 (17)0.0445 (16)0.0394 (16)0.0021 (14)0.0051 (14)0.0081 (13)
C50.0312 (15)0.0499 (16)0.0382 (15)0.0044 (13)0.0075 (13)0.0130 (13)
C60.0320 (15)0.0353 (14)0.0352 (14)0.0048 (12)0.0076 (12)0.0053 (11)
C70.0261 (14)0.0340 (14)0.0404 (15)0.0014 (11)0.0080 (12)0.0119 (12)
C80.0378 (16)0.0356 (14)0.0307 (13)0.0041 (12)0.0073 (12)0.0163 (11)
C90.0389 (17)0.0519 (18)0.0536 (18)0.0098 (14)0.0043 (15)0.0126 (15)
C100.061 (2)0.065 (2)0.0523 (19)0.028 (2)0.0107 (18)0.0137 (17)
C110.088 (3)0.051 (2)0.0368 (17)0.017 (2)0.0017 (19)0.0073 (15)
C120.078 (2)0.0471 (18)0.0356 (16)0.0009 (17)0.0170 (17)0.0052 (14)
C130.0439 (17)0.0452 (16)0.0364 (15)0.0020 (14)0.0086 (13)0.0110 (13)
C140.0313 (15)0.0372 (15)0.0463 (16)0.0039 (12)0.0066 (13)0.0138 (12)
C150.0301 (16)0.0372 (15)0.0474 (16)0.0004 (12)0.0108 (14)0.0114 (12)
C160.0299 (15)0.0296 (13)0.0413 (15)0.0013 (11)0.0090 (12)0.0064 (12)
C170.0289 (14)0.0379 (15)0.0413 (15)0.0016 (12)0.0093 (12)0.0089 (12)
C180.0374 (16)0.0317 (14)0.0331 (14)0.0025 (12)0.0103 (12)0.0010 (11)
C190.0359 (16)0.0373 (14)0.0337 (14)0.0076 (12)0.0097 (12)0.0018 (12)
C200.0276 (15)0.0471 (16)0.0471 (16)0.0019 (13)0.0038 (13)0.0106 (13)
C210.0330 (15)0.0361 (14)0.0428 (15)0.0019 (12)0.0068 (13)0.0141 (12)
C220.0384 (17)0.066 (2)0.0453 (17)0.0154 (15)0.0092 (14)0.0096 (15)
C230.057 (2)0.071 (2)0.0461 (17)0.0244 (18)0.0162 (16)0.0134 (16)
C240.065 (2)0.061 (2)0.0414 (16)0.0106 (17)0.0159 (16)0.0187 (15)
C250.0448 (18)0.0493 (17)0.0398 (16)0.0006 (14)0.0099 (14)0.0135 (13)
Geometric parameters (Å, º) top
Se1—C21.840 (3)C20—C211.362 (3)
Se1—N21.888 (3)C20—C191.417 (4)
O1—C151.214 (3)C20—H200.9300
C1—C21.355 (4)C5—H5A0.9700
C1—N11.381 (3)C5—H5B0.9700
C1—C61.509 (3)C13—C121.375 (4)
N1—N21.264 (3)C13—H130.9300
C14—C151.503 (3)C21—H210.9300
C14—C71.533 (3)C18—C251.421 (4)
C14—H14A0.9700C18—C191.411 (4)
C14—H14B0.9700C25—C241.353 (4)
C15—C161.499 (3)C25—H250.9300
C17—C161.365 (3)C9—C101.385 (4)
C17—C181.404 (3)C9—H90.9300
C17—H170.9300C19—C221.419 (3)
C7—C81.518 (3)C22—C231.356 (4)
C7—C61.546 (3)C22—H220.9300
C7—H70.9800C10—C111.369 (5)
C6—C51.526 (4)C10—H100.9300
C6—H60.9800C12—C111.373 (5)
C8—C131.386 (4)C12—H120.9300
C8—C91.392 (4)C3—H3A0.9700
C16—C211.412 (4)C3—H3B0.9700
C2—C31.488 (4)C23—C241.398 (5)
C4—C51.520 (3)C23—H230.9300
C4—C31.529 (3)C24—H240.9300
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700
C2—Se1—N286.70 (11)C4—C5—C6112.0 (2)
C2—C1—N1116.2 (2)C4—C5—H5A109.2
C2—C1—C6123.1 (2)C6—C5—H5A109.2
N1—C1—C6120.6 (2)C4—C5—H5B109.2
N2—N1—C1117.3 (2)C6—C5—H5B109.2
C15—C14—C7113.2 (2)H5A—C5—H5B107.9
C15—C14—H14A108.9C12—C13—C8122.1 (3)
C7—C14—H14A108.9C12—C13—H13119.0
C15—C14—H14B108.9C8—C13—H13119.0
C7—C14—H14B108.9C20—C21—C16120.3 (2)
H14A—C14—H14B107.8C20—C21—H21119.8
O1—C15—C16119.7 (2)C16—C21—H21119.8
O1—C15—C14120.5 (2)C17—C18—C25122.4 (2)
C16—C15—C14119.8 (2)C17—C18—C19119.0 (2)
C16—C17—C18121.8 (2)C25—C18—C19118.6 (2)
C16—C17—H17119.1C24—C25—C18120.3 (3)
C18—C17—H17119.1C24—C25—H25119.9
C8—C7—C14112.5 (2)C18—C25—H25119.9
C8—C7—C6113.86 (19)C10—C9—C8120.6 (3)
C14—C7—C6110.17 (19)C10—C9—H9119.7
C8—C7—H7106.6C8—C9—H9119.7
C14—C7—H7106.6C22—C19—C20122.3 (3)
C6—C7—H7106.6C22—C19—C18119.3 (2)
N1—N2—Se1110.7 (2)C20—C19—C18118.4 (2)
C1—C6—C5108.8 (2)C23—C22—C19120.3 (3)
C1—C6—C7113.7 (2)C23—C22—H22119.9
C5—C6—C7114.0 (2)C19—C22—H22119.9
C1—C6—H6106.6C11—C10—C9120.7 (3)
C5—C6—H6106.6C11—C10—H10119.6
C7—C6—H6106.6C9—C10—H10119.7
C13—C8—C9117.2 (3)C11—C12—C13119.8 (3)
C13—C8—C7122.2 (2)C11—C12—H12120.1
C9—C8—C7120.6 (3)C13—C12—H12120.1
C17—C16—C21119.2 (2)C2—C3—C4110.6 (2)
C17—C16—C15118.1 (2)C2—C3—H3A109.5
C21—C16—C15122.7 (2)C4—C3—H3A109.5
C1—C2—C3125.2 (2)C2—C3—H3B109.5
C1—C2—Se1109.2 (2)C4—C3—H3B109.5
C3—C2—Se1125.65 (19)H3A—C3—H3B108.1
C5—C4—C3111.4 (2)C22—C23—C24120.4 (3)
C5—C4—H4A109.3C22—C23—H23119.8
C3—C4—H4A109.3C24—C23—H23119.8
C5—C4—H4B109.3C25—C24—C23121.2 (3)
C3—C4—H4B109.3C25—C24—H24119.4
H4A—C4—H4B108.0C23—C24—H24119.4
C21—C20—C19121.2 (3)C10—C11—C12119.6 (3)
C21—C20—H20119.4C10—C11—H11120.2
C19—C20—H20119.4C12—C11—H11120.2
C2—C1—N1—N20.6 (4)C3—C4—C5—C663.3 (3)
C6—C1—N1—N2178.3 (2)C1—C6—C5—C449.3 (3)
C7—C14—C15—O113.6 (4)C7—C6—C5—C4177.3 (2)
C7—C14—C15—C16168.8 (2)C9—C8—C13—C120.5 (4)
C15—C14—C7—C867.1 (3)C7—C8—C13—C12179.5 (2)
C15—C14—C7—C6164.7 (2)C19—C20—C21—C161.3 (4)
C1—N1—N2—Se10.9 (3)C17—C16—C21—C200.9 (4)
C2—Se1—N2—N10.8 (2)C15—C16—C21—C20179.0 (2)
C2—C1—C6—C519.6 (3)C16—C17—C18—C25179.6 (2)
N1—C1—C6—C5162.9 (2)C16—C17—C18—C190.4 (4)
C2—C1—C6—C7147.8 (2)C17—C18—C25—C24179.9 (3)
N1—C1—C6—C734.7 (3)C19—C18—C25—C240.1 (4)
C8—C7—C6—C169.0 (3)C13—C8—C9—C100.5 (4)
C14—C7—C6—C1163.5 (2)C7—C8—C9—C10179.5 (2)
C8—C7—C6—C556.5 (3)C21—C20—C19—C22179.9 (2)
C14—C7—C6—C571.0 (3)C21—C20—C19—C180.9 (4)
C14—C7—C8—C1339.2 (3)C17—C18—C19—C22179.1 (2)
C6—C7—C8—C1387.1 (3)C25—C18—C19—C220.9 (4)
C14—C7—C8—C9140.8 (2)C17—C18—C19—C200.0 (3)
C6—C7—C8—C992.9 (3)C25—C18—C19—C20179.9 (2)
C18—C17—C16—C210.0 (4)C20—C19—C22—C23179.9 (3)
C18—C17—C16—C15179.9 (2)C18—C19—C22—C231.0 (4)
O1—C15—C16—C179.8 (4)C8—C9—C10—C110.3 (4)
C14—C15—C16—C17167.9 (2)C8—C13—C12—C110.3 (4)
O1—C15—C16—C21170.1 (3)C1—C2—C3—C412.4 (4)
C14—C15—C16—C2112.3 (4)Se1—C2—C3—C4166.41 (18)
N1—C1—C2—C3179.1 (2)C5—C4—C3—C241.7 (3)
C6—C1—C2—C31.5 (4)C19—C22—C23—C240.2 (4)
N1—C1—C2—Se10.1 (3)C18—C25—C24—C231.0 (4)
C6—C1—C2—Se1177.50 (18)C22—C23—C24—C250.8 (5)
N2—Se1—C2—C10.47 (19)C9—C10—C11—C120.1 (5)
N2—Se1—C2—C3179.4 (2)C13—C12—C11—C100.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.932.563.381 (3)147
C22—H22···O1i0.932.583.392 (4)146
C4—H4A···Cgii0.972.633.584 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H22N2OSe
Mr445.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0600 (4), 10.1215 (5), 13.0827 (6)
α, β, γ (°)81.479 (4), 76.478 (4), 82.087 (4)
V3)1020.33 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.658, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6762, 3594, 2770
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.01
No. of reflections3594
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.932.563.381 (3)147
C22—H22···O1i0.932.583.392 (4)146
C4—H4A···Cgii0.972.633.584 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: krishstrucbio@gmail.com.

Acknowledgements

RK thanks the Centre for Bioinformatics [funded by the Department of Biotechnology (DBT) and the Department of Information Technology (DIT)], Pondicherry University, for providing computational facilities to carry out this research work. JJ thanks Dr Binoy Krishna Saha, Assistant Professor, Department of Chemistry, Pondicherry University, for providing the X-ray facilities. JM thanks the Council for Scientific and Industrial Research (CSIR) for Senior Research Fellowship (SRF).

References

First citationAl Arab, M. M. (1989). J. Chem. Soc. Pak. 11, 321–326.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.  Google Scholar
First citationLi, J. T., Chen, G.-F., Xu, W.-Z. & Li, T.-S. (2003). Ultrason. Sonochem. 10, 115–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encío, I., Palop, J. A. & Sanmartín, C. (2010). Arch. Pharm. 343, 680–691.  Web of Science CrossRef CAS Google Scholar
First citationQian, Y., Xiao, S., Liu, L. & Wang, Y. (2008). Tetrahedron Asymmetry, 19, 1515–1518.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D.-Z., Shi, S., Liu, Y. & Wang, Y. (2009). Tetrahedron, 65, 9344–9349.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2010-o2011
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds