metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridocuprate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 19 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title compound, (C8H18N2)[CuCl4], torsion angles on the ethyl­ene bridges of the 1,4-diazo­niabicyclo­[2.2.2]octane fragment are in the range 11.9 (5)–15.0 (5)° and the [CuCl4]2− anion has a strongly distorted tetra­hedral geometry. The cation is connected to the anion via three-center N—H⋯Cl hydrogen bonds.

Related literature

For similar compounds exhibiting phase transition, see: Corzo-Suárez et al. (1997[Corzo-Suárez, R., García-Granda, S., Díaz, I., Fernández-Herrero, V. & Martínez, J. L. (1997). Acta Cryst. C53, 1786-1789.]); Katrusiak (2000[Katrusiak, A. (2000). J. Mol. Struct. 552, 159-164.]); Sun & Jin (2002[Sun, C. R. & Jin, Z. M. (2002). Acta Cryst. C58, o600-o601.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H18N2)[CuCl4]

  • Mr = 347.58

  • Orthorhombic, P b c a

  • a = 13.347 (3) Å

  • b = 14.187 (3) Å

  • c = 14.408 (3) Å

  • V = 2728.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.618, Tmax = 0.624

  • 26550 measured reflections

  • 3131 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.123

  • S = 1.12

  • 3131 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.91 2.54 3.271 (4) 138
N1—H1⋯Cl3 0.91 2.57 3.229 (4) 130

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis and characterization of copper halides in which organic ligands link metal centres have attracted much attention. One of the reasons for that is the fact that the copper environment of these compounds can adopt different geometries: tetrahedral, pseudo-tetrahedral or square-planar (Corzo-Suárez et al., 1997). This coordination variety allows the study of the relationship between the different geometries and the structural and magnetic properties of these compounds.

The title compound at room temperature crystallizes in the centrosymmetric Pbca space group and is paraelectric. It contains an isolated distorted (compressed) tetrahedral [CuCl4]2- anion, and a protonated (C8H18N2)2+ cation. In this salt, the N—H+ group of the dication forms bifurcated hydrogen bond to two chloride ligands of the adjacent [CuCl4]2- anion.

In the cation the C9—N2—C6—C10 torsion angle is 47.9 (6)° and the DABCO fragment is distorted as indicated by the N1—C—C—N2 torsion angles, which range from 11.9 (5)-15.0 (5)° . In contrast to the present case, disorder of the DABCO unit is frequently observed in DABCO salts, such as in DABCO–perchloric acid (1:1) (Katrusiak, 2000) and DABCO–maleic acid (1:2) (Sun & Jin, 2002).

In [CuCl4]2- anion distortion from tetrahedral geometry is typically measured by the value of the trans Cl—Cu—Cl angle and by the dihedral angle between CuCl2 planes. In the present case, the two 'trans' angles are 131.30°(5) and 131.22° (6) and the dihedral angle between the CuCl2 planes is 65.72 (5).

The dielectric measurements (capacitance and dielectric loss measurements) on the powder samples pressed into tablets with a conducting carbon glue depositing on it, were carried out with an automatic impedance TongHui2828 Analyzer. Dielectric permittivity of the compound was tested to investigate the possibility of ferroelectric phase transitions. In the temperature range 80- 423 K no dielectric anomaly was observed revealing no phase transition in the studied temperature range.

Related literature top

For similar compounds exhibiting phase transition, see: Corzo-Suárez et al. (1997); Katrusiak (2000); Sun & Jin (2002).

Experimental top

To a mixture of iodomethane (10 mmol) and chloroform (15 ml) at 273 K was added dropwise a chloroform solution of 2-methyl-1,4-diazabicyclo[2.2.2]octane (10.2 mmol) resulting in 1,2-methyl-1,4-diazabicyclo[2.2.2]octane iodide. To the mixture of 1,2-methyl-1,4-diazabicyclo[2.2.2]octane iodide (4 mmol,1.07 g) and water (7 ml), concentrated hydrochloric acid (12 mmol) was added dropwise. Concentrated hydrochloric acid was also added dropwise to a mixture of CuCl2 (2 mmol,0.341 g) and ethanol (5 ml). The two solutions were then mixed and stirred for 20 minutes. The resulting precipitate was dissolved in water. Yellow crystals suitable for X-ray analysis were formed after several weeks on slow evaporation of the solvent at room temperature (m.p. > 473 K).

Refinement top

All the H atoms were positioned geometrically (C-H = 0.96-0.97 Å; N-H = 0.91 Å) and in the refinement process were allowed to ride on their carrier atoms with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Dashed lines indicate hydrogen bonds.
1,2-Dimethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocuprate(II) top
Crystal data top
(C8H18N2)[CuCl4]F(000) = 1416
Mr = 347.58Dx = 1.692 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7516 reflections
a = 13.347 (3) Åθ = 3.1–27.5°
b = 14.187 (3) ŵ = 2.36 mm1
c = 14.408 (3) ÅT = 293 K
V = 2728.2 (9) Å3Prism, yellow
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3131 independent reflections
Radiation source: fine-focus sealed tube2455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ scanh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.618, Tmax = 0.624l = 1818
26550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0447P)2 + 4.3147P]
where P = (Fo2 + 2Fc2)/3
3131 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C8H18N2)[CuCl4]V = 2728.2 (9) Å3
Mr = 347.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.347 (3) ŵ = 2.36 mm1
b = 14.187 (3) ÅT = 293 K
c = 14.408 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3131 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2455 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.624Rint = 0.059
26550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.12Δρmax = 0.60 e Å3
3131 reflectionsΔρmin = 0.46 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.0533 (2)0.2734 (2)0.3412 (2)0.0377 (7)
N10.1522 (3)0.1255 (2)0.3722 (2)0.0435 (8)
H10.18830.07240.38400.052*
C40.0924 (3)0.1493 (3)0.4561 (3)0.0478 (10)
H4A0.13540.15080.51030.057*
H4B0.04110.10200.46600.057*
C70.2224 (3)0.2034 (3)0.3505 (3)0.0471 (10)
H7A0.26770.18440.30130.057*
H7B0.26190.21890.40490.057*
C30.0442 (3)0.2452 (3)0.4416 (2)0.0455 (10)
H3A0.02590.24260.45910.055*
H3B0.07710.29170.48040.055*
C80.1625 (3)0.2886 (3)0.3202 (3)0.0463 (10)
H8A0.18630.34420.35260.056*
H8B0.17130.29870.25410.056*
C90.0041 (4)0.3621 (3)0.3257 (4)0.0610 (13)
H9A0.02400.41160.36290.091*
H9B0.07290.35260.34290.091*
H9C0.00050.37930.26130.091*
C50.0852 (4)0.1073 (3)0.2931 (3)0.0571 (12)
H5A0.04770.04960.30340.069*
H5B0.12410.10010.23670.069*
C60.0129 (3)0.1911 (3)0.2836 (3)0.0511 (11)
H6A0.05090.17200.31150.061*
C100.0061 (5)0.2090 (5)0.1848 (4)0.0870 (18)
H10D0.03100.15260.15610.130*
H10A0.05520.22760.15510.130*
H10B0.05470.25840.17860.130*
Cu10.22240 (4)0.07018 (4)0.54958 (3)0.04302 (17)
Cl20.23258 (8)0.22010 (7)0.59863 (7)0.0472 (3)
Cl30.12745 (8)0.09541 (8)0.42108 (7)0.0464 (3)
Cl10.33647 (9)0.02455 (9)0.48415 (9)0.0607 (3)
Cl40.18698 (12)0.00003 (10)0.68313 (9)0.0759 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0365 (16)0.0442 (18)0.0324 (16)0.0054 (14)0.0005 (13)0.0043 (14)
N10.0467 (19)0.0416 (18)0.0421 (19)0.0007 (15)0.0007 (16)0.0007 (15)
C40.051 (2)0.055 (3)0.037 (2)0.002 (2)0.0083 (19)0.0096 (19)
C70.037 (2)0.055 (2)0.049 (2)0.0055 (19)0.0082 (18)0.004 (2)
C30.055 (2)0.054 (2)0.0273 (19)0.003 (2)0.0094 (18)0.0013 (17)
C80.039 (2)0.052 (2)0.048 (2)0.0090 (19)0.0066 (19)0.007 (2)
C90.062 (3)0.054 (3)0.067 (3)0.010 (2)0.002 (2)0.013 (2)
C50.070 (3)0.053 (3)0.048 (3)0.003 (2)0.010 (2)0.011 (2)
C60.043 (2)0.071 (3)0.040 (2)0.013 (2)0.0079 (19)0.007 (2)
C100.086 (4)0.106 (5)0.069 (4)0.007 (4)0.016 (3)0.011 (3)
Cu10.0504 (3)0.0431 (3)0.0355 (3)0.0047 (2)0.0013 (2)0.0021 (2)
Cl20.0558 (6)0.0447 (6)0.0411 (5)0.0091 (5)0.0000 (5)0.0026 (4)
Cl30.0483 (6)0.0482 (6)0.0428 (5)0.0009 (5)0.0049 (4)0.0037 (4)
Cl10.0493 (6)0.0646 (8)0.0682 (8)0.0106 (5)0.0021 (6)0.0065 (6)
Cl40.1097 (11)0.0628 (8)0.0550 (8)0.0211 (8)0.0109 (7)0.0202 (6)
Geometric parameters (Å, º) top
N2—C91.491 (5)C8—H8B0.9700
N2—C81.504 (5)C9—H9A0.9600
N2—C31.505 (5)C9—H9B0.9600
N2—C61.530 (5)C9—H9C0.9600
N1—C51.472 (5)C5—C61.538 (7)
N1—C71.483 (5)C5—H5A0.9700
N1—C41.486 (5)C5—H5B0.9700
N1—H10.9100C6—C101.469 (6)
C4—C31.520 (6)C6—H6A0.9800
C4—H4A0.9700C10—H10D0.9600
C4—H4B0.9700C10—H10A0.9600
C7—C81.513 (6)C10—H10B0.9600
C7—H7A0.9700Cu1—Cl42.2172 (13)
C7—H7B0.9700Cu1—Cl12.2390 (13)
C3—H3A0.9700Cu1—Cl22.2455 (12)
C3—H3B0.9700Cu1—Cl32.2719 (12)
C8—H8A0.9700
C9—N2—C8110.3 (3)N2—C8—H8B109.7
C9—N2—C3109.1 (3)C7—C8—H8B109.7
C8—N2—C3108.0 (3)H8A—C8—H8B108.2
C9—N2—C6112.5 (3)N2—C9—H9A109.5
C8—N2—C6110.0 (3)N2—C9—H9B109.5
C3—N2—C6106.9 (3)H9A—C9—H9B109.5
C5—N1—C7110.5 (3)N2—C9—H9C109.5
C5—N1—C4110.1 (3)H9A—C9—H9C109.5
C7—N1—C4109.9 (3)H9B—C9—H9C109.5
C5—N1—H1108.7N1—C5—C6108.3 (3)
C7—N1—H1108.7N1—C5—H5A110.0
C4—N1—H1108.7C6—C5—H5A110.0
N1—C4—C3108.6 (3)N1—C5—H5B110.0
N1—C4—H4A110.0C6—C5—H5B110.0
C3—C4—H4A110.0H5A—C5—H5B108.4
N1—C4—H4B110.0C10—C6—N2117.0 (4)
C3—C4—H4B110.0C10—C6—C5109.1 (4)
H4A—C4—H4B108.3N2—C6—C5108.7 (3)
N1—C7—C8108.8 (3)C10—C6—H6A107.2
N1—C7—H7A109.9N2—C6—H6A107.2
C8—C7—H7A109.9C5—C6—H6A107.2
N1—C7—H7B109.9C6—C10—H10D109.5
C8—C7—H7B109.9C6—C10—H10A109.5
H7A—C7—H7B108.3H10D—C10—H10A109.5
N2—C3—C4109.6 (3)C6—C10—H10B109.5
N2—C3—H3A109.8H10D—C10—H10B109.5
C4—C3—H3A109.8H10A—C10—H10B109.5
N2—C3—H3B109.8Cl4—Cu1—Cl1103.94 (6)
C4—C3—H3B109.8Cl4—Cu1—Cl299.49 (5)
H3A—C3—H3B108.2Cl1—Cu1—Cl2131.30 (5)
N2—C8—C7109.8 (3)Cl4—Cu1—Cl3131.22 (6)
N2—C8—H8A109.7Cl1—Cu1—Cl397.52 (5)
C7—C8—H8A109.7Cl2—Cu1—Cl398.11 (4)
C5—N1—C4—C369.2 (4)N1—C7—C8—N211.9 (5)
C7—N1—C4—C352.8 (4)C7—N1—C5—C669.6 (5)
C5—N1—C7—C854.3 (5)C4—N1—C5—C652.0 (5)
C4—N1—C7—C867.5 (4)C9—N2—C6—C1047.8 (6)
C9—N2—C3—C4173.6 (4)C8—N2—C6—C1075.6 (5)
C8—N2—C3—C466.5 (4)C3—N2—C6—C10167.4 (4)
C6—N2—C3—C451.8 (4)C9—N2—C6—C5171.9 (4)
N1—C4—C3—N212.8 (5)C8—N2—C6—C548.6 (4)
C9—N2—C8—C7171.1 (4)C3—N2—C6—C568.5 (4)
C3—N2—C8—C751.9 (4)N1—C5—C6—C10143.7 (4)
C6—N2—C8—C764.3 (4)N1—C5—C6—N215.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.912.543.271 (4)138
N1—H1···Cl30.912.573.229 (4)130

Experimental details

Crystal data
Chemical formula(C8H18N2)[CuCl4]
Mr347.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.347 (3), 14.187 (3), 14.408 (3)
V3)2728.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.618, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
26550, 3131, 2455
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.12
No. of reflections3131
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.912.543.271 (4)138
N1—H1···Cl30.912.573.229 (4)130
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase an X-ray diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCorzo-Suárez, R., García-Granda, S., Díaz, I., Fernández-Herrero, V. & Martínez, J. L. (1997). Acta Cryst. C53, 1786–1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. (2000). J. Mol. Struct. 552, 159–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. R. & Jin, Z. M. (2002). Acta Cryst. C58, o600–o601.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds