organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-aminium chloride–thio­urea (1/1)

aUniversity of Gujrat, Department of Chemistry, Hafiz Hayat Campus, Gujrat, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title compound, C11H14N3O+·Cl·CH4N2S, the components are connected into a two-dimensional polymeric structure parallel to (001) via N—H⋯Cl, N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds. The dihedral angle between the phenyl and 2,3-dihydro-1H-pyrazole rings is 44.96 (7)°.

Related literature

For the structure of 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-aminium 2-hy­droxy­benzoate, see: Chitradevi et al. (2009[Chitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041-o3042.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N3O+·Cl·CH4N2S

  • Mr = 315.82

  • Monoclinic, P 21 /c

  • a = 9.9733 (11) Å

  • b = 8.2572 (8) Å

  • c = 18.859 (2) Å

  • β = 90.851 (4)°

  • V = 1552.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.950

  • 14413 measured reflections

  • 3876 independent reflections

  • 2948 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.02

  • 3876 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.92 (2) 2.28 (2) 3.1619 (17) 159.9 (19)
N3—H3B⋯O1ii 0.90 (2) 1.87 (2) 2.764 (2) 174 (2)
N3—H3C⋯Cl1iii 0.952 (19) 2.08 (2) 3.0316 (16) 180 (2)
N4—H4A⋯Cl1 0.86 2.41 3.2404 (17) 163
N4—H4B⋯O1iv 0.86 2.12 2.970 (2) 170
N5—H5A⋯Cl1 0.86 2.74 3.4956 (19) 148
N5—H5A⋯S1v 0.86 2.87 3.3768 (17) 120
N5—H5B⋯Cl1vi 0.86 2.56 3.4091 (18) 171
C10—H10B⋯S1vi 0.96 2.85 3.505 (2) 126
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) x+1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-aminium 2-hydroxybenzoate (Chitradevi et al., 2009) has been published which is related to the title compound (Fig. 1).

The asymmetric unit of title compound consists of three components: 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium cation, chloride ion and thiourea molecule. In cation the phenyl ring A (C1—C6) and 2,3-dihydro-1H-pyrazole ring B (N1/N2/C7/C8/C9) are planar with r. m. s. deviations of 0.005 and 0.020 Å. The dihedral angle between A/B is 44.96 (7)°. The attached atoms O1, N3, C10 and C11 are at a distance of -0.122 (3), 0.005 (3), 0.034 (3) and 0.513 (3) Å respectively, from the mean plane of B. The thiourea molecule (S1/C12/N4/N5) is planar with r.m.s. deviations of 0.003 Å. There exist intermolecular hydrogen bonds of N–H···Cl, N–H···O, N–H···S and C–H···S types (Table 1, Fig. 2). The crystal components are connected by hydrogen bonds into infinite two dimensional polymeric network parallel to (0 0 1)

Related literature top

For the structure of 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-aminium 2-hydroxybenzoate, see: Chitradevi et al. (2009).

Experimental top

4-Aminophenazone (0.203 g, 1.0 mmol) and thiourea (0.076 g, 1.0 mmol) were dissolved in ethanol (15 ml) and the mixture was acidified by 1 N HCl. The mixture was refluxed for one hour and solvent was evaporated on rotary evaporator to almost dryness. The crude product was recrystallized from ethanol yielding light yellow needles of the title compound.

Refinement top

The coordinates of of NH3 group H atoms were refined. Other H atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.5 for CH3 and NH3 and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) showing hydrogen-bond interactions.
1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-aminium chloride– thiourea (1/1) top
Crystal data top
C11H14N3O+·Cl·CH4N2SF(000) = 664
Mr = 315.82Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2948 reflections
a = 9.9733 (11) Åθ = 2.0–28.4°
b = 8.2572 (8) ŵ = 0.38 mm1
c = 18.859 (2) ÅT = 296 K
β = 90.851 (4)°Needle, light yellow
V = 1552.9 (3) Å30.30 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3876 independent reflections
Radiation source: fine-focus sealed tube2948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.50 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 106
Tmin = 0.935, Tmax = 0.950l = 2425
14413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4062P]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H14N3O+·Cl·CH4N2SV = 1552.9 (3) Å3
Mr = 315.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9733 (11) ŵ = 0.38 mm1
b = 8.2572 (8) ÅT = 296 K
c = 18.859 (2) Å0.30 × 0.15 × 0.14 mm
β = 90.851 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2948 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.950Rint = 0.032
14413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
3876 reflectionsΔρmin = 0.30 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02683 (12)0.52568 (13)0.17891 (7)0.0429 (4)
N10.15623 (14)0.67708 (15)0.10210 (8)0.0380 (4)
N20.15254 (14)0.83360 (15)0.07471 (8)0.0395 (5)
N30.10897 (15)0.84880 (18)0.20387 (9)0.0369 (5)
C10.22930 (16)0.55157 (19)0.06724 (9)0.0365 (5)
C20.2008 (2)0.5159 (2)0.00289 (11)0.0539 (7)
C30.2738 (2)0.3964 (3)0.03623 (12)0.0631 (8)
C40.3709 (2)0.3132 (2)0.00038 (13)0.0568 (7)
C50.3968 (2)0.3477 (3)0.07011 (13)0.0587 (7)
C60.3260 (2)0.4689 (2)0.10411 (11)0.0488 (6)
C70.05681 (16)0.65825 (18)0.15067 (9)0.0335 (5)
C80.00154 (15)0.81326 (18)0.15630 (9)0.0328 (4)
C90.05869 (16)0.91713 (19)0.11086 (9)0.0360 (5)
C100.0318 (2)1.0926 (2)0.09755 (12)0.0506 (6)
C110.2742 (2)0.9003 (2)0.04478 (12)0.0528 (7)
S10.70196 (5)0.59619 (6)0.27908 (3)0.0490 (2)
N40.76836 (16)0.35228 (19)0.19593 (9)0.0531 (6)
N50.57194 (16)0.3262 (2)0.25376 (10)0.0579 (6)
C120.67972 (17)0.4139 (2)0.24001 (10)0.0398 (5)
Cl10.64868 (5)0.01267 (5)0.13661 (3)0.0476 (2)
H20.133490.571460.027370.0647*
H30.256770.372590.083710.0758*
H3A0.148 (2)0.757 (3)0.2222 (10)0.0554*
H3B0.084 (2)0.913 (3)0.2403 (12)0.0554*
H3C0.185 (2)0.900 (2)0.1825 (11)0.0554*
H40.419510.232780.022250.0681*
H50.462180.289570.094890.0704*
H60.344320.493420.151400.0586*
H10A0.006471.107910.048700.0759*
H10B0.111231.154170.108100.0759*
H10C0.039661.128350.127300.0759*
H11A0.340120.915280.081780.0791*
H11B0.254371.002660.022880.0791*
H11C0.308260.826950.009900.0791*
H4A0.754870.258460.177350.0637*
H4B0.839420.406080.185890.0637*
H5A0.561470.232830.234290.0695*
H5B0.512430.362760.282170.0695*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (7)0.0331 (6)0.0512 (7)0.0023 (5)0.0121 (6)0.0107 (5)
N10.0424 (8)0.0269 (7)0.0450 (8)0.0047 (5)0.0125 (7)0.0051 (6)
N20.0432 (8)0.0291 (7)0.0466 (9)0.0016 (6)0.0112 (7)0.0070 (6)
N30.0362 (8)0.0326 (7)0.0421 (9)0.0020 (6)0.0066 (6)0.0039 (6)
C10.0348 (8)0.0302 (7)0.0449 (10)0.0017 (6)0.0116 (7)0.0002 (7)
C20.0556 (12)0.0522 (11)0.0538 (12)0.0118 (9)0.0051 (10)0.0050 (9)
C30.0764 (15)0.0585 (13)0.0547 (13)0.0047 (11)0.0069 (11)0.0174 (10)
C40.0596 (12)0.0352 (9)0.0763 (15)0.0044 (9)0.0263 (11)0.0066 (9)
C50.0512 (12)0.0495 (11)0.0755 (15)0.0192 (9)0.0085 (11)0.0085 (10)
C60.0506 (11)0.0476 (10)0.0483 (11)0.0100 (8)0.0030 (9)0.0026 (8)
C70.0335 (8)0.0326 (8)0.0343 (8)0.0014 (6)0.0021 (7)0.0020 (6)
C80.0318 (8)0.0305 (7)0.0362 (8)0.0016 (6)0.0025 (7)0.0008 (6)
C90.0373 (9)0.0298 (8)0.0410 (9)0.0020 (6)0.0008 (7)0.0006 (7)
C100.0546 (11)0.0319 (9)0.0655 (13)0.0052 (8)0.0041 (10)0.0057 (8)
C110.0569 (12)0.0411 (10)0.0610 (13)0.0050 (8)0.0257 (10)0.0052 (9)
S10.0444 (3)0.0403 (3)0.0627 (3)0.0045 (2)0.0134 (2)0.0056 (2)
N40.0495 (9)0.0461 (9)0.0641 (11)0.0048 (7)0.0135 (8)0.0113 (8)
N50.0479 (9)0.0522 (10)0.0740 (12)0.0143 (8)0.0133 (9)0.0110 (9)
C120.0366 (9)0.0402 (9)0.0426 (10)0.0004 (7)0.0018 (7)0.0038 (7)
Cl10.0445 (3)0.0443 (3)0.0542 (3)0.0060 (2)0.0050 (2)0.0028 (2)
Geometric parameters (Å, º) top
S1—C121.6891 (18)C2—C31.383 (3)
O1—C71.2554 (19)C3—C41.366 (3)
N1—C11.432 (2)C4—C51.366 (3)
N1—C71.369 (2)C5—C61.387 (3)
N1—N21.3921 (18)C7—C81.411 (2)
N2—C91.355 (2)C8—C91.359 (2)
N2—C111.454 (2)C9—C101.494 (2)
N3—C81.438 (2)C2—H20.9300
N3—H3B0.90 (2)C3—H30.9300
N3—H3A0.92 (2)C4—H40.9300
N3—H3C0.952 (19)C5—H50.9300
N4—C121.324 (2)C6—H60.9300
N5—C121.325 (2)C10—H10A0.9600
N4—H4A0.8600C10—H10B0.9600
N4—H4B0.8600C10—H10C0.9600
N5—H5B0.8600C11—H11A0.9600
N5—H5A0.8600C11—H11B0.9600
C1—C21.380 (3)C11—H11C0.9600
C1—C61.364 (3)
N2—N1—C1120.81 (14)C7—C8—C9109.79 (14)
N2—N1—C7109.78 (12)N3—C8—C9127.24 (14)
C1—N1—C7127.13 (13)N2—C9—C8108.13 (14)
N1—N2—C9107.49 (13)C8—C9—C10129.66 (16)
N1—N2—C11118.56 (13)N2—C9—C10122.19 (15)
C9—N2—C11126.10 (13)C1—C2—H2120.00
H3B—N3—H3C105.7 (18)C3—C2—H2120.00
C8—N3—H3C115.0 (13)C2—C3—H3120.00
C8—N3—H3A112.9 (14)C4—C3—H3120.00
C8—N3—H3B113.3 (13)C5—C4—H4120.00
H3A—N3—H3B108.2 (19)C3—C4—H4120.00
H3A—N3—H3C100.7 (17)C4—C5—H5120.00
H4A—N4—H4B120.00C6—C5—H5120.00
C12—N4—H4A120.00C5—C6—H6120.00
C12—N4—H4B120.00C1—C6—H6120.00
H5A—N5—H5B120.00H10B—C10—H10C109.00
C12—N5—H5A120.00C9—C10—H10C109.00
C12—N5—H5B120.00C9—C10—H10A109.00
N1—C1—C6119.27 (16)C9—C10—H10B109.00
C2—C1—C6121.05 (16)H10A—C10—H10B110.00
N1—C1—C2119.68 (15)H10A—C10—H10C109.00
C1—C2—C3119.05 (18)N2—C11—H11B109.00
C2—C3—C4120.2 (2)N2—C11—H11A109.00
C3—C4—C5120.3 (2)H11A—C11—H11C110.00
C4—C5—C6120.3 (2)N2—C11—H11C109.00
C1—C6—C5119.10 (19)H11A—C11—H11B110.00
N1—C7—C8104.54 (13)H11B—C11—H11C109.00
O1—C7—C8131.16 (15)N4—C12—N5117.65 (16)
O1—C7—N1124.22 (14)S1—C12—N4122.12 (13)
N3—C8—C7122.97 (14)S1—C12—N5120.22 (14)
C1—N1—N2—C9169.48 (14)N1—C1—C2—C3178.85 (17)
C1—N1—N2—C1139.5 (2)C6—C1—C2—C31.3 (3)
C7—N1—N2—C95.48 (18)C2—C1—C6—C50.3 (3)
C7—N1—N2—C11156.51 (16)N1—C1—C6—C5179.83 (17)
N2—N1—C1—C256.2 (2)C1—C2—C3—C41.2 (3)
C7—N1—C1—C2104.8 (2)C2—C3—C4—C50.2 (3)
N2—N1—C1—C6123.92 (17)C3—C4—C5—C60.9 (3)
C7—N1—C1—C675.1 (2)C4—C5—C6—C10.8 (3)
N2—N1—C7—C84.53 (18)O1—C7—C8—N35.1 (3)
N2—N1—C7—O1172.53 (15)O1—C7—C8—C9174.75 (18)
C1—N1—C7—O19.8 (3)N1—C7—C8—N3178.19 (15)
C1—N1—C7—C8167.26 (15)N1—C7—C8—C92.02 (19)
N1—N2—C9—C10177.29 (16)N3—C8—C9—C100.0 (3)
N1—N2—C9—C84.06 (18)C7—C8—C9—N21.30 (19)
C11—N2—C9—C8152.29 (17)C7—C8—C9—C10179.82 (18)
C11—N2—C9—C1029.1 (3)N3—C8—C9—N2178.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.92 (2)2.28 (2)3.1619 (17)159.9 (19)
N3—H3B···O1ii0.90 (2)1.87 (2)2.764 (2)174 (2)
N3—H3C···Cl1iii0.952 (19)2.08 (2)3.0316 (16)180 (2)
N4—H4A···Cl10.862.413.2404 (17)163
N4—H4B···O1iv0.862.122.970 (2)170
N5—H5A···Cl10.862.743.4956 (19)148
N5—H5A···S1v0.862.873.3768 (17)120
N5—H5B···Cl1vi0.862.563.4091 (18)171
C10—H10B···S1vi0.962.853.505 (2)126
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N3O+·Cl·CH4N2S
Mr315.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.9733 (11), 8.2572 (8), 18.859 (2)
β (°) 90.851 (4)
V3)1552.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.30 × 0.15 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
14413, 3876, 2948
Rint0.032
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.02
No. of reflections3876
No. of parameters192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.92 (2)2.28 (2)3.1619 (17)159.9 (19)
N3—H3B···O1ii0.90 (2)1.87 (2)2.764 (2)174 (2)
N3—H3C···Cl1iii0.952 (19)2.08 (2)3.0316 (16)180 (2)
N4—H4A···Cl10.862.413.2404 (17)163
N4—H4B···O1iv0.862.122.970 (2)170
N5—H5A···Cl10.862.743.4956 (19)148
N5—H5A···S1v0.862.873.3768 (17)120
N5—H5B···Cl1vi0.862.563.4091 (18)171
C10—H10B···S1vi0.962.853.505 (2)126
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, former Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitradevi, A., Athimoolam, S., Sridhar, B. & Bahadur, S. A. (2009). Acta Cryst. E65, o3041–o3042.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds