metal-organic compounds
Bis(acetonitrile-κN)dichlorido(η4-cycloocta-1,5-diene)ruthenium(II) acetonitrile monosolvate
aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa, and bDepartment of Chemistry, University of Ilorin, P M B 1515, Ilorin, Nigeria
*Correspondence e-mail: harrychiririwa@yahoo.com
In the title RuII complex, [RuCl2(C8H12)(C2H3N)2]·CH3CN, the metal ion is coordinated to the centers of each of the double bonds of the cyclooctadiene ligand, to two chloride ions (in cis positions) and to two N-atom donors (from MeCN molecules) that complete the coordination sphere for the neutral complex. The coordination about the RuII atom can thus be considered to be octahedral with a slightly trigonal distortion. There is also one acetonitrile solvent molecule per molecule which is outside the coordination sphere of the ruthenium atom.
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811027723/go2018sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027723/go2018Isup2.hkl
A suspension of [{RuCl2(COD)}x] (0.5 g) in acetonitrile (20 ml) was refluxed for 6 h. The orange solution was filtered hot and concentrated on a steam bath to half volume and cooled to 0° C overnight affording orange crystals suitable for X-ray diffraction studies.
Hydrogen atoms could be identified from the difference Fourier map but once these atoms were refined, their distances from the parent atoms were found to be significantly shorter than the ideal distances for C—H and N—H respectively. The H-atoms were therefore geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.55Å from H1 and the deepest hole is 0.22Å from H5.
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al.,2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. A perspective view of C12H18Cl2N2Ru.C2H3N (1) showing the atomic numbering scheme. |
[RuCl2(C8H12)(C2H3N)2]·C2H3N | F(000) = 816 |
Mr = 403.31 | Dx = 1.617 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9251 reflections |
a = 8.7033 (3) Å | θ = 2.7–28.3° |
b = 7.2434 (3) Å | µ = 1.26 mm−1 |
c = 26.4178 (10) Å | T = 100 K |
β = 95.903 (1)° | Block, orange |
V = 1656.59 (11) Å3 | 0.32 × 0.20 × 0.13 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 4125 independent reflections |
Radiation source: fine-focus sealed tube | 3806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: numerical (AXScale; Bruker, 2010) | h = −11→11 |
Tmin = 0.688, Tmax = 0.853 | k = −6→9 |
16175 measured reflections | l = −35→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0202P)2 + 1.4236P] where P = (Fo2 + 2Fc2)/3 |
4125 reflections | (Δ/σ)max = 0.001 |
184 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[RuCl2(C8H12)(C2H3N)2]·C2H3N | V = 1656.59 (11) Å3 |
Mr = 403.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7033 (3) Å | µ = 1.26 mm−1 |
b = 7.2434 (3) Å | T = 100 K |
c = 26.4178 (10) Å | 0.32 × 0.20 × 0.13 mm |
β = 95.903 (1)° |
Bruker APEXII CCD diffractometer | 4125 independent reflections |
Absorption correction: numerical (AXScale; Bruker, 2010) | 3806 reflections with I > 2σ(I) |
Tmin = 0.688, Tmax = 0.853 | Rint = 0.030 |
16175 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.67 e Å−3 |
4125 reflections | Δρmin = −0.61 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 5 Noted. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.732203 (14) | 0.145839 (19) | 0.109901 (5) | 0.01058 (5) | |
Cl1 | 0.77031 (5) | 0.38454 (6) | 0.048264 (16) | 0.01597 (9) | |
Cl2 | 1.00549 (5) | 0.09785 (6) | 0.134734 (15) | 0.01607 (9) | |
N1 | 0.76802 (16) | −0.0274 (2) | 0.05184 (5) | 0.0132 (3) | |
N2 | 0.75889 (16) | 0.3467 (2) | 0.16432 (6) | 0.0145 (3) | |
N3 | 0.2246 (2) | 0.6581 (3) | 0.20027 (7) | 0.0349 (5) | |
C1 | 0.49326 (19) | 0.1021 (3) | 0.07512 (7) | 0.0152 (3) | |
H1 | 0.5348 | 0.1237 | 0.0438 | 0.018* | |
C2 | 0.4309 (2) | −0.0888 (3) | 0.08525 (7) | 0.0180 (4) | |
H2A | 0.3862 | −0.1427 | 0.0526 | 0.022* | |
H2B | 0.3464 | −0.0762 | 0.1074 | 0.022* | |
C3 | 0.5526 (2) | −0.2234 (3) | 0.11060 (7) | 0.0180 (4) | |
H3A | 0.5015 | −0.3090 | 0.1328 | 0.022* | |
H3B | 0.5947 | −0.2980 | 0.0838 | 0.022* | |
C4 | 0.6854 (2) | −0.1285 (2) | 0.14209 (7) | 0.0157 (3) | |
H4 | 0.7877 | −0.1611 | 0.1361 | 0.019* | |
C5 | 0.6665 (2) | 0.0024 (3) | 0.17886 (6) | 0.0159 (3) | |
H5 | 0.7561 | 0.0577 | 0.1961 | 0.019* | |
C6 | 0.5090 (2) | 0.0627 (3) | 0.19318 (7) | 0.0183 (4) | |
H6A | 0.5192 | 0.0962 | 0.2297 | 0.022* | |
H6B | 0.4372 | −0.0433 | 0.1885 | 0.022* | |
C7 | 0.4375 (2) | 0.2278 (3) | 0.16207 (7) | 0.0181 (4) | |
H7A | 0.3237 | 0.2144 | 0.1583 | 0.022* | |
H7B | 0.4630 | 0.3429 | 0.1813 | 0.022* | |
C8 | 0.49209 (19) | 0.2461 (3) | 0.10961 (7) | 0.0153 (3) | |
H8 | 0.5277 | 0.3635 | 0.0998 | 0.018* | |
C9 | 0.8070 (2) | −0.1171 (3) | 0.02039 (6) | 0.0145 (3) | |
C10 | 0.8594 (2) | −0.2322 (3) | −0.01961 (7) | 0.0189 (4) | |
H10A | 0.9666 | −0.2698 | −0.0100 | 0.028* | |
H10B | 0.8531 | −0.1621 | −0.0515 | 0.028* | |
H10C | 0.7938 | −0.3421 | −0.0242 | 0.028* | |
C11 | 0.79305 (19) | 0.4484 (3) | 0.19626 (6) | 0.0150 (3) | |
C12 | 0.8397 (2) | 0.5747 (3) | 0.23806 (7) | 0.0211 (4) | |
H12A | 0.8546 | 0.5054 | 0.2700 | 0.032* | |
H12B | 0.7591 | 0.6680 | 0.2403 | 0.032* | |
H12C | 0.9366 | 0.6355 | 0.2319 | 0.032* | |
C13 | 0.1734 (2) | 0.6361 (3) | 0.15954 (8) | 0.0217 (4) | |
C14 | 0.1070 (3) | 0.6105 (3) | 0.10732 (8) | 0.0288 (5) | |
H14A | 0.0412 | 0.7163 | 0.0968 | 0.043* | |
H14B | 0.0451 | 0.4973 | 0.1048 | 0.043* | |
H14C | 0.1901 | 0.6006 | 0.0851 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01023 (7) | 0.00908 (8) | 0.01235 (7) | −0.00028 (5) | 0.00080 (5) | −0.00063 (5) |
Cl1 | 0.01604 (19) | 0.0128 (2) | 0.01920 (19) | −0.00040 (15) | 0.00236 (15) | 0.00325 (16) |
Cl2 | 0.01206 (18) | 0.0203 (2) | 0.01555 (18) | 0.00113 (16) | −0.00022 (14) | 0.00109 (16) |
N1 | 0.0121 (6) | 0.0121 (7) | 0.0151 (6) | −0.0007 (6) | 0.0004 (5) | 0.0006 (6) |
N2 | 0.0123 (6) | 0.0142 (8) | 0.0171 (7) | −0.0003 (6) | 0.0020 (5) | 0.0001 (6) |
N3 | 0.0387 (11) | 0.0370 (12) | 0.0282 (9) | 0.0033 (9) | −0.0009 (8) | 0.0035 (8) |
C1 | 0.0102 (7) | 0.0168 (9) | 0.0185 (8) | −0.0008 (7) | 0.0004 (6) | 0.0010 (7) |
C2 | 0.0173 (8) | 0.0149 (9) | 0.0219 (8) | −0.0046 (7) | 0.0021 (7) | −0.0027 (7) |
C3 | 0.0211 (9) | 0.0113 (9) | 0.0223 (8) | −0.0023 (7) | 0.0058 (7) | −0.0005 (7) |
C4 | 0.0176 (8) | 0.0112 (9) | 0.0189 (8) | −0.0008 (7) | 0.0049 (6) | 0.0039 (7) |
C5 | 0.0163 (8) | 0.0147 (9) | 0.0170 (8) | −0.0016 (7) | 0.0034 (6) | 0.0032 (7) |
C6 | 0.0181 (8) | 0.0191 (10) | 0.0186 (8) | −0.0017 (7) | 0.0056 (7) | −0.0023 (7) |
C7 | 0.0141 (8) | 0.0170 (9) | 0.0237 (9) | −0.0012 (7) | 0.0044 (7) | −0.0043 (7) |
C8 | 0.0101 (7) | 0.0124 (9) | 0.0233 (8) | −0.0008 (6) | 0.0011 (6) | −0.0007 (7) |
C9 | 0.0134 (7) | 0.0136 (9) | 0.0163 (8) | −0.0010 (7) | 0.0002 (6) | 0.0028 (7) |
C10 | 0.0226 (9) | 0.0182 (10) | 0.0168 (8) | 0.0030 (8) | 0.0059 (7) | −0.0013 (7) |
C11 | 0.0140 (7) | 0.0157 (9) | 0.0156 (8) | 0.0005 (7) | 0.0029 (6) | 0.0032 (7) |
C12 | 0.0258 (9) | 0.0201 (10) | 0.0172 (8) | −0.0038 (8) | 0.0018 (7) | −0.0045 (7) |
C13 | 0.0192 (9) | 0.0161 (10) | 0.0304 (10) | 0.0005 (7) | 0.0059 (7) | −0.0002 (8) |
C14 | 0.0274 (10) | 0.0304 (12) | 0.0281 (10) | −0.0060 (9) | 0.0001 (8) | −0.0094 (9) |
Ru1—N1 | 2.0303 (15) | C5—C6 | 1.523 (2) |
Ru1—N2 | 2.0418 (15) | C5—H5 | 0.9500 |
Ru1—C1 | 2.2082 (16) | C6—C7 | 1.545 (3) |
Ru1—C8 | 2.2116 (17) | C6—H6A | 0.9900 |
Ru1—C4 | 2.2154 (17) | C6—H6B | 0.9900 |
Ru1—C5 | 2.2225 (17) | C7—C8 | 1.517 (2) |
Ru1—Cl1 | 2.4212 (4) | C7—H7A | 0.9900 |
Ru1—Cl2 | 2.4265 (4) | C7—H7B | 0.9900 |
N1—C9 | 1.134 (2) | C8—H8 | 0.9500 |
N2—C11 | 1.136 (2) | C9—C10 | 1.455 (2) |
N3—C13 | 1.133 (3) | C10—H10A | 0.9800 |
C1—C8 | 1.385 (3) | C10—H10B | 0.9800 |
C1—C2 | 1.520 (3) | C10—H10C | 0.9800 |
C1—H1 | 0.9500 | C11—C12 | 1.459 (3) |
C2—C3 | 1.541 (3) | C12—H12A | 0.9800 |
C2—H2A | 0.9900 | C12—H12B | 0.9800 |
C2—H2B | 0.9900 | C12—H12C | 0.9800 |
C3—C4 | 1.517 (2) | C13—C14 | 1.452 (3) |
C3—H3A | 0.9900 | C14—H14A | 0.9800 |
C3—H3B | 0.9900 | C14—H14B | 0.9800 |
C4—C5 | 1.379 (3) | C14—H14C | 0.9800 |
C4—H4 | 0.9500 | ||
N1—Ru1—N2 | 163.15 (6) | C3—C4—Ru1 | 110.84 (12) |
N1—Ru1—C1 | 78.95 (6) | C5—C4—H4 | 118.0 |
N2—Ru1—C1 | 115.42 (6) | C3—C4—H4 | 118.0 |
N1—Ru1—C8 | 114.75 (6) | Ru1—C4—H4 | 87.0 |
N2—Ru1—C8 | 78.91 (6) | C4—C5—C6 | 123.22 (16) |
C1—Ru1—C8 | 36.53 (7) | C4—C5—Ru1 | 71.62 (10) |
N1—Ru1—C4 | 77.55 (6) | C6—C5—Ru1 | 112.56 (12) |
N2—Ru1—C4 | 112.38 (6) | C4—C5—H5 | 118.4 |
C1—Ru1—C4 | 80.14 (7) | C6—C5—H5 | 118.4 |
C8—Ru1—C4 | 94.86 (7) | Ru1—C5—H5 | 85.9 |
N1—Ru1—C5 | 113.76 (7) | C5—C6—C7 | 114.42 (15) |
N2—Ru1—C5 | 77.06 (6) | C5—C6—H6A | 108.7 |
C1—Ru1—C5 | 87.90 (7) | C7—C6—H6A | 108.7 |
C8—Ru1—C5 | 80.42 (7) | C5—C6—H6B | 108.7 |
C4—Ru1—C5 | 36.21 (7) | C7—C6—H6B | 108.7 |
N1—Ru1—Cl1 | 83.74 (4) | H6A—C6—H6B | 107.6 |
N2—Ru1—Cl1 | 87.20 (4) | C8—C7—C6 | 114.01 (15) |
C1—Ru1—Cl1 | 90.62 (5) | C8—C7—H7A | 108.8 |
C8—Ru1—Cl1 | 87.59 (5) | C6—C7—H7A | 108.8 |
C4—Ru1—Cl1 | 160.38 (5) | C8—C7—H7B | 108.8 |
C5—Ru1—Cl1 | 161.74 (5) | C6—C7—H7B | 108.8 |
N1—Ru1—Cl2 | 83.88 (4) | H7A—C7—H7B | 107.6 |
N2—Ru1—Cl2 | 82.78 (4) | C1—C8—C7 | 124.02 (17) |
C1—Ru1—Cl2 | 161.26 (5) | C1—C8—Ru1 | 71.60 (10) |
C8—Ru1—Cl2 | 161.37 (5) | C7—C8—Ru1 | 110.66 (11) |
C4—Ru1—Cl2 | 88.94 (5) | C1—C8—H8 | 118.0 |
C5—Ru1—Cl2 | 92.25 (5) | C7—C8—H8 | 118.0 |
Cl1—Ru1—Cl2 | 94.926 (15) | Ru1—C8—H8 | 87.7 |
C9—N1—Ru1 | 171.31 (14) | N1—C9—C10 | 179.11 (19) |
C11—N2—Ru1 | 170.70 (15) | C9—C10—H10A | 109.5 |
C8—C1—C2 | 122.84 (16) | C9—C10—H10B | 109.5 |
C8—C1—Ru1 | 71.87 (10) | H10A—C10—H10B | 109.5 |
C2—C1—Ru1 | 113.29 (12) | C9—C10—H10C | 109.5 |
C8—C1—H1 | 118.6 | H10A—C10—H10C | 109.5 |
C2—C1—H1 | 118.6 | H10B—C10—H10C | 109.5 |
Ru1—C1—H1 | 85.0 | N2—C11—C12 | 178.3 (2) |
C1—C2—C3 | 114.21 (15) | C11—C12—H12A | 109.5 |
C1—C2—H2A | 108.7 | C11—C12—H12B | 109.5 |
C3—C2—H2A | 108.7 | H12A—C12—H12B | 109.5 |
C1—C2—H2B | 108.7 | C11—C12—H12C | 109.5 |
C3—C2—H2B | 108.7 | H12A—C12—H12C | 109.5 |
H2A—C2—H2B | 107.6 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 113.72 (15) | N3—C13—C14 | 179.2 (2) |
C4—C3—H3A | 108.8 | C13—C14—H14A | 109.5 |
C2—C3—H3A | 108.8 | C13—C14—H14B | 109.5 |
C4—C3—H3B | 108.8 | H14A—C14—H14B | 109.5 |
C2—C3—H3B | 108.8 | C13—C14—H14C | 109.5 |
H3A—C3—H3B | 107.7 | H14A—C14—H14C | 109.5 |
C5—C4—C3 | 123.94 (16) | H14B—C14—H14C | 109.5 |
C5—C4—Ru1 | 72.17 (10) | ||
N1—Ru1—C1—C8 | −168.61 (12) | N1—Ru1—C5—C4 | −0.84 (12) |
N2—Ru1—C1—C8 | 2.09 (13) | N2—Ru1—C5—C4 | −167.20 (11) |
C4—Ru1—C1—C8 | 112.29 (12) | C1—Ru1—C5—C4 | 76.11 (11) |
C5—Ru1—C1—C8 | 76.69 (11) | C8—Ru1—C5—C4 | 112.09 (11) |
Cl1—Ru1—C1—C8 | −85.11 (10) | Cl1—Ru1—C5—C4 | 161.71 (12) |
Cl2—Ru1—C1—C8 | 167.48 (12) | Cl2—Ru1—C5—C4 | −85.14 (10) |
N1—Ru1—C1—C2 | 72.69 (13) | N1—Ru1—C5—C6 | −119.99 (13) |
N2—Ru1—C1—C2 | −116.61 (13) | N2—Ru1—C5—C6 | 73.65 (13) |
C8—Ru1—C1—C2 | −118.70 (18) | C1—Ru1—C5—C6 | −43.04 (13) |
C4—Ru1—C1—C2 | −6.41 (13) | C8—Ru1—C5—C6 | −7.06 (13) |
C5—Ru1—C1—C2 | −42.01 (13) | C4—Ru1—C5—C6 | −119.15 (18) |
Cl1—Ru1—C1—C2 | 156.19 (12) | Cl1—Ru1—C5—C6 | 42.6 (2) |
Cl2—Ru1—C1—C2 | 48.8 (2) | Cl2—Ru1—C5—C6 | 155.72 (12) |
C8—C1—C2—C3 | −91.4 (2) | C4—C5—C6—C7 | −90.1 (2) |
Ru1—C1—C2—C3 | −8.64 (19) | Ru1—C5—C6—C7 | −7.95 (19) |
C1—C2—C3—C4 | 26.6 (2) | C5—C6—C7—C8 | 26.4 (2) |
C2—C3—C4—C5 | 50.8 (2) | C2—C1—C8—C7 | 3.5 (3) |
C2—C3—C4—Ru1 | −31.22 (18) | Ru1—C1—C8—C7 | −102.95 (16) |
N1—Ru1—C4—C5 | 179.21 (11) | C2—C1—C8—Ru1 | 106.48 (16) |
N2—Ru1—C4—C5 | 13.50 (12) | C6—C7—C8—C1 | 49.7 (2) |
C1—Ru1—C4—C5 | −100.05 (11) | C6—C7—C8—Ru1 | −31.57 (18) |
C8—Ru1—C4—C5 | −66.49 (11) | N1—Ru1—C8—C1 | 12.33 (13) |
Cl1—Ru1—C4—C5 | −162.97 (11) | N2—Ru1—C8—C1 | −178.08 (12) |
Cl2—Ru1—C4—C5 | 95.25 (10) | C4—Ru1—C8—C1 | −66.19 (11) |
N1—Ru1—C4—C3 | −60.44 (12) | C5—Ru1—C8—C1 | −99.52 (12) |
N2—Ru1—C4—C3 | 133.85 (12) | Cl1—Ru1—C8—C1 | 94.30 (10) |
C1—Ru1—C4—C3 | 20.30 (12) | Cl2—Ru1—C8—C1 | −167.41 (12) |
C8—Ru1—C4—C3 | 53.86 (13) | N1—Ru1—C8—C7 | 132.64 (12) |
C5—Ru1—C4—C3 | 120.34 (17) | N2—Ru1—C8—C7 | −57.76 (13) |
Cl1—Ru1—C4—C3 | −42.6 (2) | C1—Ru1—C8—C7 | 120.32 (18) |
Cl2—Ru1—C4—C3 | −144.41 (12) | C4—Ru1—C8—C7 | 54.12 (13) |
C3—C4—C5—C6 | 1.9 (3) | C5—Ru1—C8—C7 | 20.80 (13) |
Ru1—C4—C5—C6 | 105.41 (17) | Cl1—Ru1—C8—C7 | −145.38 (12) |
C3—C4—C5—Ru1 | −103.53 (17) | Cl2—Ru1—C8—C7 | −47.1 (2) |
Experimental details
Crystal data | |
Chemical formula | [RuCl2(C8H12)(C2H3N)2]·C2H3N |
Mr | 403.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.7033 (3), 7.2434 (3), 26.4178 (10) |
β (°) | 95.903 (1) |
V (Å3) | 1656.59 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.32 × 0.20 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Numerical (AXScale; Bruker, 2010) |
Tmin, Tmax | 0.688, 0.853 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16175, 4125, 3806 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.054, 1.07 |
No. of reflections | 4125 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.61 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al.,2009), publCIF (Westrip, 2010).
Ru1—N1 | 2.0303 (15) | Ru1—C4 | 2.2154 (17) |
Ru1—N2 | 2.0418 (15) | Ru1—C5 | 2.2225 (17) |
Ru1—C1 | 2.2082 (16) | Ru1—Cl1 | 2.4212 (4) |
Ru1—C8 | 2.2116 (17) | Ru1—Cl2 | 2.4265 (4) |
Acknowledgements
We gratefully acknowledge the University of Johannesburg for funding this project and the University of Witwatersrand for award of a Research fellowship to SO. The authors also thank Dr E Singleton for fruitful discussions.
References
Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40, 183–188. CAS Google Scholar
Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The present ruthenium complex, Fig.1, has been synthesized earlier (Ashworth et al. 1987). The structure obtained by Ashworth et al. was a room temperature determination and with a water molecule as solvate. The current low temperature determination presents an acetonitrile molecule in the crystal lattice that is outside the coordination sphere of the ruthenium. To the best of our knowledge, there are no reports of other structures determined with organonitriles, obtained from the ruthenium [{RuCl2(COD)}x] polymer. Organonitriles have been used over many years in synthethic inorganic chemistry and an interest in the chemistry of metal-nitrile complexes has prompted several reviews.
The two acetonitrile ligands are not trans to each other, as the N(1)—Ru—N(2) angle is 163.15 (6)°. This is due to repulsion by the alkene bonds of the COD ligand. It would seem that one of the acetonitrile ligands is slightly bent. The N(1)—C(9)—C(10) bond angle is 179.11 (19)°, whereas the same angle for the other acetonitrile is 178.3 (2)°. This is due to packing forces.