metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(aceto­nitrile-κN)di­chlorido(η4-cyclo­octa-1,5-diene)ruthenium(II) aceto­nitrile monosolvate

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa, and bDepartment of Chemistry, University of Ilorin, P M B 1515, Ilorin, Nigeria
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 14 June 2011; accepted 11 July 2011; online 16 July 2011)

In the title RuII complex, [RuCl2(C8H12)(C2H3N)2]·CH3CN, the metal ion is coordinated to the centers of each of the double bonds of the cyclo­octa­diene ligand, to two chloride ions (in cis positions) and to two N-atom donors (from MeCN mol­ecules) that complete the coordination sphere for the neutral complex. The coordination about the RuII atom can thus be considered to be octa­hedral with a slightly trigonal distortion. There is also one acetonitrile solvent mol­ecule per mol­ecule which is outside the coordination sphere of the ruthenium atom.

Related literature

For the structure of the water solvate complex, see: Ashworth et al. (1987[Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40, 183-188.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C8H12)(C2H3N)2]·C2H3N

  • Mr = 403.31

  • Monoclinic, P 21 /c

  • a = 8.7033 (3) Å

  • b = 7.2434 (3) Å

  • c = 26.4178 (10) Å

  • β = 95.903 (1)°

  • V = 1656.59 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.32 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (AXScale; Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.853

  • 16175 measured reflections

  • 4125 independent reflections

  • 3806 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.07

  • 4125 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Ru1—N1 2.0303 (15)
Ru1—N2 2.0418 (15)
Ru1—C1 2.2082 (16)
Ru1—C8 2.2116 (17)
Ru1—C4 2.2154 (17)
Ru1—C5 2.2225 (17)
Ru1—Cl1 2.4212 (4)
Ru1—Cl2 2.4265 (4)

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The present ruthenium complex, Fig.1, has been synthesized earlier (Ashworth et al. 1987). The structure obtained by Ashworth et al. was a room temperature determination and with a water molecule as solvate. The current low temperature determination presents an acetonitrile molecule in the crystal lattice that is outside the coordination sphere of the ruthenium. To the best of our knowledge, there are no reports of other structures determined with organonitriles, obtained from the ruthenium [{RuCl2(COD)}x] polymer. Organonitriles have been used over many years in synthethic inorganic chemistry and an interest in the chemistry of metal-nitrile complexes has prompted several reviews.

The two acetonitrile ligands are not trans to each other, as the N(1)—Ru—N(2) angle is 163.15 (6)°. This is due to repulsion by the alkene bonds of the COD ligand. It would seem that one of the acetonitrile ligands is slightly bent. The N(1)—C(9)—C(10) bond angle is 179.11 (19)°, whereas the same angle for the other acetonitrile is 178.3 (2)°. This is due to packing forces.

Related literature top

For the structure of the water solvate complex, see: Ashworth et al. (1987).

Experimental top

A suspension of [{RuCl2(COD)}x] (0.5 g) in acetonitrile (20 ml) was refluxed for 6 h. The orange solution was filtered hot and concentrated on a steam bath to half volume and cooled to 0° C overnight affording orange crystals suitable for X-ray diffraction studies.

Refinement top

Hydrogen atoms could be identified from the difference Fourier map but once these atoms were refined, their distances from the parent atoms were found to be significantly shorter than the ideal distances for C—H and N—H respectively. The H-atoms were therefore geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.55Å from H1 and the deepest hole is 0.22Å from H5.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al.,2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of C12H18Cl2N2Ru.C2H3N (1) showing the atomic numbering scheme.
Bis(acetonitrile-κN)dichlorido(η4-cycloocta-1,5-diene)ruthenium(II) acetonitrile monosolvate top
Crystal data top
[RuCl2(C8H12)(C2H3N)2]·C2H3NF(000) = 816
Mr = 403.31Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9251 reflections
a = 8.7033 (3) Åθ = 2.7–28.3°
b = 7.2434 (3) ŵ = 1.26 mm1
c = 26.4178 (10) ÅT = 100 K
β = 95.903 (1)°Block, orange
V = 1656.59 (11) Å30.32 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4125 independent reflections
Radiation source: fine-focus sealed tube3806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: numerical
(AXScale; Bruker, 2010)
h = 1111
Tmin = 0.688, Tmax = 0.853k = 69
16175 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.4236P]
where P = (Fo2 + 2Fc2)/3
4125 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[RuCl2(C8H12)(C2H3N)2]·C2H3NV = 1656.59 (11) Å3
Mr = 403.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7033 (3) ŵ = 1.26 mm1
b = 7.2434 (3) ÅT = 100 K
c = 26.4178 (10) Å0.32 × 0.20 × 0.13 mm
β = 95.903 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4125 independent reflections
Absorption correction: numerical
(AXScale; Bruker, 2010)
3806 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.853Rint = 0.030
16175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.07Δρmax = 0.67 e Å3
4125 reflectionsΔρmin = 0.61 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 5 Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.732203 (14)0.145839 (19)0.109901 (5)0.01058 (5)
Cl10.77031 (5)0.38454 (6)0.048264 (16)0.01597 (9)
Cl21.00549 (5)0.09785 (6)0.134734 (15)0.01607 (9)
N10.76802 (16)0.0274 (2)0.05184 (5)0.0132 (3)
N20.75889 (16)0.3467 (2)0.16432 (6)0.0145 (3)
N30.2246 (2)0.6581 (3)0.20027 (7)0.0349 (5)
C10.49326 (19)0.1021 (3)0.07512 (7)0.0152 (3)
H10.53480.12370.04380.018*
C20.4309 (2)0.0888 (3)0.08525 (7)0.0180 (4)
H2A0.38620.14270.05260.022*
H2B0.34640.07620.10740.022*
C30.5526 (2)0.2234 (3)0.11060 (7)0.0180 (4)
H3A0.50150.30900.13280.022*
H3B0.59470.29800.08380.022*
C40.6854 (2)0.1285 (2)0.14209 (7)0.0157 (3)
H40.78770.16110.13610.019*
C50.6665 (2)0.0024 (3)0.17886 (6)0.0159 (3)
H50.75610.05770.19610.019*
C60.5090 (2)0.0627 (3)0.19318 (7)0.0183 (4)
H6A0.51920.09620.22970.022*
H6B0.43720.04330.18850.022*
C70.4375 (2)0.2278 (3)0.16207 (7)0.0181 (4)
H7A0.32370.21440.15830.022*
H7B0.46300.34290.18130.022*
C80.49209 (19)0.2461 (3)0.10961 (7)0.0153 (3)
H80.52770.36350.09980.018*
C90.8070 (2)0.1171 (3)0.02039 (6)0.0145 (3)
C100.8594 (2)0.2322 (3)0.01961 (7)0.0189 (4)
H10A0.96660.26980.01000.028*
H10B0.85310.16210.05150.028*
H10C0.79380.34210.02420.028*
C110.79305 (19)0.4484 (3)0.19626 (6)0.0150 (3)
C120.8397 (2)0.5747 (3)0.23806 (7)0.0211 (4)
H12A0.85460.50540.27000.032*
H12B0.75910.66800.24030.032*
H12C0.93660.63550.23190.032*
C130.1734 (2)0.6361 (3)0.15954 (8)0.0217 (4)
C140.1070 (3)0.6105 (3)0.10732 (8)0.0288 (5)
H14A0.04120.71630.09680.043*
H14B0.04510.49730.10480.043*
H14C0.19010.60060.08510.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01023 (7)0.00908 (8)0.01235 (7)0.00028 (5)0.00080 (5)0.00063 (5)
Cl10.01604 (19)0.0128 (2)0.01920 (19)0.00040 (15)0.00236 (15)0.00325 (16)
Cl20.01206 (18)0.0203 (2)0.01555 (18)0.00113 (16)0.00022 (14)0.00109 (16)
N10.0121 (6)0.0121 (7)0.0151 (6)0.0007 (6)0.0004 (5)0.0006 (6)
N20.0123 (6)0.0142 (8)0.0171 (7)0.0003 (6)0.0020 (5)0.0001 (6)
N30.0387 (11)0.0370 (12)0.0282 (9)0.0033 (9)0.0009 (8)0.0035 (8)
C10.0102 (7)0.0168 (9)0.0185 (8)0.0008 (7)0.0004 (6)0.0010 (7)
C20.0173 (8)0.0149 (9)0.0219 (8)0.0046 (7)0.0021 (7)0.0027 (7)
C30.0211 (9)0.0113 (9)0.0223 (8)0.0023 (7)0.0058 (7)0.0005 (7)
C40.0176 (8)0.0112 (9)0.0189 (8)0.0008 (7)0.0049 (6)0.0039 (7)
C50.0163 (8)0.0147 (9)0.0170 (8)0.0016 (7)0.0034 (6)0.0032 (7)
C60.0181 (8)0.0191 (10)0.0186 (8)0.0017 (7)0.0056 (7)0.0023 (7)
C70.0141 (8)0.0170 (9)0.0237 (9)0.0012 (7)0.0044 (7)0.0043 (7)
C80.0101 (7)0.0124 (9)0.0233 (8)0.0008 (6)0.0011 (6)0.0007 (7)
C90.0134 (7)0.0136 (9)0.0163 (8)0.0010 (7)0.0002 (6)0.0028 (7)
C100.0226 (9)0.0182 (10)0.0168 (8)0.0030 (8)0.0059 (7)0.0013 (7)
C110.0140 (7)0.0157 (9)0.0156 (8)0.0005 (7)0.0029 (6)0.0032 (7)
C120.0258 (9)0.0201 (10)0.0172 (8)0.0038 (8)0.0018 (7)0.0045 (7)
C130.0192 (9)0.0161 (10)0.0304 (10)0.0005 (7)0.0059 (7)0.0002 (8)
C140.0274 (10)0.0304 (12)0.0281 (10)0.0060 (9)0.0001 (8)0.0094 (9)
Geometric parameters (Å, º) top
Ru1—N12.0303 (15)C5—C61.523 (2)
Ru1—N22.0418 (15)C5—H50.9500
Ru1—C12.2082 (16)C6—C71.545 (3)
Ru1—C82.2116 (17)C6—H6A0.9900
Ru1—C42.2154 (17)C6—H6B0.9900
Ru1—C52.2225 (17)C7—C81.517 (2)
Ru1—Cl12.4212 (4)C7—H7A0.9900
Ru1—Cl22.4265 (4)C7—H7B0.9900
N1—C91.134 (2)C8—H80.9500
N2—C111.136 (2)C9—C101.455 (2)
N3—C131.133 (3)C10—H10A0.9800
C1—C81.385 (3)C10—H10B0.9800
C1—C21.520 (3)C10—H10C0.9800
C1—H10.9500C11—C121.459 (3)
C2—C31.541 (3)C12—H12A0.9800
C2—H2A0.9900C12—H12B0.9800
C2—H2B0.9900C12—H12C0.9800
C3—C41.517 (2)C13—C141.452 (3)
C3—H3A0.9900C14—H14A0.9800
C3—H3B0.9900C14—H14B0.9800
C4—C51.379 (3)C14—H14C0.9800
C4—H40.9500
N1—Ru1—N2163.15 (6)C3—C4—Ru1110.84 (12)
N1—Ru1—C178.95 (6)C5—C4—H4118.0
N2—Ru1—C1115.42 (6)C3—C4—H4118.0
N1—Ru1—C8114.75 (6)Ru1—C4—H487.0
N2—Ru1—C878.91 (6)C4—C5—C6123.22 (16)
C1—Ru1—C836.53 (7)C4—C5—Ru171.62 (10)
N1—Ru1—C477.55 (6)C6—C5—Ru1112.56 (12)
N2—Ru1—C4112.38 (6)C4—C5—H5118.4
C1—Ru1—C480.14 (7)C6—C5—H5118.4
C8—Ru1—C494.86 (7)Ru1—C5—H585.9
N1—Ru1—C5113.76 (7)C5—C6—C7114.42 (15)
N2—Ru1—C577.06 (6)C5—C6—H6A108.7
C1—Ru1—C587.90 (7)C7—C6—H6A108.7
C8—Ru1—C580.42 (7)C5—C6—H6B108.7
C4—Ru1—C536.21 (7)C7—C6—H6B108.7
N1—Ru1—Cl183.74 (4)H6A—C6—H6B107.6
N2—Ru1—Cl187.20 (4)C8—C7—C6114.01 (15)
C1—Ru1—Cl190.62 (5)C8—C7—H7A108.8
C8—Ru1—Cl187.59 (5)C6—C7—H7A108.8
C4—Ru1—Cl1160.38 (5)C8—C7—H7B108.8
C5—Ru1—Cl1161.74 (5)C6—C7—H7B108.8
N1—Ru1—Cl283.88 (4)H7A—C7—H7B107.6
N2—Ru1—Cl282.78 (4)C1—C8—C7124.02 (17)
C1—Ru1—Cl2161.26 (5)C1—C8—Ru171.60 (10)
C8—Ru1—Cl2161.37 (5)C7—C8—Ru1110.66 (11)
C4—Ru1—Cl288.94 (5)C1—C8—H8118.0
C5—Ru1—Cl292.25 (5)C7—C8—H8118.0
Cl1—Ru1—Cl294.926 (15)Ru1—C8—H887.7
C9—N1—Ru1171.31 (14)N1—C9—C10179.11 (19)
C11—N2—Ru1170.70 (15)C9—C10—H10A109.5
C8—C1—C2122.84 (16)C9—C10—H10B109.5
C8—C1—Ru171.87 (10)H10A—C10—H10B109.5
C2—C1—Ru1113.29 (12)C9—C10—H10C109.5
C8—C1—H1118.6H10A—C10—H10C109.5
C2—C1—H1118.6H10B—C10—H10C109.5
Ru1—C1—H185.0N2—C11—C12178.3 (2)
C1—C2—C3114.21 (15)C11—C12—H12A109.5
C1—C2—H2A108.7C11—C12—H12B109.5
C3—C2—H2A108.7H12A—C12—H12B109.5
C1—C2—H2B108.7C11—C12—H12C109.5
C3—C2—H2B108.7H12A—C12—H12C109.5
H2A—C2—H2B107.6H12B—C12—H12C109.5
C4—C3—C2113.72 (15)N3—C13—C14179.2 (2)
C4—C3—H3A108.8C13—C14—H14A109.5
C2—C3—H3A108.8C13—C14—H14B109.5
C4—C3—H3B108.8H14A—C14—H14B109.5
C2—C3—H3B108.8C13—C14—H14C109.5
H3A—C3—H3B107.7H14A—C14—H14C109.5
C5—C4—C3123.94 (16)H14B—C14—H14C109.5
C5—C4—Ru172.17 (10)
N1—Ru1—C1—C8168.61 (12)N1—Ru1—C5—C40.84 (12)
N2—Ru1—C1—C82.09 (13)N2—Ru1—C5—C4167.20 (11)
C4—Ru1—C1—C8112.29 (12)C1—Ru1—C5—C476.11 (11)
C5—Ru1—C1—C876.69 (11)C8—Ru1—C5—C4112.09 (11)
Cl1—Ru1—C1—C885.11 (10)Cl1—Ru1—C5—C4161.71 (12)
Cl2—Ru1—C1—C8167.48 (12)Cl2—Ru1—C5—C485.14 (10)
N1—Ru1—C1—C272.69 (13)N1—Ru1—C5—C6119.99 (13)
N2—Ru1—C1—C2116.61 (13)N2—Ru1—C5—C673.65 (13)
C8—Ru1—C1—C2118.70 (18)C1—Ru1—C5—C643.04 (13)
C4—Ru1—C1—C26.41 (13)C8—Ru1—C5—C67.06 (13)
C5—Ru1—C1—C242.01 (13)C4—Ru1—C5—C6119.15 (18)
Cl1—Ru1—C1—C2156.19 (12)Cl1—Ru1—C5—C642.6 (2)
Cl2—Ru1—C1—C248.8 (2)Cl2—Ru1—C5—C6155.72 (12)
C8—C1—C2—C391.4 (2)C4—C5—C6—C790.1 (2)
Ru1—C1—C2—C38.64 (19)Ru1—C5—C6—C77.95 (19)
C1—C2—C3—C426.6 (2)C5—C6—C7—C826.4 (2)
C2—C3—C4—C550.8 (2)C2—C1—C8—C73.5 (3)
C2—C3—C4—Ru131.22 (18)Ru1—C1—C8—C7102.95 (16)
N1—Ru1—C4—C5179.21 (11)C2—C1—C8—Ru1106.48 (16)
N2—Ru1—C4—C513.50 (12)C6—C7—C8—C149.7 (2)
C1—Ru1—C4—C5100.05 (11)C6—C7—C8—Ru131.57 (18)
C8—Ru1—C4—C566.49 (11)N1—Ru1—C8—C112.33 (13)
Cl1—Ru1—C4—C5162.97 (11)N2—Ru1—C8—C1178.08 (12)
Cl2—Ru1—C4—C595.25 (10)C4—Ru1—C8—C166.19 (11)
N1—Ru1—C4—C360.44 (12)C5—Ru1—C8—C199.52 (12)
N2—Ru1—C4—C3133.85 (12)Cl1—Ru1—C8—C194.30 (10)
C1—Ru1—C4—C320.30 (12)Cl2—Ru1—C8—C1167.41 (12)
C8—Ru1—C4—C353.86 (13)N1—Ru1—C8—C7132.64 (12)
C5—Ru1—C4—C3120.34 (17)N2—Ru1—C8—C757.76 (13)
Cl1—Ru1—C4—C342.6 (2)C1—Ru1—C8—C7120.32 (18)
Cl2—Ru1—C4—C3144.41 (12)C4—Ru1—C8—C754.12 (13)
C3—C4—C5—C61.9 (3)C5—Ru1—C8—C720.80 (13)
Ru1—C4—C5—C6105.41 (17)Cl1—Ru1—C8—C7145.38 (12)
C3—C4—C5—Ru1103.53 (17)Cl2—Ru1—C8—C747.1 (2)

Experimental details

Crystal data
Chemical formula[RuCl2(C8H12)(C2H3N)2]·C2H3N
Mr403.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.7033 (3), 7.2434 (3), 26.4178 (10)
β (°) 95.903 (1)
V3)1656.59 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.32 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(AXScale; Bruker, 2010)
Tmin, Tmax0.688, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
16175, 4125, 3806
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.07
No. of reflections4125
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.61

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al.,2009), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ru1—N12.0303 (15)Ru1—C42.2154 (17)
Ru1—N22.0418 (15)Ru1—C52.2225 (17)
Ru1—C12.2082 (16)Ru1—Cl12.4212 (4)
Ru1—C82.2116 (17)Ru1—Cl22.4265 (4)
 

Acknowledgements

We gratefully acknowledge the University of Johannesburg for funding this project and the University of Witwatersrand for award of a Research fellowship to SO. The authors also thank Dr E Singleton for fruitful discussions.

References

First citationAshworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40, 183–188.  CAS Google Scholar
First citationBruker (2010). APEX2, AXScale and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds