organic compounds
N,N-Bis(diphenylphosphanyl)cyclobutanamine
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: engelbrechti@ufs.ac.za
In the title compound, C28H27NP2, the N atom adopts an almost planar geometry with the two P atoms and the C atom attached to it, with a distance of 0.066 (2) Å between the N atom and the C/P/P plane. The distorted trigonal–pyramidal geometry of the N atom is further illustrated by bond angles ranging between 115.22 (11) and 123.53 (8)°. Bond angles varying from 99.99 (9) to 108.07 (9) ° are indicative of the distorted pyramidal environment around the P atoms. An intramolecular C—H⋯P hydrogen bond occurs. In the crystal, intermolecular C—H⋯π interactions link the molecules into a supramolecular network.
Related literature
For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008, 2009, 2010); Engelbrecht et al. (2010a,b). For diphosphinoamine (PNP) and other P-donor ligands, see: Muller et al. (2008); Purcell et al. (1995); Otto & Roodt (2001); Otto et al. (2005). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Cloete et al. (2011); Ferreira et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811027656/go2019sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027656/go2019Isup2.hkl
Cyclobutylamine (0.010 mol, 854 µl) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the
was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 2.100 g, 48%)The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.77 Å from C1 and the deepest hole is situated 0.55 Å from P1. In the absence of significant
effects, Friedel pairs have been merged.Data collection: APEX2 (Bruker, 2010); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C28H27NP2 | F(000) = 464 |
Mr = 439.45 | Dx = 1.272 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 9952 reflections |
a = 9.414 (5) Å | θ = 2.7–28.3° |
b = 9.664 (5) Å | µ = 0.21 mm−1 |
c = 12.644 (4) Å | T = 100 K |
β = 94.245 (5)° | Cuboid, colourless |
V = 1147.2 (10) Å3 | 0.32 × 0.12 × 0.04 mm |
Z = 2 |
Bruker X8 APEXII 4K KappaCCD diffractometer | 3035 independent reflections |
Radiation source: fine-focus sealed tube | 2930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and ϕ scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.937, Tmax = 0.992 | k = −12→12 |
20748 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1935P] where P = (Fo2 + 2Fc2)/3 |
3035 reflections | (Δ/σ)max = 0.001 |
281 parameters | Δρmax = 0.25 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C28H27NP2 | V = 1147.2 (10) Å3 |
Mr = 439.45 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 9.414 (5) Å | µ = 0.21 mm−1 |
b = 9.664 (5) Å | T = 100 K |
c = 12.644 (4) Å | 0.32 × 0.12 × 0.04 mm |
β = 94.245 (5)° |
Bruker X8 APEXII 4K KappaCCD diffractometer | 3035 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2930 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.992 | Rint = 0.027 |
20748 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 1 restraint |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.25 e Å−3 |
3035 reflections | Δρmin = −0.18 e Å−3 |
281 parameters |
Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.9% completeness accomplished. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.63564 (17) | 0.73665 (19) | 0.12318 (13) | 0.0161 (3) | |
H1 | 0.7182 | 0.7791 | 0.1657 | 0.019* | |
C2 | 0.6829 (2) | 0.5945 (2) | 0.08102 (15) | 0.0227 (4) | |
H2A | 0.7631 | 0.5515 | 0.1244 | 0.027* | |
H2B | 0.6039 | 0.528 | 0.0666 | 0.027* | |
C3 | 0.72812 (19) | 0.6710 (2) | −0.01884 (14) | 0.0243 (4) | |
H3A | 0.8308 | 0.694 | −0.016 | 0.029* | |
H3B | 0.697 | 0.6245 | −0.0864 | 0.029* | |
C4 | 0.63230 (18) | 0.7937 (2) | 0.00897 (13) | 0.0202 (3) | |
H4A | 0.6781 | 0.8854 | 0.0035 | 0.024* | |
H4B | 0.5366 | 0.7926 | −0.0291 | 0.024* | |
C11 | 0.61059 (17) | 0.96900 (19) | 0.30492 (14) | 0.0170 (3) | |
C12 | 0.59621 (18) | 1.04878 (19) | 0.21255 (13) | 0.0185 (3) | |
H12 | 0.5452 | 1.0127 | 0.151 | 0.022* | |
C13 | 0.65569 (17) | 1.1803 (2) | 0.20966 (14) | 0.0207 (3) | |
H13 | 0.6468 | 1.2325 | 0.1458 | 0.025* | |
C14 | 0.72805 (19) | 1.2358 (2) | 0.29965 (16) | 0.0238 (4) | |
H14 | 0.7687 | 1.3257 | 0.2977 | 0.029* | |
C15 | 0.7403 (2) | 1.1586 (2) | 0.39223 (15) | 0.0259 (4) | |
H15 | 0.7887 | 1.1963 | 0.4542 | 0.031* | |
C16 | 0.68275 (19) | 1.0269 (2) | 0.39524 (14) | 0.0223 (4) | |
H16 | 0.6923 | 0.9752 | 0.4593 | 0.027* | |
C21 | 0.67262 (18) | 0.69892 (19) | 0.37827 (13) | 0.0177 (3) | |
C22 | 0.81721 (19) | 0.7224 (2) | 0.36534 (13) | 0.0204 (3) | |
H22 | 0.845 | 0.7973 | 0.3228 | 0.024* | |
C23 | 0.9200 (2) | 0.6362 (2) | 0.41469 (14) | 0.0249 (4) | |
H23 | 1.0179 | 0.6522 | 0.4053 | 0.03* | |
C24 | 0.8808 (2) | 0.5268 (2) | 0.47773 (14) | 0.0283 (4) | |
H24 | 0.9515 | 0.4673 | 0.5103 | 0.034* | |
C25 | 0.7388 (2) | 0.5049 (2) | 0.49284 (14) | 0.0270 (4) | |
H25 | 0.7118 | 0.431 | 0.5366 | 0.032* | |
C26 | 0.6354 (2) | 0.5909 (2) | 0.44406 (14) | 0.0216 (4) | |
H26 | 0.5381 | 0.5759 | 0.4556 | 0.026* | |
C31 | 0.21248 (16) | 0.8079 (2) | 0.13397 (12) | 0.0165 (3) | |
C32 | 0.17680 (19) | 0.8748 (2) | 0.22612 (14) | 0.0227 (4) | |
H32 | 0.232 | 0.8584 | 0.2909 | 0.027* | |
C33 | 0.0619 (2) | 0.9650 (2) | 0.22457 (16) | 0.0249 (4) | |
H33 | 0.0406 | 1.0117 | 0.2876 | 0.03* | |
C34 | −0.02202 (19) | 0.9870 (2) | 0.13090 (16) | 0.0241 (4) | |
H34 | −0.1016 | 1.0474 | 0.13 | 0.029* | |
C35 | 0.0110 (2) | 0.9203 (2) | 0.03906 (15) | 0.0251 (4) | |
H35 | −0.0464 | 0.9348 | −0.025 | 0.03* | |
C36 | 0.12781 (18) | 0.8322 (2) | 0.04019 (13) | 0.0206 (4) | |
H36 | 0.1504 | 0.7879 | −0.0235 | 0.025* | |
C41 | 0.30058 (17) | 0.54508 (18) | 0.21428 (12) | 0.0156 (3) | |
C42 | 0.40188 (18) | 0.45205 (19) | 0.25833 (14) | 0.0188 (3) | |
H42 | 0.4998 | 0.467 | 0.2484 | 0.023* | |
C43 | 0.3623 (2) | 0.33809 (19) | 0.31634 (14) | 0.0219 (4) | |
H43 | 0.4331 | 0.2773 | 0.3472 | 0.026* | |
C44 | 0.2191 (2) | 0.3130 (2) | 0.32932 (14) | 0.0244 (4) | |
H44 | 0.1914 | 0.2351 | 0.3687 | 0.029* | |
C45 | 0.11719 (19) | 0.4034 (2) | 0.28400 (15) | 0.0250 (4) | |
H45 | 0.0191 | 0.3861 | 0.2915 | 0.03* | |
C46 | 0.15723 (19) | 0.5188 (2) | 0.22774 (14) | 0.0208 (3) | |
H46 | 0.0864 | 0.5804 | 0.1982 | 0.025* | |
N1 | 0.50881 (15) | 0.74590 (16) | 0.18514 (11) | 0.0153 (3) | |
P1 | 0.52394 (4) | 0.79965 (6) | 0.31465 (3) | 0.01550 (9) | |
P2 | 0.35464 (4) | 0.67934 (6) | 0.12377 (3) | 0.01489 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0156 (7) | 0.0166 (7) | 0.0163 (7) | 0.0007 (6) | 0.0022 (6) | −0.0001 (6) |
C2 | 0.0231 (9) | 0.0179 (8) | 0.0279 (9) | 0.0032 (7) | 0.0082 (7) | −0.0003 (7) |
C3 | 0.0249 (9) | 0.0246 (9) | 0.0245 (8) | −0.0014 (8) | 0.0089 (7) | −0.0050 (8) |
C4 | 0.0210 (8) | 0.0228 (8) | 0.0173 (7) | 0.0008 (7) | 0.0048 (6) | 0.0025 (7) |
C11 | 0.0123 (7) | 0.0168 (8) | 0.0217 (8) | 0.0012 (6) | 0.0006 (6) | −0.0022 (6) |
C12 | 0.0183 (8) | 0.0190 (8) | 0.0181 (8) | 0.0025 (6) | 0.0006 (6) | −0.0033 (6) |
C13 | 0.0183 (8) | 0.0195 (8) | 0.0247 (8) | 0.0016 (7) | 0.0034 (6) | 0.0009 (7) |
C14 | 0.0177 (8) | 0.0173 (8) | 0.0362 (10) | −0.0002 (7) | 0.0007 (7) | −0.0030 (7) |
C15 | 0.0217 (9) | 0.0242 (10) | 0.0301 (9) | 0.0021 (7) | −0.0095 (7) | −0.0062 (8) |
C16 | 0.0239 (9) | 0.0222 (9) | 0.0200 (8) | 0.0037 (7) | −0.0037 (7) | −0.0016 (7) |
C21 | 0.0202 (8) | 0.0185 (8) | 0.0142 (7) | 0.0002 (7) | −0.0006 (6) | −0.0007 (6) |
C22 | 0.0218 (8) | 0.0218 (9) | 0.0173 (8) | 0.0007 (7) | −0.0007 (6) | −0.0004 (6) |
C23 | 0.0221 (9) | 0.0314 (10) | 0.0206 (8) | 0.0062 (7) | −0.0020 (7) | −0.0047 (7) |
C24 | 0.0395 (11) | 0.0248 (10) | 0.0194 (8) | 0.0130 (9) | −0.0074 (8) | −0.0038 (7) |
C25 | 0.0448 (12) | 0.0197 (9) | 0.0156 (8) | 0.0007 (8) | −0.0026 (7) | 0.0019 (7) |
C26 | 0.0278 (9) | 0.0201 (8) | 0.0166 (8) | −0.0038 (7) | −0.0006 (7) | −0.0003 (7) |
C31 | 0.0139 (7) | 0.0158 (7) | 0.0197 (7) | −0.0015 (6) | 0.0009 (6) | 0.0011 (7) |
C32 | 0.0213 (8) | 0.0258 (9) | 0.0206 (8) | 0.0038 (7) | −0.0018 (7) | −0.0017 (7) |
C33 | 0.0232 (9) | 0.0237 (9) | 0.0282 (9) | 0.0033 (7) | 0.0049 (7) | −0.0031 (7) |
C34 | 0.0164 (8) | 0.0206 (9) | 0.0356 (10) | 0.0017 (7) | 0.0039 (7) | 0.0055 (8) |
C35 | 0.0207 (8) | 0.0276 (10) | 0.0262 (9) | −0.0003 (7) | −0.0038 (7) | 0.0071 (8) |
C36 | 0.0192 (8) | 0.0239 (9) | 0.0186 (8) | −0.0018 (6) | 0.0001 (6) | 0.0006 (6) |
C41 | 0.0180 (8) | 0.0145 (7) | 0.0144 (7) | −0.0018 (6) | 0.0017 (6) | −0.0027 (6) |
C42 | 0.0164 (8) | 0.0185 (8) | 0.0216 (8) | 0.0000 (6) | 0.0025 (6) | −0.0016 (6) |
C43 | 0.0242 (9) | 0.0194 (9) | 0.0223 (8) | 0.0017 (7) | 0.0026 (7) | 0.0018 (7) |
C44 | 0.0297 (9) | 0.0185 (8) | 0.0257 (8) | −0.0056 (8) | 0.0074 (7) | 0.0011 (7) |
C45 | 0.0187 (8) | 0.0247 (9) | 0.0323 (10) | −0.0052 (7) | 0.0073 (7) | −0.0018 (8) |
C46 | 0.0181 (8) | 0.0212 (8) | 0.0231 (8) | −0.0006 (7) | 0.0010 (6) | −0.0014 (7) |
N1 | 0.0135 (6) | 0.0178 (7) | 0.0146 (6) | −0.0015 (5) | 0.0012 (5) | −0.0021 (5) |
P1 | 0.01451 (19) | 0.0175 (2) | 0.01444 (18) | −0.00069 (16) | 0.00074 (14) | −0.00094 (16) |
P2 | 0.01521 (19) | 0.01517 (18) | 0.01420 (18) | −0.00057 (16) | 0.00048 (13) | −0.00147 (16) |
C1—N1 | 1.478 (2) | C24—C25 | 1.380 (3) |
C1—C4 | 1.544 (2) | C24—H24 | 0.95 |
C1—C2 | 1.551 (2) | C25—C26 | 1.389 (3) |
C1—H1 | 1 | C25—H25 | 0.95 |
C2—C3 | 1.550 (3) | C26—H26 | 0.95 |
C2—H2A | 0.99 | C31—C32 | 1.395 (2) |
C2—H2B | 0.99 | C31—C36 | 1.399 (2) |
C3—C4 | 1.546 (3) | C31—P2 | 1.838 (2) |
C3—H3A | 0.99 | C32—C33 | 1.388 (3) |
C3—H3B | 0.99 | C32—H32 | 0.95 |
C4—H4A | 0.99 | C33—C34 | 1.390 (3) |
C4—H4B | 0.99 | C33—H33 | 0.95 |
C11—C12 | 1.398 (2) | C34—C35 | 1.383 (3) |
C11—C16 | 1.401 (2) | C34—H34 | 0.95 |
C11—P1 | 1.837 (2) | C35—C36 | 1.390 (3) |
C12—C13 | 1.391 (3) | C35—H35 | 0.95 |
C12—H12 | 0.95 | C36—H36 | 0.95 |
C13—C14 | 1.390 (3) | C41—C46 | 1.396 (2) |
C13—H13 | 0.95 | C41—C42 | 1.396 (2) |
C14—C15 | 1.386 (3) | C41—P2 | 1.8271 (19) |
C14—H14 | 0.95 | C42—C43 | 1.389 (2) |
C15—C16 | 1.384 (3) | C42—H42 | 0.95 |
C15—H15 | 0.95 | C43—C44 | 1.391 (3) |
C16—H16 | 0.95 | C43—H43 | 0.95 |
C21—C26 | 1.396 (2) | C44—C45 | 1.389 (3) |
C21—C22 | 1.401 (3) | C44—H44 | 0.95 |
C21—P1 | 1.8404 (19) | C45—C46 | 1.390 (3) |
C22—C23 | 1.389 (3) | C45—H45 | 0.95 |
C22—H22 | 0.95 | C46—H46 | 0.95 |
C23—C24 | 1.390 (3) | N1—P1 | 1.7138 (15) |
C23—H23 | 0.95 | N1—P2 | 1.7192 (16) |
N1—C1—C4 | 120.84 (14) | C23—C24—H24 | 120.1 |
N1—C1—C2 | 119.96 (14) | C24—C25—C26 | 120.05 (18) |
C4—C1—C2 | 88.95 (13) | C24—C25—H25 | 120 |
N1—C1—H1 | 108.5 | C26—C25—H25 | 120 |
C4—C1—H1 | 108.5 | C25—C26—C21 | 120.91 (18) |
C2—C1—H1 | 108.5 | C25—C26—H26 | 119.5 |
C3—C2—C1 | 87.72 (14) | C21—C26—H26 | 119.5 |
C3—C2—H2A | 114 | C32—C31—C36 | 118.23 (16) |
C1—C2—H2A | 114 | C32—C31—P2 | 126.41 (13) |
C3—C2—H2B | 114 | C36—C31—P2 | 115.22 (13) |
C1—C2—H2B | 114 | C33—C32—C31 | 120.98 (17) |
H2A—C2—H2B | 111.2 | C33—C32—H32 | 119.5 |
C4—C3—C2 | 88.91 (13) | C31—C32—H32 | 119.5 |
C4—C3—H3A | 113.8 | C32—C33—C34 | 120.06 (18) |
C2—C3—H3A | 113.8 | C32—C33—H33 | 120 |
C4—C3—H3B | 113.8 | C34—C33—H33 | 120 |
C2—C3—H3B | 113.8 | C35—C34—C33 | 119.69 (17) |
H3A—C3—H3B | 111.1 | C35—C34—H34 | 120.2 |
C1—C4—C3 | 88.10 (13) | C33—C34—H34 | 120.2 |
C1—C4—H4A | 114 | C34—C35—C36 | 120.21 (17) |
C3—C4—H4A | 114 | C34—C35—H35 | 119.9 |
C1—C4—H4B | 114 | C36—C35—H35 | 119.9 |
C3—C4—H4B | 114 | C35—C36—C31 | 120.80 (17) |
H4A—C4—H4B | 111.2 | C35—C36—H36 | 119.6 |
C12—C11—C16 | 118.15 (17) | C31—C36—H36 | 119.6 |
C12—C11—P1 | 122.11 (13) | C46—C41—C42 | 118.17 (16) |
C16—C11—P1 | 119.48 (14) | C46—C41—P2 | 121.48 (13) |
C13—C12—C11 | 120.80 (16) | C42—C41—P2 | 119.57 (13) |
C13—C12—H12 | 119.6 | C43—C42—C41 | 121.28 (16) |
C11—C12—H12 | 119.6 | C43—C42—H42 | 119.4 |
C14—C13—C12 | 120.33 (17) | C41—C42—H42 | 119.4 |
C14—C13—H13 | 119.8 | C42—C43—C44 | 120.01 (17) |
C12—C13—H13 | 119.8 | C42—C43—H43 | 120 |
C15—C14—C13 | 119.28 (18) | C44—C43—H43 | 120 |
C15—C14—H14 | 120.4 | C45—C44—C43 | 119.19 (17) |
C13—C14—H14 | 120.4 | C45—C44—H44 | 120.4 |
C16—C15—C14 | 120.65 (17) | C43—C44—H44 | 120.4 |
C16—C15—H15 | 119.7 | C44—C45—C46 | 120.68 (17) |
C14—C15—H15 | 119.7 | C44—C45—H45 | 119.7 |
C15—C16—C11 | 120.78 (18) | C46—C45—H45 | 119.7 |
C15—C16—H16 | 119.6 | C45—C46—C41 | 120.65 (17) |
C11—C16—H16 | 119.6 | C45—C46—H46 | 119.7 |
C26—C21—C22 | 118.63 (16) | C41—C46—H46 | 119.7 |
C26—C21—P1 | 116.11 (14) | C1—N1—P1 | 120.76 (11) |
C22—C21—P1 | 125.26 (13) | C1—N1—P2 | 115.22 (11) |
C23—C22—C21 | 120.07 (17) | P1—N1—P2 | 123.53 (8) |
C23—C22—H22 | 120 | N1—P1—C11 | 102.24 (8) |
C21—C22—H22 | 120 | N1—P1—C21 | 105.31 (8) |
C22—C23—C24 | 120.50 (18) | C11—P1—C21 | 99.99 (9) |
C22—C23—H23 | 119.7 | N1—P2—C41 | 104.36 (7) |
C24—C23—H23 | 119.8 | N1—P2—C31 | 108.07 (9) |
C25—C24—C23 | 119.79 (17) | C41—P2—C31 | 101.44 (8) |
C25—C24—H24 | 120.1 | ||
N1—C1—C2—C3 | 144.39 (15) | C42—C43—C44—C45 | −0.2 (3) |
C4—C1—C2—C3 | 18.85 (13) | C43—C44—C45—C46 | −1.0 (3) |
C1—C2—C3—C4 | −18.83 (13) | C44—C45—C46—C41 | 1.0 (3) |
N1—C1—C4—C3 | −143.70 (15) | C42—C41—C46—C45 | 0.3 (3) |
C2—C1—C4—C3 | −18.90 (13) | P2—C41—C46—C45 | 170.16 (14) |
C2—C3—C4—C1 | 18.91 (14) | C4—C1—N1—P1 | −134.56 (15) |
C16—C11—C12—C13 | 1.9 (2) | C2—C1—N1—P1 | 116.81 (15) |
P1—C11—C12—C13 | 175.95 (13) | C4—C1—N1—P2 | 53.23 (19) |
C11—C12—C13—C14 | −1.4 (2) | C2—C1—N1—P2 | −55.39 (19) |
C12—C13—C14—C15 | 0.0 (3) | C1—N1—P1—C11 | 55.96 (14) |
C13—C14—C15—C16 | 0.7 (3) | P2—N1—P1—C11 | −132.50 (11) |
C14—C15—C16—C11 | −0.1 (3) | C1—N1—P1—C21 | −48.12 (15) |
C12—C11—C16—C15 | −1.2 (3) | P2—N1—P1—C21 | 123.42 (11) |
P1—C11—C16—C15 | −175.36 (14) | C12—C11—P1—N1 | 26.64 (15) |
C26—C21—C22—C23 | 2.1 (3) | C16—C11—P1—N1 | −159.40 (14) |
P1—C21—C22—C23 | −177.74 (14) | C12—C11—P1—C21 | 134.85 (14) |
C21—C22—C23—C24 | −0.4 (3) | C16—C11—P1—C21 | −51.19 (15) |
C22—C23—C24—C25 | −1.0 (3) | C26—C21—P1—N1 | −104.69 (14) |
C23—C24—C25—C26 | 0.8 (3) | C22—C21—P1—N1 | 75.13 (17) |
C24—C25—C26—C21 | 0.9 (3) | C26—C21—P1—C11 | 149.56 (13) |
C22—C21—C26—C25 | −2.3 (3) | C22—C21—P1—C11 | −30.62 (17) |
P1—C21—C26—C25 | 177.53 (14) | C1—N1—P2—C41 | 121.40 (12) |
C36—C31—C32—C33 | −1.1 (3) | P1—N1—P2—C41 | −50.57 (14) |
P2—C31—C32—C33 | −176.59 (15) | C1—N1—P2—C31 | −131.22 (12) |
C31—C32—C33—C34 | 1.8 (3) | P1—N1—P2—C31 | 56.81 (13) |
C32—C33—C34—C35 | −1.0 (3) | C46—C41—P2—N1 | 144.79 (14) |
C33—C34—C35—C36 | −0.3 (3) | C42—C41—P2—N1 | −45.52 (15) |
C34—C35—C36—C31 | 0.9 (3) | C46—C41—P2—C31 | 32.56 (16) |
C32—C31—C36—C35 | −0.2 (3) | C42—C41—P2—C31 | −157.75 (13) |
P2—C31—C36—C35 | 175.78 (14) | C32—C31—P2—N1 | −50.48 (18) |
C46—C41—C42—C43 | −1.6 (2) | C36—C31—P2—N1 | 133.95 (13) |
P2—C41—C42—C43 | −171.62 (13) | C32—C31—P2—C41 | 58.92 (17) |
C41—C42—C43—C44 | 1.6 (3) | C36—C31—P2—C41 | −116.66 (14) |
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C32—H32···P1 | 0.95 | 2.8 | 3.452 (2) | 127 |
C43—H43···Cg1i | 0.95 | 2.87 | 3.686 (7) | 144 |
C44—H44···Cg2ii | 0.95 | 2.81 | 3.614 (6) | 143 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C28H27NP2 |
Mr | 439.45 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 9.414 (5), 9.664 (5), 12.644 (4) |
β (°) | 94.245 (5) |
V (Å3) | 1147.2 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.32 × 0.12 × 0.04 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.937, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20748, 3035, 2930 |
Rint | 0.027 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.064, 1.04 |
No. of reflections | 3035 |
No. of parameters | 281 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.18 |
Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C32—H32···P1 | 0.95 | 2.8 | 3.452 (2) | 126.6 |
C43—H43···Cg1i | 0.95 | 2.87 | 3.686 (7) | 144 |
C44—H44···Cg2ii | 0.95 | 2.81 | 3.614 (6) | 142.6 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1. |
Acknowledgements
Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), the DST–NRF centre of excellence (c*change), the University of the Free State and the INKABA funding project are gratefully acknowledged.
References
Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cloete, N., Visser, H. G., Roodt, A., Engelbrecht, I., Overett, M. J. & Gabrielli, W. F. (2011). Angew. Chem. Int. Ed. In preparation. Google Scholar
Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256. CSD CrossRef CAS Google Scholar
Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116. Web of Science CSD CrossRef PubMed Google Scholar
Engelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, o2881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Engelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, o3322–o3323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779. Web of Science CSD CrossRef Google Scholar
Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275. Web of Science CrossRef CAS Google Scholar
Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686. Web of Science CSD CrossRef Google Scholar
Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198. CSD CrossRef Web of Science Google Scholar
Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. Web of Science CSD CrossRef PubMed Google Scholar
Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342. Web of Science CrossRef CAS Google Scholar
Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52. Web of Science CSD CrossRef CAS Google Scholar
Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Diphosphinoamine (PNP) and other P donor ligands (Muller et al., 2008; Purcell et al., 1995; Otto et al., 2005; Otto & Roodt, 2001) with various substituents on both the P and N atoms form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al.) methoxycarbonylation (Ferreira et al., 2007) and tetramerization (Cloete et al., 2011). In the title compound, C29H29NP2, Fig.1, all bond distances and angles fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008, 2009, 2010; Engelbrecht et al., 2010a, 2010b).
The N(P2C) group is almost planar, with the central N displaced by -0.066 (2) Å from the P1—P2—C1 plane. The distorted trigonal-pyramidal geometry around the N atom is evident by the bond angles ranging between 115.22 (11) and 123.53 (8) °. The distorted triangular pyramidal geometry around the phosphorous atoms is indicated by C—P—C angles varying from 99.99 (9) - 108.07 (9) ° and N—P—C angles from 102.24 (8) - 108.07 (9) °. The phosphorous lone pairs are trans with respect to the N—C bond, therefore the title compound has a Cs conformer in the solid state. The crystal packing is stabilized by a C—H···P intramolecular hydrogen bond (Table 1) and intermolecular C—H···π interactions resulting in a three-dimensional network (Table 1, Figure 2).