organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2041-o2042

N,N-Bis(di­phenyl­phosphan­yl)cyclo­butanamine

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: engelbrechti@ufs.ac.za

(Received 6 July 2011; accepted 11 July 2011; online 16 July 2011)

In the title compound, C28H27NP2, the N atom adopts an almost planar geometry with the two P atoms and the C atom attached to it, with a distance of 0.066 (2) Å between the N atom and the C/P/P plane. The distorted trigonal–pyramidal geometry of the N atom is further illustrated by bond angles ranging between 115.22 (11) and 123.53 (8)°. Bond angles varying from 99.99 (9) to 108.07 (9) ° are indicative of the distorted pyramidal environment around the P atoms. An intra­molecular C—H⋯P hydrogen bond occurs. In the crystal, inter­molecular C—H⋯π inter­actions link the mol­ecules into a supra­molecular network.

Related literature

For similar structures, see: Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192-2198.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.]); Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]); Cloete et al. (2008[Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.], 2009[Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.], 2010[Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51-m52.]); Engelbrecht et al. (2010a[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, o2881.],b[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, o3322-o3323.]). For diphosphinoamine (PNP) and other P-donor ligands, see: Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Purcell et al. (1995[Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153-156.]); Otto & Roodt (2001[Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49-52.]); Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004[Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679-1686.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.]); Booyens et al. (2007[Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508-5512.]); Cloete et al. (2011[Cloete, N., Visser, H. G., Roodt, A., Engelbrecht, I., Overett, M. J. & Gabrielli, W. F. (2011). Angew. Chem. Int. Ed. In preparation.]); Ferreira et al. (2007[Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273-2275.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27NP2

  • Mr = 439.45

  • Monoclinic, P 21

  • a = 9.414 (5) Å

  • b = 9.664 (5) Å

  • c = 12.644 (4) Å

  • β = 94.245 (5)°

  • V = 1147.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.32 × 0.12 × 0.04 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.992

  • 20748 measured reflections

  • 3035 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.04

  • 3035 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯P1 0.95 2.8 3.452 (2) 127
C43—H43⋯Cg1i 0.95 2.87 3.686 (7) 144
C44—H44⋯Cg2ii 0.95 2.81 3.614 (6) 143
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Diphosphinoamine (PNP) and other P donor ligands (Muller et al., 2008; Purcell et al., 1995; Otto et al., 2005; Otto & Roodt, 2001) with various substituents on both the P and N atoms form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al.) methoxycarbonylation (Ferreira et al., 2007) and tetramerization (Cloete et al., 2011). In the title compound, C29H29NP2, Fig.1, all bond distances and angles fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008, 2009, 2010; Engelbrecht et al., 2010a, 2010b).

The N(P2C) group is almost planar, with the central N displaced by -0.066 (2) Å from the P1—P2—C1 plane. The distorted trigonal-pyramidal geometry around the N atom is evident by the bond angles ranging between 115.22 (11) and 123.53 (8) °. The distorted triangular pyramidal geometry around the phosphorous atoms is indicated by C—P—C angles varying from 99.99 (9) - 108.07 (9) ° and N—P—C angles from 102.24 (8) - 108.07 (9) °. The phosphorous lone pairs are trans with respect to the N—C bond, therefore the title compound has a Cs conformer in the solid state. The crystal packing is stabilized by a C—H···P intramolecular hydrogen bond (Table 1) and intermolecular C—H···π interactions resulting in a three-dimensional network (Table 1, Figure 2).

Related literature top

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008, 2009, 2010); Engelbrecht et al. (2010a,b). For diphosphinoamine (PNP) and other P-donor ligands, see: Muller et al. (2008); Purcell et al. (1995); Otto & Roodt (2001); Otto et al. (2005). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Cloete et al. (2011); Ferreira et al. (2007).

Experimental top

Cyclobutylamine (0.010 mol, 854 µl) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 2.100 g, 48%)

Refinement top

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.77 Å from C1 and the deepest hole is situated 0.55 Å from P1. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis forming the three-dimensional framework. C—H···π interactions are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
N,N-Bis(diphenylphosphanyl)cyclobutanamine top
Crystal data top
C28H27NP2F(000) = 464
Mr = 439.45Dx = 1.272 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9952 reflections
a = 9.414 (5) Åθ = 2.7–28.3°
b = 9.664 (5) ŵ = 0.21 mm1
c = 12.644 (4) ÅT = 100 K
β = 94.245 (5)°Cuboid, colourless
V = 1147.2 (10) Å30.32 × 0.12 × 0.04 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3035 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.937, Tmax = 0.992k = 1212
20748 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1935P]
where P = (Fo2 + 2Fc2)/3
3035 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C28H27NP2V = 1147.2 (10) Å3
Mr = 439.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.414 (5) ŵ = 0.21 mm1
b = 9.664 (5) ÅT = 100 K
c = 12.644 (4) Å0.32 × 0.12 × 0.04 mm
β = 94.245 (5)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3035 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2930 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.992Rint = 0.027
20748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.064H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3035 reflectionsΔρmin = 0.18 e Å3
281 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.9% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63564 (17)0.73665 (19)0.12318 (13)0.0161 (3)
H10.71820.77910.16570.019*
C20.6829 (2)0.5945 (2)0.08102 (15)0.0227 (4)
H2A0.76310.55150.12440.027*
H2B0.60390.5280.06660.027*
C30.72812 (19)0.6710 (2)0.01884 (14)0.0243 (4)
H3A0.83080.6940.0160.029*
H3B0.6970.62450.08640.029*
C40.63230 (18)0.7937 (2)0.00897 (13)0.0202 (3)
H4A0.67810.88540.00350.024*
H4B0.53660.79260.02910.024*
C110.61059 (17)0.96900 (19)0.30492 (14)0.0170 (3)
C120.59621 (18)1.04878 (19)0.21255 (13)0.0185 (3)
H120.54521.01270.1510.022*
C130.65569 (17)1.1803 (2)0.20966 (14)0.0207 (3)
H130.64681.23250.14580.025*
C140.72805 (19)1.2358 (2)0.29965 (16)0.0238 (4)
H140.76871.32570.29770.029*
C150.7403 (2)1.1586 (2)0.39223 (15)0.0259 (4)
H150.78871.19630.45420.031*
C160.68275 (19)1.0269 (2)0.39524 (14)0.0223 (4)
H160.69230.97520.45930.027*
C210.67262 (18)0.69892 (19)0.37827 (13)0.0177 (3)
C220.81721 (19)0.7224 (2)0.36534 (13)0.0204 (3)
H220.8450.79730.32280.024*
C230.9200 (2)0.6362 (2)0.41469 (14)0.0249 (4)
H231.01790.65220.40530.03*
C240.8808 (2)0.5268 (2)0.47773 (14)0.0283 (4)
H240.95150.46730.51030.034*
C250.7388 (2)0.5049 (2)0.49284 (14)0.0270 (4)
H250.71180.4310.53660.032*
C260.6354 (2)0.5909 (2)0.44406 (14)0.0216 (4)
H260.53810.57590.45560.026*
C310.21248 (16)0.8079 (2)0.13397 (12)0.0165 (3)
C320.17680 (19)0.8748 (2)0.22612 (14)0.0227 (4)
H320.2320.85840.29090.027*
C330.0619 (2)0.9650 (2)0.22457 (16)0.0249 (4)
H330.04061.01170.28760.03*
C340.02202 (19)0.9870 (2)0.13090 (16)0.0241 (4)
H340.10161.04740.130.029*
C350.0110 (2)0.9203 (2)0.03906 (15)0.0251 (4)
H350.04640.93480.0250.03*
C360.12781 (18)0.8322 (2)0.04019 (13)0.0206 (4)
H360.15040.78790.02350.025*
C410.30058 (17)0.54508 (18)0.21428 (12)0.0156 (3)
C420.40188 (18)0.45205 (19)0.25833 (14)0.0188 (3)
H420.49980.4670.24840.023*
C430.3623 (2)0.33809 (19)0.31634 (14)0.0219 (4)
H430.43310.27730.34720.026*
C440.2191 (2)0.3130 (2)0.32932 (14)0.0244 (4)
H440.19140.23510.36870.029*
C450.11719 (19)0.4034 (2)0.28400 (15)0.0250 (4)
H450.01910.38610.29150.03*
C460.15723 (19)0.5188 (2)0.22774 (14)0.0208 (3)
H460.08640.58040.19820.025*
N10.50881 (15)0.74590 (16)0.18514 (11)0.0153 (3)
P10.52394 (4)0.79965 (6)0.31465 (3)0.01550 (9)
P20.35464 (4)0.67934 (6)0.12377 (3)0.01489 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (7)0.0166 (7)0.0163 (7)0.0007 (6)0.0022 (6)0.0001 (6)
C20.0231 (9)0.0179 (8)0.0279 (9)0.0032 (7)0.0082 (7)0.0003 (7)
C30.0249 (9)0.0246 (9)0.0245 (8)0.0014 (8)0.0089 (7)0.0050 (8)
C40.0210 (8)0.0228 (8)0.0173 (7)0.0008 (7)0.0048 (6)0.0025 (7)
C110.0123 (7)0.0168 (8)0.0217 (8)0.0012 (6)0.0006 (6)0.0022 (6)
C120.0183 (8)0.0190 (8)0.0181 (8)0.0025 (6)0.0006 (6)0.0033 (6)
C130.0183 (8)0.0195 (8)0.0247 (8)0.0016 (7)0.0034 (6)0.0009 (7)
C140.0177 (8)0.0173 (8)0.0362 (10)0.0002 (7)0.0007 (7)0.0030 (7)
C150.0217 (9)0.0242 (10)0.0301 (9)0.0021 (7)0.0095 (7)0.0062 (8)
C160.0239 (9)0.0222 (9)0.0200 (8)0.0037 (7)0.0037 (7)0.0016 (7)
C210.0202 (8)0.0185 (8)0.0142 (7)0.0002 (7)0.0006 (6)0.0007 (6)
C220.0218 (8)0.0218 (9)0.0173 (8)0.0007 (7)0.0007 (6)0.0004 (6)
C230.0221 (9)0.0314 (10)0.0206 (8)0.0062 (7)0.0020 (7)0.0047 (7)
C240.0395 (11)0.0248 (10)0.0194 (8)0.0130 (9)0.0074 (8)0.0038 (7)
C250.0448 (12)0.0197 (9)0.0156 (8)0.0007 (8)0.0026 (7)0.0019 (7)
C260.0278 (9)0.0201 (8)0.0166 (8)0.0038 (7)0.0006 (7)0.0003 (7)
C310.0139 (7)0.0158 (7)0.0197 (7)0.0015 (6)0.0009 (6)0.0011 (7)
C320.0213 (8)0.0258 (9)0.0206 (8)0.0038 (7)0.0018 (7)0.0017 (7)
C330.0232 (9)0.0237 (9)0.0282 (9)0.0033 (7)0.0049 (7)0.0031 (7)
C340.0164 (8)0.0206 (9)0.0356 (10)0.0017 (7)0.0039 (7)0.0055 (8)
C350.0207 (8)0.0276 (10)0.0262 (9)0.0003 (7)0.0038 (7)0.0071 (8)
C360.0192 (8)0.0239 (9)0.0186 (8)0.0018 (6)0.0001 (6)0.0006 (6)
C410.0180 (8)0.0145 (7)0.0144 (7)0.0018 (6)0.0017 (6)0.0027 (6)
C420.0164 (8)0.0185 (8)0.0216 (8)0.0000 (6)0.0025 (6)0.0016 (6)
C430.0242 (9)0.0194 (9)0.0223 (8)0.0017 (7)0.0026 (7)0.0018 (7)
C440.0297 (9)0.0185 (8)0.0257 (8)0.0056 (8)0.0074 (7)0.0011 (7)
C450.0187 (8)0.0247 (9)0.0323 (10)0.0052 (7)0.0073 (7)0.0018 (8)
C460.0181 (8)0.0212 (8)0.0231 (8)0.0006 (7)0.0010 (6)0.0014 (7)
N10.0135 (6)0.0178 (7)0.0146 (6)0.0015 (5)0.0012 (5)0.0021 (5)
P10.01451 (19)0.0175 (2)0.01444 (18)0.00069 (16)0.00074 (14)0.00094 (16)
P20.01521 (19)0.01517 (18)0.01420 (18)0.00057 (16)0.00048 (13)0.00147 (16)
Geometric parameters (Å, º) top
C1—N11.478 (2)C24—C251.380 (3)
C1—C41.544 (2)C24—H240.95
C1—C21.551 (2)C25—C261.389 (3)
C1—H11C25—H250.95
C2—C31.550 (3)C26—H260.95
C2—H2A0.99C31—C321.395 (2)
C2—H2B0.99C31—C361.399 (2)
C3—C41.546 (3)C31—P21.838 (2)
C3—H3A0.99C32—C331.388 (3)
C3—H3B0.99C32—H320.95
C4—H4A0.99C33—C341.390 (3)
C4—H4B0.99C33—H330.95
C11—C121.398 (2)C34—C351.383 (3)
C11—C161.401 (2)C34—H340.95
C11—P11.837 (2)C35—C361.390 (3)
C12—C131.391 (3)C35—H350.95
C12—H120.95C36—H360.95
C13—C141.390 (3)C41—C461.396 (2)
C13—H130.95C41—C421.396 (2)
C14—C151.386 (3)C41—P21.8271 (19)
C14—H140.95C42—C431.389 (2)
C15—C161.384 (3)C42—H420.95
C15—H150.95C43—C441.391 (3)
C16—H160.95C43—H430.95
C21—C261.396 (2)C44—C451.389 (3)
C21—C221.401 (3)C44—H440.95
C21—P11.8404 (19)C45—C461.390 (3)
C22—C231.389 (3)C45—H450.95
C22—H220.95C46—H460.95
C23—C241.390 (3)N1—P11.7138 (15)
C23—H230.95N1—P21.7192 (16)
N1—C1—C4120.84 (14)C23—C24—H24120.1
N1—C1—C2119.96 (14)C24—C25—C26120.05 (18)
C4—C1—C288.95 (13)C24—C25—H25120
N1—C1—H1108.5C26—C25—H25120
C4—C1—H1108.5C25—C26—C21120.91 (18)
C2—C1—H1108.5C25—C26—H26119.5
C3—C2—C187.72 (14)C21—C26—H26119.5
C3—C2—H2A114C32—C31—C36118.23 (16)
C1—C2—H2A114C32—C31—P2126.41 (13)
C3—C2—H2B114C36—C31—P2115.22 (13)
C1—C2—H2B114C33—C32—C31120.98 (17)
H2A—C2—H2B111.2C33—C32—H32119.5
C4—C3—C288.91 (13)C31—C32—H32119.5
C4—C3—H3A113.8C32—C33—C34120.06 (18)
C2—C3—H3A113.8C32—C33—H33120
C4—C3—H3B113.8C34—C33—H33120
C2—C3—H3B113.8C35—C34—C33119.69 (17)
H3A—C3—H3B111.1C35—C34—H34120.2
C1—C4—C388.10 (13)C33—C34—H34120.2
C1—C4—H4A114C34—C35—C36120.21 (17)
C3—C4—H4A114C34—C35—H35119.9
C1—C4—H4B114C36—C35—H35119.9
C3—C4—H4B114C35—C36—C31120.80 (17)
H4A—C4—H4B111.2C35—C36—H36119.6
C12—C11—C16118.15 (17)C31—C36—H36119.6
C12—C11—P1122.11 (13)C46—C41—C42118.17 (16)
C16—C11—P1119.48 (14)C46—C41—P2121.48 (13)
C13—C12—C11120.80 (16)C42—C41—P2119.57 (13)
C13—C12—H12119.6C43—C42—C41121.28 (16)
C11—C12—H12119.6C43—C42—H42119.4
C14—C13—C12120.33 (17)C41—C42—H42119.4
C14—C13—H13119.8C42—C43—C44120.01 (17)
C12—C13—H13119.8C42—C43—H43120
C15—C14—C13119.28 (18)C44—C43—H43120
C15—C14—H14120.4C45—C44—C43119.19 (17)
C13—C14—H14120.4C45—C44—H44120.4
C16—C15—C14120.65 (17)C43—C44—H44120.4
C16—C15—H15119.7C44—C45—C46120.68 (17)
C14—C15—H15119.7C44—C45—H45119.7
C15—C16—C11120.78 (18)C46—C45—H45119.7
C15—C16—H16119.6C45—C46—C41120.65 (17)
C11—C16—H16119.6C45—C46—H46119.7
C26—C21—C22118.63 (16)C41—C46—H46119.7
C26—C21—P1116.11 (14)C1—N1—P1120.76 (11)
C22—C21—P1125.26 (13)C1—N1—P2115.22 (11)
C23—C22—C21120.07 (17)P1—N1—P2123.53 (8)
C23—C22—H22120N1—P1—C11102.24 (8)
C21—C22—H22120N1—P1—C21105.31 (8)
C22—C23—C24120.50 (18)C11—P1—C2199.99 (9)
C22—C23—H23119.7N1—P2—C41104.36 (7)
C24—C23—H23119.8N1—P2—C31108.07 (9)
C25—C24—C23119.79 (17)C41—P2—C31101.44 (8)
C25—C24—H24120.1
N1—C1—C2—C3144.39 (15)C42—C43—C44—C450.2 (3)
C4—C1—C2—C318.85 (13)C43—C44—C45—C461.0 (3)
C1—C2—C3—C418.83 (13)C44—C45—C46—C411.0 (3)
N1—C1—C4—C3143.70 (15)C42—C41—C46—C450.3 (3)
C2—C1—C4—C318.90 (13)P2—C41—C46—C45170.16 (14)
C2—C3—C4—C118.91 (14)C4—C1—N1—P1134.56 (15)
C16—C11—C12—C131.9 (2)C2—C1—N1—P1116.81 (15)
P1—C11—C12—C13175.95 (13)C4—C1—N1—P253.23 (19)
C11—C12—C13—C141.4 (2)C2—C1—N1—P255.39 (19)
C12—C13—C14—C150.0 (3)C1—N1—P1—C1155.96 (14)
C13—C14—C15—C160.7 (3)P2—N1—P1—C11132.50 (11)
C14—C15—C16—C110.1 (3)C1—N1—P1—C2148.12 (15)
C12—C11—C16—C151.2 (3)P2—N1—P1—C21123.42 (11)
P1—C11—C16—C15175.36 (14)C12—C11—P1—N126.64 (15)
C26—C21—C22—C232.1 (3)C16—C11—P1—N1159.40 (14)
P1—C21—C22—C23177.74 (14)C12—C11—P1—C21134.85 (14)
C21—C22—C23—C240.4 (3)C16—C11—P1—C2151.19 (15)
C22—C23—C24—C251.0 (3)C26—C21—P1—N1104.69 (14)
C23—C24—C25—C260.8 (3)C22—C21—P1—N175.13 (17)
C24—C25—C26—C210.9 (3)C26—C21—P1—C11149.56 (13)
C22—C21—C26—C252.3 (3)C22—C21—P1—C1130.62 (17)
P1—C21—C26—C25177.53 (14)C1—N1—P2—C41121.40 (12)
C36—C31—C32—C331.1 (3)P1—N1—P2—C4150.57 (14)
P2—C31—C32—C33176.59 (15)C1—N1—P2—C31131.22 (12)
C31—C32—C33—C341.8 (3)P1—N1—P2—C3156.81 (13)
C32—C33—C34—C351.0 (3)C46—C41—P2—N1144.79 (14)
C33—C34—C35—C360.3 (3)C42—C41—P2—N145.52 (15)
C34—C35—C36—C310.9 (3)C46—C41—P2—C3132.56 (16)
C32—C31—C36—C350.2 (3)C42—C41—P2—C31157.75 (13)
P2—C31—C36—C35175.78 (14)C32—C31—P2—N150.48 (18)
C46—C41—C42—C431.6 (2)C36—C31—P2—N1133.95 (13)
P2—C41—C42—C43171.62 (13)C32—C31—P2—C4158.92 (17)
C41—C42—C43—C441.6 (3)C36—C31—P2—C41116.66 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32···P10.952.83.452 (2)127
C43—H43···Cg1i0.952.873.686 (7)144
C44—H44···Cg2ii0.952.813.614 (6)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC28H27NP2
Mr439.45
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.414 (5), 9.664 (5), 12.644 (4)
β (°) 94.245 (5)
V3)1147.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.32 × 0.12 × 0.04
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.937, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
20748, 3035, 2930
Rint0.027
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.04
No. of reflections3035
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32···P10.952.83.452 (2)126.6
C43—H43···Cg1i0.952.873.686 (7)144
C44—H44···Cg2ii0.952.813.614 (6)142.6
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1.
 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), the DST–NRF centre of excellence (c*change), the University of the Free State and the INKABA funding project are gratefully acknowledged.

References

First citationBooyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A., Engelbrecht, I., Overett, M. J. & Gabrielli, W. F. (2011). Angew. Chem. Int. Ed. In preparation.  Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.  CSD CrossRef CAS Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116.  Web of Science CSD CrossRef PubMed Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, o3322–o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationFerreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275.  Web of Science CrossRef CAS Google Scholar
First citationHaumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationOtto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationPurcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2041-o2042
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds