organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­chloro-3,3′,5,5′-tetra­methyl-2,2′-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl)bis­­(methyl­ene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad, Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 11 July 2011; accepted 18 July 2011; online 23 July 2011)

In the title compound, C25H32Cl2N2O2, there are two intra­molecular O—H⋯ N hydrogen-bonding inter­actions between the hy­droxy groups on the aromatic rings and the two N atoms of the heterocyclic group. The cyclo­hexane ring adopts a chair conformation and the imidazolidine unit to which it is fused has a twisted envelope conformation. The asymmetric unit comprises one half-mol­ecule which is completed by a twofold rotation axis. A C—H⋯O inter­action is observed in the crystal structure.

Related literature

For related structures, see: Rivera et al. (2010[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.]); Cox (1995[Cox, P. J. (1995). Acta Cryst. C51, 1361-1364.]). For related quantum-chemical literature, see: Zierkiewicz et al. (2000[Zierkiewicz, W., Michalska, D. & Zeegers-Huyskens, T. (2000). J. Phys. Chem. A, 104, 11685-11692.], 2003[Zierkiewicz, W. & &Michalska, D. (2003). J.Phys. Chem. A., 107, 4547-4554.], 2004[Zierkiewicz, W., Michalska, D. & Hobza, P. (2004). Chem. Phys. Lett. 386, 95-100.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32Cl2N2O2

  • Mr = 463.4

  • Monoclinic, C 2/c

  • a = 16.6512 (7) Å

  • b = 9.6962 (3) Å

  • c = 14.4423 (6) Å

  • β = 98.892 (3)°

  • V = 2303.73 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.73 mm−1

  • T = 120 K

  • 0.53 × 0.36 × 0.16 mm

Data collection
  • Agilent Xcalibur diffractometer with Atlas Gemini detector

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.])' Tmin = 0.411, Tmax = 0.734

  • 32618 measured reflections

  • 2054 independent reflections

  • 1979 reflections with I > 3σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.116

  • S = 2.54

  • 2054 reflections

  • 144 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.827 (17) 1.880 (19) 2.6259 (13) 149.4 (19)
C12—H12B⋯O1i 0.96 2.56 3.4998 (17) 166
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: Jana2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). Jana2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: Diamond (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]); software used to prepare material for publication: Jana2006.

Supporting information


Comment top

The presence of p-halo substituent in the phenol ring afforded structural consequences such as the deformation of the ring observable in the bond distances and the bond angles values, which is related with the existence of resonance effect (X = Br, Cl) and inductive effect (X = F), according to theoretical results using the MP2 and density functional (B3LYP) methods (Zierkiewicz, et al. 2000 and 2003). Theoretical investigations using NBO analysis suggested that p-chloro substituent induces a decrease of electron density in the lone pair orbital of the O atom with a reinforcement of the delocalization of electronic density to aromatic ring observable in a slight shortening of C—O and C—C bonds (Zierkiewicz, et al. 2004). With the aim to understand the effect of electron-donating groups in the p-halophenol derivatives, we synthesized the title compound (I).

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. Selected angles and bond lengths are listed in Table 1. These results show the existence of intramolecular hydrogen bonding interactions between the hydroxy H atom and the nitrogen atoms in the imidazolidine moiety. The shorter H—O distance (0.827 (17) Å) in comparison with the p-chlorophenol derivative (Rivera, et al. 2010), indicates a decreasing hydrogen-bonding strength. However, since the N···H and the N···O distances (table 1) are longer by 0.05 Å and 0.03 Å and the observed C—O bond length (1.3612 (17) Å) is in a good agreement with the mentioned related structure, we concluded that the methyl groups do not induce considerably the decrease in hydrogen-bonding strength despite the electron-donating effect on the aromatic rings.

However, the observed C1—C2 and C4—C5 bond length are longer in comparison with the 3,5-dimethyl-4-chlorophenol (Cox, 1995) and the p-chlorophenol derivative (Rivera, et al. 2010), indicating a lower tendency to form a quinoid-type structure, reducing the delocalization of electronic density presumably due the electron-donating effect of the methyl groups in the 3 and 5 positions.

Related literature top

For related structures, see: Rivera et al. (2010); Cox (1995). For related quantum-chemical literature, see: Zierkiewicz et al. (2000, 2003, 2004).

Experimental top

A solution of 3,5-dimethyl-4-chlorophenol (313 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise to a solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo [8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) prepared beforehand following previously described procedures, in dioxane (3 ml) and water (4 ml). The mixture was refluxed for about 8 h until precipitation of a colourless solid. The resulting solid was collected by filtration, washed with cool methanol and dried under vacuum (yield 50%, m.p. = 497–499 K). Single crystals of racemic (I) were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions with C–H distance 0.96 Å during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl hydrogen atom was refined with a distance restraint d(O—H) = 0.84 (2) Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2–1.5×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: Jana2006 (Petříček et al., 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: Jana2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i(-x, y, -z+1/2).
4,4'-Dichloro-3,3',5,5'-tetramethyl-2,2'-[(3aR,7aR/3aS, 7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3- diyl)bis(methylene)]diphenol top
Crystal data top
C25H32Cl2N2O2F(000) = 984
Mr = 463.4Dx = 1.336 Mg m3
Monoclinic, C2/cMelting point: 498 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.5418 Å
a = 16.6512 (7) ÅCell parameters from 23197 reflections
b = 9.6962 (3) Åθ = 3.1–67°
c = 14.4423 (6) ŵ = 2.73 mm1
β = 98.892 (3)°T = 120 K
V = 2303.73 (15) Å3Block, colourless
Z = 40.53 × 0.36 × 0.16 mm
Data collection top
Agilent Xcalibur
diffractometer with Atlas Gemini detector
2054 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1979 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 5.3°
Rotation method data acquisition using ω scansh = 1919
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)'
k = 1111
Tmin = 0.411, Tmax = 0.734l = 1717
32618 measured reflections
Refinement top
Refinement on F261 constraints
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 2.54(Δ/σ)max = 0.010
2054 reflectionsΔρmax = 0.27 e Å3
144 parametersΔρmin = 0.24 e Å3
1 restraint
Crystal data top
C25H32Cl2N2O2V = 2303.73 (15) Å3
Mr = 463.4Z = 4
Monoclinic, C2/cCu Kα radiation
a = 16.6512 (7) ŵ = 2.73 mm1
b = 9.6962 (3) ÅT = 120 K
c = 14.4423 (6) Å0.53 × 0.36 × 0.16 mm
β = 98.892 (3)°
Data collection top
Agilent Xcalibur
diffractometer with Atlas Gemini detector
2054 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)'
1979 reflections with I > 3σ(I)
Tmin = 0.411, Tmax = 0.734Rint = 0.046
32618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 2.54Δρmax = 0.27 e Å3
2054 reflectionsΔρmin = 0.24 e Å3
144 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz): δ 1.31 (4H, m), 1.87 (2H, m), 2.08 (2H, m), 2.26 (2H, s, ArCH3), 2.28 (2H, s, ArCH3), 2.36 (2H, m), 2.46 (2H, s, NCH2N), 3.68 (2H, d, 2J = 14.0 Hz, ArCH2N), 4.05 (2H, d, 2J = 14.0 Hz, ArCH2N), 6.57 (2H, s), 11.18 (2H, bs). 13C NMR (CDCl3, 100 MHz): δ 16.7, 21.0, 24.0, 28.9, 53.0, 69.2, 75.8, 116.4, 118.3, 125.4, 133.5, 136.7, 155.9.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76734 (2)0.07704 (4)0.93216 (3)0.03586 (17)
O10.53003 (6)0.35475 (10)0.97680 (7)0.0322 (3)
N10.55223 (4)0.45810 (9)0.81461 (5)0.0204 (3)
C10.63836 (7)0.27435 (13)0.89563 (9)0.0222 (4)
C20.69590 (8)0.17091 (14)0.88695 (9)0.0241 (4)
C30.69590 (8)0.05287 (14)0.94211 (9)0.0258 (4)
C40.64130 (8)0.03133 (14)1.00472 (9)0.0261 (4)
C50.58507 (9)0.13507 (14)1.01187 (9)0.0264 (4)
C60.58435 (8)0.25638 (14)0.96017 (9)0.0247 (4)
C70.75806 (9)0.18747 (17)0.82207 (11)0.0348 (5)
C80.64127 (10)0.09641 (15)1.06364 (10)0.0326 (4)
C90.63587 (8)0.40679 (14)0.83881 (9)0.0237 (4)
C100.50.36595 (10)0.750.0261 (5)
C110.54490 (7)0.59416 (13)0.76934 (8)0.0197 (4)
C120.56829 (8)0.71792 (13)0.83144 (9)0.0231 (4)
C130.54453 (8)0.84894 (13)0.77370 (9)0.0267 (4)
H10.5257 (13)0.4090 (18)0.9321 (12)0.0387*
H50.5458290.1228611.0533840.0317*
H7a0.8105540.1603570.8540330.0522*
H7b0.7433540.1304270.7677650.0522*
H7c0.7598280.282180.8031070.0522*
H8a0.6944590.1101251.0988720.0488*
H8b0.60250.086081.1059250.0488*
H8c0.6268410.1746141.0237720.0488*
H9a0.6687770.4756350.8742860.0284*
H9b0.6582490.3900950.7824370.0284*
H100.5331790.3114860.7152570.0313*
H110.5820250.6044710.7251350.0237*
H12a0.6259370.7174360.8520450.0277*
H12b0.5394380.715240.8840520.0277*
H13a0.579330.8591120.7269830.032*
H13b0.5545530.9284720.8133920.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0336 (3)0.0301 (3)0.0424 (3)0.01390 (13)0.00143 (18)0.00539 (13)
O10.0418 (6)0.0280 (5)0.0313 (5)0.0149 (4)0.0196 (4)0.0086 (4)
N10.0172 (5)0.0215 (5)0.0224 (5)0.0011 (4)0.0029 (4)0.0007 (4)
C10.0201 (6)0.0247 (7)0.0209 (6)0.0021 (5)0.0003 (5)0.0019 (5)
C20.0202 (6)0.0272 (7)0.0235 (6)0.0018 (5)0.0006 (5)0.0065 (5)
C30.0231 (7)0.0245 (6)0.0274 (7)0.0061 (5)0.0035 (5)0.0075 (5)
C40.0307 (7)0.0235 (7)0.0217 (6)0.0032 (5)0.0032 (5)0.0050 (5)
C50.0321 (7)0.0258 (7)0.0218 (6)0.0046 (5)0.0058 (5)0.0003 (5)
C60.0271 (7)0.0258 (6)0.0217 (6)0.0056 (5)0.0049 (5)0.0019 (5)
C70.0263 (7)0.0401 (8)0.0393 (8)0.0072 (6)0.0096 (6)0.0021 (6)
C80.0404 (8)0.0252 (7)0.0301 (7)0.0048 (6)0.0010 (6)0.0001 (5)
C90.0177 (6)0.0283 (7)0.0253 (6)0.0024 (5)0.0045 (5)0.0008 (5)
C100.0257 (9)0.0216 (9)0.0297 (9)00.0002 (7)0
C110.0196 (7)0.0223 (6)0.0180 (6)0.0001 (4)0.0052 (5)0.0006 (4)
C120.0234 (6)0.0241 (7)0.0219 (6)0.0010 (5)0.0037 (5)0.0006 (5)
C130.0324 (8)0.0225 (6)0.0254 (6)0.0027 (5)0.0051 (6)0.0004 (5)
Geometric parameters (Å, º) top
O1—C61.3612 (17)C7—H7c0.96
O1—H10.827 (17)C8—H8a0.96
N1—C91.4694 (15)C8—H8b0.96
N1—C101.4746 (10)C8—H8c0.96
N1—C111.4691 (15)C9—H9a0.96
C1—C21.4059 (19)C9—H9b0.96
C1—C61.4026 (19)C10—H100.96
C1—C91.5211 (19)C10—H10i0.96
C2—C31.3945 (19)C11—C11i1.5132 (16)
C2—C71.508 (2)C11—C121.5127 (17)
C3—C41.394 (2)C11—H110.96
C4—C51.389 (2)C12—C131.5376 (18)
C4—C81.503 (2)C12—H12a0.96
C5—C61.3923 (19)C12—H12b0.96
C5—H50.96C13—C13i1.5341 (18)
C7—H7a0.96C13—H13a0.96
C7—H7b0.96C13—H13b0.96
C6—O1—H1106.8 (14)H8b—C8—H8c109.4716
C9—N1—C10112.95 (8)N1—C9—C1111.10 (10)
C9—N1—C11114.86 (9)N1—C9—H9a109.4708
C10—N1—C11105.20 (7)N1—C9—H9b109.4711
C2—C1—C6119.11 (12)C1—C9—H9a109.4716
C2—C1—C9121.08 (12)C1—C9—H9b109.4713
C6—C1—C9119.77 (12)H9a—C9—H9b107.791
C1—C2—C3118.31 (12)N1—C10—N1i105.41 (8)
C1—C2—C7121.47 (12)N1—C10—H10109.4714
C3—C2—C7120.20 (12)N1—C10—H10i109.471
C2—C3—C4123.46 (13)N1i—C10—H10109.471
C3—C4—C5117.04 (12)N1i—C10—H10i109.4714
C3—C4—C8123.25 (13)H10—C10—H10i113.2497
C5—C4—C8119.71 (13)N1—C11—C11i100.00 (9)
C4—C5—C6121.47 (13)N1—C11—C12116.90 (9)
C4—C5—H5119.2656N1—C11—H11111.8254
C6—C5—H5119.2654C11i—C11—C12111.59 (10)
O1—C6—C1122.83 (12)C11i—C11—H11117.1086
O1—C6—C5116.63 (12)C12—C11—H11100.2818
C1—C6—C5120.53 (13)C11—C12—C13108.22 (10)
C2—C7—H7a109.4708C11—C12—H12a109.4707
C2—C7—H7b109.4713C11—C12—H12b109.4717
C2—C7—H7c109.4707C13—C12—H12a109.4709
H7a—C7—H7b109.4715C13—C12—H12b109.4717
H7a—C7—H7c109.4716H12a—C12—H12b110.6913
H7b—C7—H7c109.4714C12—C13—C13i113.08 (11)
C4—C8—H8a109.4711C12—C13—H13a109.4717
C4—C8—H8b109.4712C12—C13—H13b109.4711
C4—C8—H8c109.471C13i—C13—H13a109.4708
H8a—C8—H8b109.472C13i—C13—H13b109.472
H8a—C8—H8c109.4704H13a—C13—H13b105.6049
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.827 (17)1.880 (19)2.6259 (13)149.4 (19)
C12—H12B···O1ii0.962.563.4998 (17)166
Symmetry code: (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC25H32Cl2N2O2
Mr463.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)16.6512 (7), 9.6962 (3), 14.4423 (6)
β (°) 98.892 (3)
V3)2303.73 (15)
Z4
Radiation typeCu Kα
µ (mm1)2.73
Crystal size (mm)0.53 × 0.36 × 0.16
Data collection
DiffractometerAgilent Xcalibur
diffractometer with Atlas Gemini detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)'
Tmin, Tmax0.411, 0.734
No. of measured, independent and
observed [I > 3σ(I)] reflections
32618, 2054, 1979
Rint0.046
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.116, 2.54
No. of reflections2054
No. of parameters144
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrysAlis PRO (Agilent, 2010), CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), Jana2006 (Petříček et al., 2006), Diamond (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.827 (17)1.880 (19)2.6259 (13)149.4 (19)
C12—H12B···O1i0.962.563.4998 (17)166
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work, as well as the the project Praemium Academiae of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCox, P. J. (1995). Acta Cryst. C51, 1361–1364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). Jana2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZierkiewicz, W. & &Michalska, D. (2003). J.Phys. Chem. A., 107, 4547–4554.  Web of Science CrossRef CAS Google Scholar
First citationZierkiewicz, W., Michalska, D. & Hobza, P. (2004). Chem. Phys. Lett. 386, 95–100.  Web of Science CrossRef CAS Google Scholar
First citationZierkiewicz, W., Michalska, D. & Zeegers-Huyskens, T. (2000). J. Phys. Chem. A, 104, 11685–11692.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds