organic compounds
4,4′-Dichloro-3,3′,5,5′-tetramethyl-2,2′-[(3aR,7aR/3aS,7aS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3-benzimidazole-1,3-diyl)bis(methylene)]diphenol
aDepartamento de Química, Universidad Nacional de Colombia, Ciudad, Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co
In the title compound, C25H32Cl2N2O2, there are two intramolecular O—H⋯ N hydrogen-bonding interactions between the hydroxy groups on the aromatic rings and the two N atoms of the heterocyclic group. The cyclohexane ring adopts a chair conformation and the imidazolidine unit to which it is fused has a twisted The comprises one half-molecule which is completed by a twofold rotation axis. A C—H⋯O interaction is observed in the crystal structure.
Related literature
For related structures, see: Rivera et al. (2010); Cox (1995). For related quantum-chemical literature, see: Zierkiewicz et al. (2000, 2003, 2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: Jana2006 (Petříček et al., 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: Jana2006.
Supporting information
10.1107/S1600536811028960/go2020sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028960/go2020Isup2.hkl
A solution of 3,5-dimethyl-4-chlorophenol (313 mg, 2.00 mmol) in dioxane (3 ml) was added dropwise to a solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo [8.8.1.18,17.02,7.011,16]icosane (276 mg, 1.00 mmol) prepared beforehand following previously described procedures, in dioxane (3 ml) and water (4 ml). The mixture was refluxed for about 8 h until precipitation of a colourless solid. The resulting solid was collected by filtration, washed with cool methanol and dried under vacuum (yield 50%, m.p. = 497–499 K). Single crystals of racemic (I) were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.
All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions with C–H distance 0.96 Å during the
The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The hydroxyl hydrogen atom was refined with a distance restraint d(O—H) = 0.84 (2) Å. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2–1.5×Ueq of the parent atom.Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: Jana2006 (Petříček et al., 2006); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: Jana2006 (Petříček et al., 2006).Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: i(-x, y, -z+1/2). |
C25H32Cl2N2O2 | F(000) = 984 |
Mr = 463.4 | Dx = 1.336 Mg m−3 |
Monoclinic, C2/c | Melting point: 498 K |
Hall symbol: -C 2yc | Cu Kα radiation, λ = 1.5418 Å |
a = 16.6512 (7) Å | Cell parameters from 23197 reflections |
b = 9.6962 (3) Å | θ = 3.1–67° |
c = 14.4423 (6) Å | µ = 2.73 mm−1 |
β = 98.892 (3)° | T = 120 K |
V = 2303.73 (15) Å3 | Block, colourless |
Z = 4 | 0.53 × 0.36 × 0.16 mm |
Agilent Xcalibur diffractometer with Atlas Gemini detector | 2054 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 1979 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.046 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.2°, θmin = 5.3° |
Rotation method data acquisition using ω scans | h = −19→19 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010)' | k = −11→11 |
Tmin = 0.411, Tmax = 0.734 | l = −17→17 |
32618 measured reflections |
Refinement on F2 | 61 constraints |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.116 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 2.54 | (Δ/σ)max = 0.010 |
2054 reflections | Δρmax = 0.27 e Å−3 |
144 parameters | Δρmin = −0.24 e Å−3 |
1 restraint |
C25H32Cl2N2O2 | V = 2303.73 (15) Å3 |
Mr = 463.4 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 16.6512 (7) Å | µ = 2.73 mm−1 |
b = 9.6962 (3) Å | T = 120 K |
c = 14.4423 (6) Å | 0.53 × 0.36 × 0.16 mm |
β = 98.892 (3)° |
Agilent Xcalibur diffractometer with Atlas Gemini detector | 2054 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010)' | 1979 reflections with I > 3σ(I) |
Tmin = 0.411, Tmax = 0.734 | Rint = 0.046 |
32618 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 2.54 | Δρmax = 0.27 e Å−3 |
2054 reflections | Δρmin = −0.24 e Å−3 |
144 parameters |
Experimental. 1H NMR (CDCl3, 400 MHz): δ 1.31 (4H, m), 1.87 (2H, m), 2.08 (2H, m), 2.26 (2H, s, ArCH3), 2.28 (2H, s, ArCH3), 2.36 (2H, m), 2.46 (2H, s, NCH2N), 3.68 (2H, d, 2J = 14.0 Hz, ArCH2N), 4.05 (2H, d, 2J = 14.0 Hz, ArCH2N), 6.57 (2H, s), 11.18 (2H, bs). 13C NMR (CDCl3, 100 MHz): δ 16.7, 21.0, 24.0, 28.9, 53.0, 69.2, 75.8, 116.4, 118.3, 125.4, 133.5, 136.7, 155.9. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.76734 (2) | −0.07704 (4) | 0.93216 (3) | 0.03586 (17) | |
O1 | 0.53003 (6) | 0.35475 (10) | 0.97680 (7) | 0.0322 (3) | |
N1 | 0.55223 (4) | 0.45810 (9) | 0.81461 (5) | 0.0204 (3) | |
C1 | 0.63836 (7) | 0.27435 (13) | 0.89563 (9) | 0.0222 (4) | |
C2 | 0.69590 (8) | 0.17091 (14) | 0.88695 (9) | 0.0241 (4) | |
C3 | 0.69590 (8) | 0.05287 (14) | 0.94211 (9) | 0.0258 (4) | |
C4 | 0.64130 (8) | 0.03133 (14) | 1.00472 (9) | 0.0261 (4) | |
C5 | 0.58507 (9) | 0.13507 (14) | 1.01187 (9) | 0.0264 (4) | |
C6 | 0.58435 (8) | 0.25638 (14) | 0.96017 (9) | 0.0247 (4) | |
C7 | 0.75806 (9) | 0.18747 (17) | 0.82207 (11) | 0.0348 (5) | |
C8 | 0.64127 (10) | −0.09641 (15) | 1.06364 (10) | 0.0326 (4) | |
C9 | 0.63587 (8) | 0.40679 (14) | 0.83881 (9) | 0.0237 (4) | |
C10 | 0.5 | 0.36595 (10) | 0.75 | 0.0261 (5) | |
C11 | 0.54490 (7) | 0.59416 (13) | 0.76934 (8) | 0.0197 (4) | |
C12 | 0.56829 (8) | 0.71792 (13) | 0.83144 (9) | 0.0231 (4) | |
C13 | 0.54453 (8) | 0.84894 (13) | 0.77370 (9) | 0.0267 (4) | |
H1 | 0.5257 (13) | 0.4090 (18) | 0.9321 (12) | 0.0387* | |
H5 | 0.545829 | 0.122861 | 1.053384 | 0.0317* | |
H7a | 0.810554 | 0.160357 | 0.854033 | 0.0522* | |
H7b | 0.743354 | 0.130427 | 0.767765 | 0.0522* | |
H7c | 0.759828 | 0.28218 | 0.803107 | 0.0522* | |
H8a | 0.694459 | −0.110125 | 1.098872 | 0.0488* | |
H8b | 0.6025 | −0.08608 | 1.105925 | 0.0488* | |
H8c | 0.626841 | −0.174614 | 1.023772 | 0.0488* | |
H9a | 0.668777 | 0.475635 | 0.874286 | 0.0284* | |
H9b | 0.658249 | 0.390095 | 0.782437 | 0.0284* | |
H10 | 0.533179 | 0.311486 | 0.715257 | 0.0313* | |
H11 | 0.582025 | 0.604471 | 0.725135 | 0.0237* | |
H12a | 0.625937 | 0.717436 | 0.852045 | 0.0277* | |
H12b | 0.539438 | 0.71524 | 0.884052 | 0.0277* | |
H13a | 0.57933 | 0.859112 | 0.726983 | 0.032* | |
H13b | 0.554553 | 0.928472 | 0.813392 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0336 (3) | 0.0301 (3) | 0.0424 (3) | 0.01390 (13) | 0.00143 (18) | −0.00539 (13) |
O1 | 0.0418 (6) | 0.0280 (5) | 0.0313 (5) | 0.0149 (4) | 0.0196 (4) | 0.0086 (4) |
N1 | 0.0172 (5) | 0.0215 (5) | 0.0224 (5) | 0.0011 (4) | 0.0029 (4) | 0.0007 (4) |
C1 | 0.0201 (6) | 0.0247 (7) | 0.0209 (6) | 0.0021 (5) | 0.0003 (5) | −0.0019 (5) |
C2 | 0.0202 (6) | 0.0272 (7) | 0.0235 (6) | 0.0018 (5) | −0.0006 (5) | −0.0065 (5) |
C3 | 0.0231 (7) | 0.0245 (6) | 0.0274 (7) | 0.0061 (5) | −0.0035 (5) | −0.0075 (5) |
C4 | 0.0307 (7) | 0.0235 (7) | 0.0217 (6) | 0.0032 (5) | −0.0032 (5) | −0.0050 (5) |
C5 | 0.0321 (7) | 0.0258 (7) | 0.0218 (6) | 0.0046 (5) | 0.0058 (5) | 0.0003 (5) |
C6 | 0.0271 (7) | 0.0258 (6) | 0.0217 (6) | 0.0056 (5) | 0.0049 (5) | −0.0019 (5) |
C7 | 0.0263 (7) | 0.0401 (8) | 0.0393 (8) | 0.0072 (6) | 0.0096 (6) | −0.0021 (6) |
C8 | 0.0404 (8) | 0.0252 (7) | 0.0301 (7) | 0.0048 (6) | −0.0010 (6) | 0.0001 (5) |
C9 | 0.0177 (6) | 0.0283 (7) | 0.0253 (6) | 0.0024 (5) | 0.0045 (5) | 0.0008 (5) |
C10 | 0.0257 (9) | 0.0216 (9) | 0.0297 (9) | 0 | 0.0002 (7) | 0 |
C11 | 0.0196 (7) | 0.0223 (6) | 0.0180 (6) | −0.0001 (4) | 0.0052 (5) | 0.0006 (4) |
C12 | 0.0234 (6) | 0.0241 (7) | 0.0219 (6) | −0.0010 (5) | 0.0037 (5) | −0.0006 (5) |
C13 | 0.0324 (8) | 0.0225 (6) | 0.0254 (6) | −0.0027 (5) | 0.0051 (6) | −0.0004 (5) |
O1—C6 | 1.3612 (17) | C7—H7c | 0.96 |
O1—H1 | 0.827 (17) | C8—H8a | 0.96 |
N1—C9 | 1.4694 (15) | C8—H8b | 0.96 |
N1—C10 | 1.4746 (10) | C8—H8c | 0.96 |
N1—C11 | 1.4691 (15) | C9—H9a | 0.96 |
C1—C2 | 1.4059 (19) | C9—H9b | 0.96 |
C1—C6 | 1.4026 (19) | C10—H10 | 0.96 |
C1—C9 | 1.5211 (19) | C10—H10i | 0.96 |
C2—C3 | 1.3945 (19) | C11—C11i | 1.5132 (16) |
C2—C7 | 1.508 (2) | C11—C12 | 1.5127 (17) |
C3—C4 | 1.394 (2) | C11—H11 | 0.96 |
C4—C5 | 1.389 (2) | C12—C13 | 1.5376 (18) |
C4—C8 | 1.503 (2) | C12—H12a | 0.96 |
C5—C6 | 1.3923 (19) | C12—H12b | 0.96 |
C5—H5 | 0.96 | C13—C13i | 1.5341 (18) |
C7—H7a | 0.96 | C13—H13a | 0.96 |
C7—H7b | 0.96 | C13—H13b | 0.96 |
C6—O1—H1 | 106.8 (14) | H8b—C8—H8c | 109.4716 |
C9—N1—C10 | 112.95 (8) | N1—C9—C1 | 111.10 (10) |
C9—N1—C11 | 114.86 (9) | N1—C9—H9a | 109.4708 |
C10—N1—C11 | 105.20 (7) | N1—C9—H9b | 109.4711 |
C2—C1—C6 | 119.11 (12) | C1—C9—H9a | 109.4716 |
C2—C1—C9 | 121.08 (12) | C1—C9—H9b | 109.4713 |
C6—C1—C9 | 119.77 (12) | H9a—C9—H9b | 107.791 |
C1—C2—C3 | 118.31 (12) | N1—C10—N1i | 105.41 (8) |
C1—C2—C7 | 121.47 (12) | N1—C10—H10 | 109.4714 |
C3—C2—C7 | 120.20 (12) | N1—C10—H10i | 109.471 |
C2—C3—C4 | 123.46 (13) | N1i—C10—H10 | 109.471 |
C3—C4—C5 | 117.04 (12) | N1i—C10—H10i | 109.4714 |
C3—C4—C8 | 123.25 (13) | H10—C10—H10i | 113.2497 |
C5—C4—C8 | 119.71 (13) | N1—C11—C11i | 100.00 (9) |
C4—C5—C6 | 121.47 (13) | N1—C11—C12 | 116.90 (9) |
C4—C5—H5 | 119.2656 | N1—C11—H11 | 111.8254 |
C6—C5—H5 | 119.2654 | C11i—C11—C12 | 111.59 (10) |
O1—C6—C1 | 122.83 (12) | C11i—C11—H11 | 117.1086 |
O1—C6—C5 | 116.63 (12) | C12—C11—H11 | 100.2818 |
C1—C6—C5 | 120.53 (13) | C11—C12—C13 | 108.22 (10) |
C2—C7—H7a | 109.4708 | C11—C12—H12a | 109.4707 |
C2—C7—H7b | 109.4713 | C11—C12—H12b | 109.4717 |
C2—C7—H7c | 109.4707 | C13—C12—H12a | 109.4709 |
H7a—C7—H7b | 109.4715 | C13—C12—H12b | 109.4717 |
H7a—C7—H7c | 109.4716 | H12a—C12—H12b | 110.6913 |
H7b—C7—H7c | 109.4714 | C12—C13—C13i | 113.08 (11) |
C4—C8—H8a | 109.4711 | C12—C13—H13a | 109.4717 |
C4—C8—H8b | 109.4712 | C12—C13—H13b | 109.4711 |
C4—C8—H8c | 109.471 | C13i—C13—H13a | 109.4708 |
H8a—C8—H8b | 109.472 | C13i—C13—H13b | 109.472 |
H8a—C8—H8c | 109.4704 | H13a—C13—H13b | 105.6049 |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.827 (17) | 1.880 (19) | 2.6259 (13) | 149.4 (19) |
C12—H12B···O1ii | 0.96 | 2.56 | 3.4998 (17) | 166 |
Symmetry code: (ii) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C25H32Cl2N2O2 |
Mr | 463.4 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 120 |
a, b, c (Å) | 16.6512 (7), 9.6962 (3), 14.4423 (6) |
β (°) | 98.892 (3) |
V (Å3) | 2303.73 (15) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.73 |
Crystal size (mm) | 0.53 × 0.36 × 0.16 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with Atlas Gemini detector |
Absorption correction | Analytical (CrysAlis PRO; Agilent, 2010)' |
Tmin, Tmax | 0.411, 0.734 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 32618, 2054, 1979 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.116, 2.54 |
No. of reflections | 2054 |
No. of parameters | 144 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.24 |
Computer programs: CrysAlis PRO (Agilent, 2010), CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), Jana2006 (Petříček et al., 2006), Diamond (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.827 (17) | 1.880 (19) | 2.6259 (13) | 149.4 (19) |
C12—H12B···O1i | 0.96 | 2.56 | 3.4998 (17) | 166 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work, as well as the the project Praemium Academiae of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cox, P. J. (1995). Acta Cryst. C51, 1361–1364. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). Jana2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o2643. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zierkiewicz, W. & &Michalska, D. (2003). J.Phys. Chem. A., 107, 4547–4554. Web of Science CrossRef CAS Google Scholar
Zierkiewicz, W., Michalska, D. & Hobza, P. (2004). Chem. Phys. Lett. 386, 95–100. Web of Science CrossRef CAS Google Scholar
Zierkiewicz, W., Michalska, D. & Zeegers-Huyskens, T. (2000). J. Phys. Chem. A, 104, 11685–11692. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The presence of p-halo substituent in the phenol ring afforded structural consequences such as the deformation of the ring observable in the bond distances and the bond angles values, which is related with the existence of resonance effect (X = Br, Cl) and inductive effect (X = F), according to theoretical results using the MP2 and density functional (B3LYP) methods (Zierkiewicz, et al. 2000 and 2003). Theoretical investigations using NBO analysis suggested that p-chloro substituent induces a decrease of electron density in the lone pair orbital of the O atom with a reinforcement of the delocalization of electronic density to aromatic ring observable in a slight shortening of C—O and C—C bonds (Zierkiewicz, et al. 2004). With the aim to understand the effect of electron-donating groups in the p-halophenol derivatives, we synthesized the title compound (I).
The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. Selected angles and bond lengths are listed in Table 1. These results show the existence of intramolecular hydrogen bonding interactions between the hydroxy H atom and the nitrogen atoms in the imidazolidine moiety. The shorter H—O distance (0.827 (17) Å) in comparison with the p-chlorophenol derivative (Rivera, et al. 2010), indicates a decreasing hydrogen-bonding strength. However, since the N···H and the N···O distances (table 1) are longer by 0.05 Å and 0.03 Å and the observed C—O bond length (1.3612 (17) Å) is in a good agreement with the mentioned related structure, we concluded that the methyl groups do not induce considerably the decrease in hydrogen-bonding strength despite the electron-donating effect on the aromatic rings.
However, the observed C1—C2 and C4—C5 bond length are longer in comparison with the 3,5-dimethyl-4-chlorophenol (Cox, 1995) and the p-chlorophenol derivative (Rivera, et al. 2010), indicating a lower tendency to form a quinoid-type structure, reducing the delocalization of electronic density presumably due the electron-donating effect of the methyl groups in the 3 and 5 positions.