metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-1,4-bis­­(4,5-di­hydro-1,3-oxazol-2-yl)benzene-κ2N:N′]di-μ2-chlorido-cadmium]

aDepartment of Material and Fiber, Nanya Institute of Technology, Chung-Li 320, Taiwan, bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and cDepartment of Materials Science and Engineering, Vanung University, Chung-Li 320, Taiwan
*Correspondence e-mail: sun@nanya.edu.tw

(Received 17 May 2011; accepted 6 July 2011; online 13 July 2011)

In the title coordination polymer, [CdCl2(C12H12N2O2)]n, the CdII ion, situated on an inversion center, is coordinated by four bridging Cl atoms and two N atoms from two 1,4-bis­(4,5-dihydro-1,3-­oxazol-2-yl)benzene (L) ligands in a distorted octa­hedral geometry. Each L ligand also lies across an inversion center and bridges two CdII ions, forming infinite two-dimensional recta­ngular layers running parallel to (010).

Related literature

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Chiang et al. (2008[Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.]); Yeh et al. (2008[Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.], 2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]); Hsu et al. (2009[Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168-176.]). For CdII coordination polymers, see Suen et al. (2007a[Suen, M.-C. & Wang, J.-C. (2007a). J. Coord. Chem. 60, 257-268.],b[Suen, M.-C. & Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197-2205.]). For related structures, see: Wang et al. (2008[Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C12H12N2O2)]

  • Mr = 399.54

  • Triclinic, [P \overline 1]

  • a = 3.9242 (4) Å

  • b = 8.0290 (8) Å

  • c = 10.0778 (10) Å

  • α = 84.632 (2)°

  • β = 81.458 (2)°

  • γ = 84.002 (2)°

  • V = 311.30 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 297 K

  • 0.50 × 0.50 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.319, Tmax = 0.862

  • 1779 measured reflections

  • 1209 independent reflections

  • 1204 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.13

  • 1209 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −1.80 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DAIMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). The CdII complexes containing polydentate ligands showing various type frameworks are also reported (Suen et al., 2007a,b). The Ag(I) complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (L) ligands has been reported, which show various two-dimensional networks (Wang et al., 2008). The Cd2+ cations are sixcoordinated with four Cl atoms and two N atoms from two L ligands (Fig. 1). The Cd···Cd distances separated by the bridging L ligands and Cl atoms are 10.257 (1) and 3.924 (1) Å, while the ligands adopt the anti conformation in the structure (Fig. 2).

Related literature top

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For CdII coodination polymers, see Suen et al. (2007a,b). For related structures, see: Wang et al. (2008).

Experimental top

An aqueous solution (5.0 ml) of cadmium chloride (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 65.2% yield.

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 (phenyl) or 0.97 (methylene) Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DAIMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the two-dimensional net. Ellipsoids are drawn at 30% probability level, and H atoms of spheres of arbitrary radius. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x - 1, y, z.
[Figure 2] Fig. 2. A drawing of the two-dimensional rectangular net.
Poly[[µ2-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- κ2N:N']di-µ2-chlorido-cadmium] top
Crystal data top
[CdCl2(C12H12N2O2)]Z = 1
Mr = 399.54F(000) = 196
Triclinic, P1Dx = 2.131 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9242 (4) ÅCell parameters from 1711 reflections
b = 8.0290 (8) Åθ = 2.6–26.0°
c = 10.0778 (10) ŵ = 2.18 mm1
α = 84.632 (2)°T = 297 K
β = 81.458 (2)°Parallelepiped, colourless
γ = 84.002 (2)°0.50 × 0.50 × 0.07 mm
V = 311.30 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1209 independent reflections
Radiation source: fine-focus sealed tube1204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 24
Tmin = 0.319, Tmax = 0.862k = 99
1779 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.110P)2]
where P = (Fo2 + 2Fc2)/3
1209 reflections(Δ/σ)max = 0.001
88 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 1.80 e Å3
Crystal data top
[CdCl2(C12H12N2O2)]γ = 84.002 (2)°
Mr = 399.54V = 311.30 (5) Å3
Triclinic, P1Z = 1
a = 3.9242 (4) ÅMo Kα radiation
b = 8.0290 (8) ŵ = 2.18 mm1
c = 10.0778 (10) ÅT = 297 K
α = 84.632 (2)°0.50 × 0.50 × 0.07 mm
β = 81.458 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1204 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.862Rint = 0.029
1779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.13Δρmax = 0.93 e Å3
1209 reflectionsΔρmin = 1.80 e Å3
88 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.50000.50000.50000.0206 (2)
Cl0.9164 (2)0.67051 (12)0.60009 (9)0.0232 (3)
O0.2884 (9)0.1013 (4)0.8636 (3)0.0366 (7)
N0.4705 (9)0.2869 (4)0.6933 (3)0.0214 (6)
C10.6062 (11)0.1199 (4)0.6473 (4)0.0276 (8)
H1A0.85690.11060.62900.033*
H1B0.51500.10010.56630.033*
C20.4811 (12)0.0049 (5)0.7647 (4)0.0319 (9)
H2A0.33420.08130.73680.038*
H2B0.67510.06980.80010.038*
C30.3089 (9)0.2623 (4)0.8112 (4)0.0226 (7)
C40.1447 (9)0.3868 (4)0.9047 (3)0.0207 (7)
C50.2302 (9)0.5530 (4)0.8878 (3)0.0217 (7)
H5A0.38570.58790.81410.026*
C60.0839 (9)0.6652 (4)0.9805 (3)0.0217 (7)
H6A0.13630.77640.96730.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0178 (3)0.0218 (3)0.0219 (3)0.00137 (19)0.00280 (19)0.00334 (19)
Cl0.0209 (5)0.0258 (5)0.0226 (5)0.0017 (4)0.0016 (4)0.0068 (4)
O0.051 (2)0.0240 (13)0.0264 (13)0.0061 (13)0.0120 (13)0.0015 (10)
N0.0240 (15)0.0221 (15)0.0168 (14)0.0029 (11)0.0019 (11)0.0025 (11)
C10.031 (2)0.0227 (17)0.0263 (18)0.0054 (14)0.0015 (15)0.0046 (14)
C20.038 (2)0.0235 (18)0.0291 (19)0.0043 (16)0.0064 (16)0.0031 (15)
C30.0192 (17)0.0231 (17)0.0253 (17)0.0002 (13)0.0031 (13)0.0015 (12)
C40.0200 (17)0.0240 (16)0.0176 (15)0.0024 (13)0.0023 (12)0.0044 (12)
C50.0225 (17)0.0238 (16)0.0167 (16)0.0007 (14)0.0000 (12)0.0015 (12)
C60.0269 (19)0.0183 (15)0.0193 (17)0.0018 (13)0.0023 (13)0.0005 (12)
Geometric parameters (Å, º) top
Cd—Ni2.467 (3)C1—H1A0.9700
Cd—N2.467 (3)C1—H1B0.9700
Cd—Cl2.6035 (10)C2—H2A0.9700
Cd—Cli2.6035 (10)C2—H2B0.9700
Cd—Clii2.6557 (9)C3—C41.471 (5)
Cd—Cliii2.6557 (9)C4—C51.398 (5)
Cl—Cdiv2.6557 (9)C4—C6v1.413 (5)
O—C31.355 (4)C5—C61.380 (5)
O—C21.447 (4)C5—H5A0.9300
N—C31.269 (5)C6—C4v1.413 (5)
N—C11.480 (4)C6—H6A0.9300
C1—C21.534 (5)
Ni—Cd—N180.000 (1)C2—C1—H1A110.9
Ni—Cd—Cl87.04 (8)N—C1—H1B110.9
N—Cd—Cl92.96 (8)C2—C1—H1B110.9
Ni—Cd—Cli92.96 (8)H1A—C1—H1B108.9
N—Cd—Cli87.04 (8)O—C2—C1103.7 (3)
Cl—Cd—Cli180.000 (1)O—C2—H2A111.0
Ni—Cd—Clii87.28 (7)C1—C2—H2A111.0
N—Cd—Clii92.72 (7)O—C2—H2B111.0
Cl—Cd—Clii96.51 (3)C1—C2—H2B111.0
Cli—Cd—Clii83.49 (3)H2A—C2—H2B109.0
Ni—Cd—Cliii92.72 (7)N—C3—O117.9 (3)
N—Cd—Cliii87.28 (7)N—C3—C4128.7 (3)
Cl—Cd—Cliii83.49 (3)O—C3—C4113.4 (3)
Cli—Cd—Cliii96.51 (3)C5—C4—C6v119.2 (3)
Clii—Cd—Cliii180.000 (1)C5—C4—C3121.3 (3)
Cd—Cl—Cdiv96.51 (3)C6v—C4—C3119.3 (3)
C3—O—C2106.9 (3)C6—C5—C4120.0 (3)
C3—N—C1107.0 (3)C6—C5—H5A120.0
C3—N—Cd140.4 (2)C4—C5—H5A120.0
C1—N—Cd109.9 (2)C5—C6—C4v120.8 (3)
N—C1—C2104.5 (3)C5—C6—H6A119.6
N—C1—H1A110.9C4v—C6—H6A119.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[CdCl2(C12H12N2O2)]
Mr399.54
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)3.9242 (4), 8.0290 (8), 10.0778 (10)
α, β, γ (°)84.632 (2), 81.458 (2), 84.002 (2)
V3)311.30 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.50 × 0.50 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.319, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
1779, 1209, 1204
Rint0.029
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.13
No. of reflections1209
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 1.80

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DAIMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M.-C. & Wang, J.-C. (2007a). J. Coord. Chem. 60, 257–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuen, M.-C. & Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197–2205.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177–1184.  Web of Science CSD CrossRef Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds