organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-(+)-2-{[(3-Methyl-4-nitro­pyridin-2-yl)meth­yl]sulfin­yl}-1H-benzimidazole

aResearch and Development, API-PDT-03, Integrated Product Development (IPD), Innovation Plaza, Dr Reddy's Laboratories Ltd, Bachupally, Qutubullapur, Hyderabad 500 072, India, and bCentre of Excellence in Polymorphism and Particle Engineering, Integrated Product Development (IPD), Innovation Plaza, Dr Reddy's Laboratories Ltd, Bachupally, Qutubullapur, Hyderabad 500 072, India
*Correspondence e-mail: vishweshwarp@drreddys.com

(Received 23 May 2011; accepted 25 July 2011; online 30 July 2011)

The title compound, C14H12N4O3S, is an inter­mediate of Dexlansoprazole, a proton pump inhibitor (PPI) mainly developed for anti-ulcer activity. The absolute configuration of the title compound was determined as R. The crystal structure reveals that the mol­ecules form chains along the b axis through N—H⋯N and C—H⋯O hydrogen-bonded dimers. These chains are connected via weak C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Kumar et al. (2009[Kumar, K. N., Nagaraju, M., Srinivas, G., Kumar, N. U., Anitha, N., Reddy, B. S., Vishwasrao, P. S., Kumar, T. A., Reddy, P. S., Gulabrao, S. S., Ashok, S. & Varma, M. S. (2009). Patent WO 2009/117489 A1.]). For background to this class of anti-ulcer drugs, see: Arimori et al. (1998[Arimori, K., Yasuda, K., Katsuki, H. & Nakana, M. (1998). J. Pharm. Pharmacol. 50, 1241-1245.]); Masa et al. (2001[Masa, K., Hamada, A., Arimori, K., Fujii, J. & Nakano, M. (2001). Biol. Pharm. Bull. 24, 274-277.]). For a related structure, see: Fujishima et al. (2002[Fujishima, A., Aoki, I. & Kamiyama, K. (2002). US Patent No. 6462058B1.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O3S

  • Mr = 316.33

  • Monoclinic, P 21

  • a = 7.7422 (13) Å

  • b = 11.0505 (15) Å

  • c = 8.2318 (13) Å

  • β = 103.697 (7)°

  • V = 684.24 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.942, Tmax = 0.950

  • 7636 measured reflections

  • 2752 independent reflections

  • 2601 reflections with F2 > 2σ(F2)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.038

  • S = 1.25

  • 2752 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1292 Friedel pairs

  • Flack parameter: −0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.881 (17) 2.553 (18) 3.425 (2) 170.5 (13)
C2—H2⋯O1ii 0.95 2.33 3.251 (2) 164
C12—H12⋯O2iii 0.95 2.55 3.164 (2) 122
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x-1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006[Molecular Structure Corporation & Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al. 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al. 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Dexlansoprazole II ((R)-(+)) (Fig. 1), (R)-enantiomer of Lansoprazole, is a proton pump inhibitor (PPI) mainly developed for anti-ulcer activity by TAP Pharmaceuticals Ltd., employing new modified-release technology (Arimori et al. 1998; Masa et al. 2001). Dexlansoprazole II ((R)-(+)) was first approved by United States Food and Drug Administration (US-FDA) in the form of 30 and 60 mg capsules for the management of patients with erosive oesophagitis and non-erosive reflux disease (GERD or GORD), under the brand name of DEXILANT.

An alternative and large-scale synthetic method for II ((R)-(+)) was developed in our laboratory by employing asymmetric oxidation conditions on prochiral nitrosulfide intermediate to yield enantiomerically enriched nitro sulphoxide derivative of the title compound I ((R)-(+)) as first stage intermediate (>90% ee) (Kumar et al. 2009). Titanium derived chiral complex (2.2:1.1:0.6 ratio of Titanium (IV)-i-propoxide:(+)-Diethyl L-tartrate:Water) was used in the reaction to induce the chirality. The enantiomerically enriched title compound I ((R)-(+)) as a resultant was subjected to acetone mediated crystallization to yield enantiopure I ((R)-(+)) (>97% ee) which on treatment with potassium salt of 2,2,2-triflouroethanol in dimethylformamide (DMF) yielded Dexlansoprazole II ((R)-(+)) with ICH quality having >99.8% ee.

The structure and stereochemistry of Dexlansoprazole II ((R)-(+)) was well established in the literature with various spectroscopic and single-crystal X-ray diffraction (Fujishima et al. 2002). Herein we have determined the absolute configuration of the title compound I as `R' by anomalous dispersion (Fig. 2). The Flack parameter value, -0.02 (4) for the assigned absolute configuration, suggest that it is correct with high accuracy. The title compound is enantipure sulphoxide containing substituents of benzimidazole and 2-(3-methyl-4-nitro-pyridin-2-yl) methane moieties with dextro (d)- optical configuration. The crystal structure reveals that title molecules are forming chains along the b axis through N1—H···N2 and C2—H···O1 hydrogen-bonded dimers. Such chains are connected via weak C12—H···O2 hydrogen bonds (Fig. 3).

Related literature top

For the synthesis of the title compound, see: Kumar et al. (2009). For background to this class of anti-ulcer drugs, see: Arimori et al. (1998); Masa et al. (2001). For a related structure, see: Fujishima et al. (2002). [Please check added text]

Experimental top

A mixture of enantiomerically enriched title compound I ((R)-(+)) (12 g, 0.038 mol) and acetone (264 ml) were heated to 45–50 °C until clear solution obtained. The resulting clear solution was cooled to -5 to 0 °C and stirred for 1.0–1.5 h. The precipitated I (RS)-(±) was filtered and the filtrate was evaporated under vacuum at below 45 °C to obtain thick residue of the title compound I ((R)-(+)). The resulting thick residue of the title compound I ((R)-(+)) was dissolved in dichloromethane and kept for slow solvent evaporation to grow single crystals.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al. 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al. 2003); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CrystalStructure (Molecular Structure Corporation & Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. Schematic diagram of Dexlansoprazole (II) ((R)-(+)).
[Figure 2] Fig. 2. Molecular structure of (I), showing the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii.
[Figure 3] Fig. 3. Crystal packing of (I).
(R)-(+)-2-{[(3-Methyl-4-nitropyridin-2-yl)methyl]sulfinyl}- 1H-benzimidazole top
Crystal data top
C14H12N4O3SF(000) = 328.00
Mr = 316.33Dx = 1.535 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 4183 reflections
a = 7.7422 (13) Åθ = 1.8–27.5°
b = 11.0505 (15) ŵ = 0.26 mm1
c = 8.2318 (13) ÅT = 298 K
β = 103.697 (7)°Prism, colourless
V = 684.24 (18) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
2601 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1010
Tmin = 0.942, Tmax = 0.950k = 1313
7636 measured reflectionsl = 710
2752 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.038Δρmax = 0.48 e Å3
S = 1.25Δρmin = 0.37 e Å3
2752 reflectionsAbsolute structure: Flack (1983), with 1292 Friedel pairs
215 parametersAbsolute structure parameter: 0.02 (4)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
C14H12N4O3SV = 684.24 (18) Å3
Mr = 316.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7422 (13) ŵ = 0.26 mm1
b = 11.0505 (15) ÅT = 298 K
c = 8.2318 (13) Å0.22 × 0.20 × 0.18 mm
β = 103.697 (7)°
Data collection top
Rigaku Mercury
diffractometer
2752 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2601 reflections with F2 > 2σ(F2)
Tmin = 0.942, Tmax = 0.950Rint = 0.025
7636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038Δρmax = 0.48 e Å3
S = 1.25Δρmin = 0.37 e Å3
2752 reflectionsAbsolute structure: Flack (1983), with 1292 Friedel pairs
215 parametersAbsolute structure parameter: 0.02 (4)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23549 (4)0.46611 (4)0.34638 (4)0.0355 (1)
O10.24188 (14)0.57292 (10)0.23887 (14)0.0447 (3)
O20.55199 (16)0.35772 (11)0.11414 (16)0.0604 (4)
O30.57873 (16)0.49507 (15)0.07757 (16)0.0692 (5)
N10.51652 (18)0.57978 (12)0.55851 (18)0.0374 (4)
N20.52568 (17)0.37538 (12)0.56996 (17)0.0364 (4)
N30.10635 (16)0.66905 (11)0.35720 (17)0.0430 (4)
N40.50763 (15)0.45265 (15)0.05912 (16)0.0469 (4)
C10.43749 (15)0.47231 (17)0.50384 (15)0.0352 (3)
C20.8180 (2)0.36409 (15)0.7887 (2)0.0410 (5)
C30.9495 (2)0.43573 (13)0.8856 (2)0.0438 (5)
C40.9417 (2)0.56196 (15)0.8789 (2)0.0461 (5)
C50.8050 (2)0.62249 (14)0.7738 (2)0.0417 (5)
C60.6711 (2)0.55050 (13)0.67435 (19)0.0343 (5)
C70.6765 (2)0.42432 (13)0.6819 (2)0.0336 (4)
C80.08069 (19)0.50405 (15)0.47829 (19)0.0446 (5)
C90.09062 (19)0.54887 (13)0.36425 (19)0.0371 (4)
C100.21640 (16)0.46761 (16)0.27169 (16)0.0369 (3)
C110.36204 (19)0.52325 (14)0.1662 (2)0.0383 (4)
C120.3806 (2)0.64707 (13)0.1538 (2)0.0434 (5)
C130.2491 (2)0.71654 (15)0.2537 (2)0.0454 (5)
C140.1877 (2)0.33262 (15)0.2842 (2)0.0542 (6)
H10.494 (2)0.6529 (16)0.516 (2)0.055 (5)*
H20.823900.278300.793600.0480*
H31.047500.397800.959500.0500*
H41.034300.607300.949100.0530*
H50.800500.708400.768800.0490*
H120.480000.683600.080200.0510*
H130.261000.802100.249300.0540*
H810.058900.434700.538700.0520*
H820.130400.566400.554500.0530*
H1410.299600.293000.264700.0660*
H1420.125700.306500.203800.0660*
H1430.120000.313400.393200.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0266 (1)0.0382 (2)0.0387 (2)0.0014 (2)0.0019 (1)0.0015 (2)
O10.0386 (5)0.0509 (6)0.0422 (6)0.0037 (4)0.0051 (4)0.0085 (4)
O20.0521 (7)0.0478 (7)0.0793 (9)0.0140 (6)0.0116 (6)0.0158 (6)
O30.0467 (6)0.1104 (13)0.0441 (6)0.0083 (7)0.0019 (5)0.0079 (7)
N10.0350 (7)0.0330 (6)0.0412 (7)0.0040 (5)0.0029 (6)0.0029 (6)
N20.0302 (6)0.0355 (6)0.0401 (7)0.0010 (5)0.0015 (5)0.0009 (6)
N30.0369 (7)0.0406 (7)0.0516 (8)0.0051 (5)0.0110 (6)0.0030 (5)
N40.0320 (6)0.0581 (9)0.0502 (7)0.0062 (7)0.0088 (5)0.0179 (8)
C10.0258 (5)0.0395 (7)0.0381 (6)0.0008 (7)0.0030 (4)0.0012 (8)
C20.0389 (8)0.0372 (8)0.0435 (8)0.0058 (7)0.0028 (7)0.0037 (7)
C30.0322 (7)0.0528 (10)0.0399 (8)0.0058 (6)0.0043 (6)0.0029 (7)
C40.0360 (8)0.0552 (9)0.0414 (9)0.0054 (7)0.0019 (7)0.0057 (8)
C50.0401 (8)0.0343 (7)0.0480 (9)0.0037 (6)0.0053 (7)0.0025 (7)
C60.0311 (8)0.0373 (8)0.0350 (8)0.0025 (6)0.0089 (6)0.0032 (6)
C70.0226 (7)0.0407 (8)0.0355 (8)0.0005 (5)0.0032 (6)0.0015 (5)
C80.0312 (7)0.0580 (10)0.0420 (8)0.0063 (6)0.0038 (6)0.0046 (6)
C90.0280 (7)0.0433 (8)0.0399 (8)0.0042 (5)0.0079 (6)0.0028 (6)
C100.0304 (5)0.0385 (6)0.0433 (6)0.0012 (8)0.0116 (5)0.0006 (9)
C110.0290 (7)0.0430 (8)0.0449 (8)0.0024 (5)0.0126 (7)0.0055 (6)
C120.0366 (8)0.0427 (8)0.0490 (9)0.0051 (6)0.0066 (6)0.0053 (7)
C130.0431 (9)0.0355 (7)0.0566 (9)0.0007 (6)0.0097 (7)0.0000 (7)
C140.0431 (9)0.0394 (8)0.0812 (13)0.0029 (7)0.0172 (9)0.0010 (8)
Geometric parameters (Å, º) top
S1—O11.4831 (12)C6—C71.396 (2)
S1—C11.7806 (13)C8—C91.515 (2)
S1—C81.8460 (16)C9—C101.409 (2)
O2—N41.224 (2)C10—C111.393 (2)
O3—N41.2229 (19)C10—C141.508 (2)
N1—C11.363 (2)C11—C121.377 (2)
N1—C61.381 (2)C12—C131.380 (2)
N2—C11.317 (2)C2—H20.9500
N2—C71.413 (2)C3—H30.9500
N3—C91.3336 (19)C4—H40.9500
N3—C131.333 (2)C5—H50.9500
N4—C111.478 (2)C8—H810.9500
N1—H10.881 (17)C8—H820.9500
C2—C31.384 (2)C12—H120.9500
C2—C71.400 (2)C13—H130.9500
C3—C41.397 (2)C14—H1410.9500
C4—C51.372 (2)C14—H1420.9500
C5—C61.406 (2)C14—H1430.9500
O1—S1—C1104.84 (7)C9—C10—C14121.46 (13)
O1—S1—C8106.76 (7)N4—C11—C12115.39 (14)
C1—S1—C898.26 (6)N4—C11—C10121.95 (14)
C1—N1—C6105.78 (12)C10—C11—C12122.67 (15)
C1—N2—C7103.05 (12)C11—C12—C13117.33 (15)
C9—N3—C13118.24 (14)N3—C13—C12123.01 (15)
O2—N4—O3124.37 (15)C3—C2—H2122.00
O2—N4—C11118.23 (13)C7—C2—H2122.00
O3—N4—C11117.38 (15)C2—C3—H3119.00
C1—N1—H1129.6 (11)C4—C3—H3119.00
C6—N1—H1123.1 (11)C3—C4—H4119.00
N1—C1—N2115.09 (12)C5—C4—H4119.00
S1—C1—N1121.48 (13)C4—C5—H5122.00
S1—C1—N2123.35 (13)C6—C5—H5122.00
C3—C2—C7116.71 (14)S1—C8—H81110.00
C2—C3—C4121.98 (15)S1—C8—H82110.00
C3—C4—C5122.11 (15)C9—C8—H81110.00
C4—C5—C6116.34 (14)C9—C8—H82109.00
C5—C6—C7121.95 (14)H81—C8—H82109.00
N1—C6—C5131.98 (14)C11—C12—H12122.00
N1—C6—C7106.07 (13)C13—C12—H12121.00
C2—C7—C6120.90 (14)N3—C13—H13118.00
N2—C7—C6110.00 (13)C12—C13—H13119.00
N2—C7—C2129.10 (14)C10—C14—H141109.00
S1—C8—C9107.75 (10)C10—C14—H142110.00
N3—C9—C8114.20 (13)C10—C14—H143109.00
N3—C9—C10124.54 (14)H141—C14—H142109.00
C8—C9—C10121.22 (13)H141—C14—H143109.00
C9—C10—C11114.19 (15)H142—C14—H143109.00
C11—C10—C14124.31 (14)
O1—S1—C1—N131.07 (13)C3—C2—C7—C60.4 (2)
O1—S1—C1—N2145.56 (12)C2—C3—C4—C51.2 (3)
C8—S1—C1—N178.80 (12)C3—C4—C5—C60.9 (2)
C8—S1—C1—N2104.57 (12)C4—C5—C6—N1179.22 (16)
O1—S1—C8—C951.34 (12)C4—C5—C6—C70.0 (2)
C1—S1—C8—C9159.64 (11)N1—C6—C7—N20.34 (18)
C6—N1—C1—S1177.91 (10)N1—C6—C7—C2179.94 (14)
C6—N1—C1—N21.02 (17)C5—C6—C7—N2179.71 (14)
C1—N1—C6—C5178.93 (16)C5—C6—C7—C20.7 (2)
C1—N1—C6—C70.35 (17)S1—C8—C9—N399.34 (14)
C7—N2—C1—S1178.01 (10)S1—C8—C9—C1078.74 (15)
C7—N2—C1—N11.18 (16)N3—C9—C10—C111.2 (2)
C1—N2—C7—C2179.54 (16)N3—C9—C10—C14178.94 (14)
C1—N2—C7—C60.90 (17)C8—C9—C10—C11176.73 (13)
C13—N3—C9—C8176.84 (14)C8—C9—C10—C141.1 (2)
C13—N3—C9—C101.2 (2)C9—C10—C11—N4179.93 (14)
C9—N3—C13—C120.1 (2)C9—C10—C11—C120.1 (2)
O2—N4—C11—C1036.3 (2)C14—C10—C11—N42.2 (2)
O2—N4—C11—C12143.88 (15)C14—C10—C11—C12177.62 (15)
O3—N4—C11—C10145.52 (15)N4—C11—C12—C13178.95 (14)
O3—N4—C11—C1234.3 (2)C10—C11—C12—C131.2 (2)
C7—C2—C3—C40.5 (2)C11—C12—C13—N31.2 (2)
C3—C2—C7—N2179.93 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.881 (17)2.553 (18)3.425 (2)170.5 (13)
C2—H2···O1ii0.952.333.251 (2)164
C12—H12···O2iii0.952.553.164 (2)122
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N4O3S
Mr316.33
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.7422 (13), 11.0505 (15), 8.2318 (13)
β (°) 103.697 (7)
V3)684.24 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.942, 0.950
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7636, 2752, 2601
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.038, 1.25
No. of reflections2752
No. of parameters215
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.37
Absolute structureFlack (1983), with 1292 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Molecular Structure Corporation & Rigaku, 2006), SIR2004 (Burla et al. 2005), CRYSTALS (Betteridge et al. 2003), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.881 (17)2.553 (18)3.425 (2)170.5 (13)
C2—H2···O1ii0.95002.33003.251 (2)164.00
C12—H12···O2iii0.95002.55003.164 (2)122.00
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x1, y+1/2, z.
 

Footnotes

DRL-IPD Communication No. IPDO-IPM-00262.

Acknowledgements

The authors are grateful to the management of IPDO-API and Dr Reddy's Laboratories Ltd for encouragement. Many thanks to our colleagues Srinivas Gangula, Naredla Anitha and Baddam Sudhakar Reddy for their support in the overall process development.

References

First citationArimori, K., Yasuda, K., Katsuki, H. & Nakana, M. (1998). J. Pharm. Pharmacol. 50, 1241–1245.  CrossRef CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujishima, A., Aoki, I. & Kamiyama, K. (2002). US Patent No. 6462058B1.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKumar, K. N., Nagaraju, M., Srinivas, G., Kumar, N. U., Anitha, N., Reddy, B. S., Vishwasrao, P. S., Kumar, T. A., Reddy, P. S., Gulabrao, S. S., Ashok, S. & Varma, M. S. (2009). Patent WO 2009/117489 A1.  Google Scholar
First citationMasa, K., Hamada, A., Arimori, K., Fujii, J. & Nakano, M. (2001). Biol. Pharm. Bull. 24, 274–277.  CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds