organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-1-[4-(methyl­sulfan­yl)benzyl­­idene]thio­semicarbazide

aNo. 503 Faculty, Xi'an Research Institute of High Technology, Hongqing Town., Xi'an 710025, People's Republic of China
*Correspondence e-mail: zhouliyou111@163.com

(Received 31 May 2011; accepted 13 July 2011; online 16 July 2011)

The title compound, C10H13N3S2, is roughly planar (r.m.s. deviation = 0.086 Å). In the crystal, N—H⋯S hydrogen bonds link the mol­ecules into (001) sheets.

Related literature

For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3S2

  • Mr = 239.35

  • Monoclinic, C 2/c

  • a = 14.123 (3) Å

  • b = 7.7789 (16) Å

  • c = 21.384 (4) Å

  • β = 96.31 (3)°

  • V = 2335.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10756 measured reflections

  • 2680 independent reflections

  • 2368 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.170

  • S = 1.35

  • 2680 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S2i 0.86 2.48 3.3195 (17) 166
N1—H1A⋯S2ii 0.86 2.72 3.430 (2) 141
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 4-methylthiosemicarbazide (0.1 mol), and 4-(methylthio)benzaldehyde (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.076 mol, yield 76%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

The absolute structure was indeterminate in the present study. H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids.
4-Methyl-1-[4-(methylsulfanyl)benzylidene]thiosemicarbazide top
Crystal data top
C10H13N3S2F(000) = 1008
Mr = 239.35Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.123 (3) ÅCell parameters from 2368 reflections
b = 7.7789 (16) Åθ = 2.9–27.5°
c = 21.384 (4) ŵ = 0.43 mm1
β = 96.31 (3)°T = 293 K
V = 2335.1 (8) Å3Bar, colorless
Z = 80.23 × 0.18 × 0.17 mm
Data collection top
Bruker SMART CCD
diffractometer
2368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
phi and ω scansh = 1818
10756 measured reflectionsk = 1010
2680 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H13N3S2V = 2335.1 (8) Å3
Mr = 239.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.123 (3) ŵ = 0.43 mm1
b = 7.7789 (16) ÅT = 293 K
c = 21.384 (4) Å0.23 × 0.18 × 0.17 mm
β = 96.31 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2368 reflections with I > 2σ(I)
10756 measured reflectionsRint = 0.043
2680 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.35Δρmax = 0.71 e Å3
2680 reflectionsΔρmin = 0.34 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.62610 (3)0.59132 (7)0.31409 (2)0.0160 (2)
S10.65713 (4)0.10944 (9)0.11046 (3)0.0285 (2)
N30.59872 (11)0.4593 (3)0.19951 (7)0.0165 (4)
H3A0.54470.51130.19570.020*
N20.62552 (12)0.3592 (2)0.15110 (7)0.0170 (4)
N10.74248 (12)0.3948 (3)0.25443 (8)0.0180 (4)
H1A0.75380.33590.22210.022*
C90.65908 (13)0.4741 (3)0.25306 (9)0.0152 (4)
C20.62751 (14)0.0364 (3)0.05305 (9)0.0189 (4)
C50.59070 (13)0.2501 (3)0.04735 (8)0.0156 (4)
C70.69010 (14)0.0413 (3)0.00246 (9)0.0203 (5)
H7A0.74410.02800.00630.024*
C30.54653 (14)0.1405 (3)0.05812 (9)0.0191 (4)
H3B0.50480.13990.09490.023*
C60.67274 (13)0.1475 (3)0.05149 (9)0.0181 (4)
H6A0.71580.15100.08760.022*
C80.56888 (13)0.3578 (3)0.09981 (9)0.0166 (4)
H8A0.51420.42530.09610.020*
C100.81565 (14)0.4023 (3)0.30768 (9)0.0197 (5)
H10A0.86970.33560.29860.030*
H10B0.79090.35650.34430.030*
H10C0.83470.51950.31530.030*
C40.52844 (13)0.2450 (3)0.00809 (9)0.0185 (4)
H4A0.47390.31270.01160.022*
C10.56946 (16)0.0720 (3)0.17628 (10)0.0233 (5)
H1B0.58090.14760.21010.035*
H1C0.57350.04520.18990.035*
H1D0.50710.09340.16410.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0166 (3)0.0151 (3)0.0165 (3)0.00181 (16)0.0024 (2)0.00314 (17)
S10.0262 (4)0.0342 (4)0.0247 (3)0.0075 (2)0.0007 (2)0.0115 (2)
N30.0154 (8)0.0176 (10)0.0163 (8)0.0021 (6)0.0008 (6)0.0041 (7)
N20.0205 (8)0.0147 (10)0.0163 (8)0.0016 (7)0.0041 (6)0.0018 (7)
N10.0169 (8)0.0198 (11)0.0170 (8)0.0007 (6)0.0009 (6)0.0052 (6)
C90.0168 (9)0.0116 (11)0.0172 (9)0.0041 (7)0.0026 (6)0.0002 (7)
C20.0205 (10)0.0183 (12)0.0184 (9)0.0014 (8)0.0046 (7)0.0013 (8)
C50.0206 (9)0.0118 (11)0.0147 (8)0.0031 (7)0.0035 (6)0.0016 (7)
C70.0170 (9)0.0220 (13)0.0220 (10)0.0012 (8)0.0031 (7)0.0003 (8)
C30.0208 (10)0.0200 (13)0.0161 (9)0.0015 (8)0.0003 (7)0.0002 (8)
C60.0187 (10)0.0185 (12)0.0168 (9)0.0018 (8)0.0008 (7)0.0009 (8)
C80.0179 (9)0.0145 (12)0.0175 (9)0.0015 (7)0.0021 (7)0.0006 (8)
C100.0157 (10)0.0222 (13)0.0207 (10)0.0005 (7)0.0008 (7)0.0020 (8)
C40.0198 (10)0.0165 (12)0.0190 (9)0.0011 (7)0.0009 (7)0.0026 (8)
C10.0310 (11)0.0201 (13)0.0194 (10)0.0045 (8)0.0049 (8)0.0019 (8)
Geometric parameters (Å, º) top
S2—C91.699 (2)C5—C81.460 (3)
S1—C21.756 (2)C7—C61.378 (3)
S1—C11.793 (2)C7—H7A0.9300
N3—C91.355 (2)C3—C41.389 (3)
N3—N21.381 (2)C3—H3B0.9300
N3—H3A0.8600C6—H6A0.9300
N2—C81.285 (2)C8—H8A0.9300
N1—C91.327 (3)C10—H10A0.9600
N1—C101.452 (3)C10—H10B0.9600
N1—H1A0.8600C10—H10C0.9600
C2—C31.396 (3)C4—H4A0.9300
C2—C71.401 (3)C1—H1B0.9600
C5—C41.397 (3)C1—H1C0.9600
C5—C61.402 (3)C1—H1D0.9600
C2—S1—C1104.29 (10)C2—C3—H3B120.1
C9—N3—N2118.85 (16)C7—C6—C5120.56 (17)
C9—N3—H3A120.6C7—C6—H6A119.7
N2—N3—H3A120.6C5—C6—H6A119.7
C8—N2—N3116.64 (17)N2—C8—C5119.77 (18)
C9—N1—C10123.52 (17)N2—C8—H8A120.1
C9—N1—H1A118.2C5—C8—H8A120.1
C10—N1—H1A118.2N1—C10—H10A109.5
N1—C9—N3116.98 (18)N1—C10—H10B109.5
N1—C9—S2123.37 (15)H10A—C10—H10B109.5
N3—C9—S2119.65 (15)N1—C10—H10C109.5
C3—C2—C7119.05 (19)H10A—C10—H10C109.5
C3—C2—S1125.22 (15)H10B—C10—H10C109.5
C7—C2—S1115.70 (16)C3—C4—C5121.24 (18)
C4—C5—C6118.41 (17)C3—C4—H4A119.4
C4—C5—C8120.17 (17)C5—C4—H4A119.4
C6—C5—C8121.41 (17)S1—C1—H1B109.5
C6—C7—C2120.85 (19)S1—C1—H1C109.5
C6—C7—H7A119.6H1B—C1—H1C109.5
C2—C7—H7A119.6S1—C1—H1D109.5
C4—C3—C2119.87 (18)H1B—C1—H1D109.5
C4—C3—H3B120.1H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S2i0.862.483.3195 (17)166
N1—H1A···S2ii0.862.723.430 (2)141
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H13N3S2
Mr239.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.123 (3), 7.7789 (16), 21.384 (4)
β (°) 96.31 (3)
V3)2335.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.23 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10756, 2680, 2368
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.170, 1.35
No. of reflections2680
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S2i0.862.483.3195 (17)166
N1—H1A···S2ii0.862.723.430 (2)141
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Yu-Feng Li (Weifang University) for the data collection and initial processing of the CIF.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds