organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(4-tert-Butyl­phen­yl)-1-(4-chloro-1-ethyl-3-methyl-1H-pyrazol-5-yl)-2-cyano­vinyl pivalate

aEnvironmental Monitoring Station of Xinganmeng, Ulanhot 137400, People's Republic of China, and bState Key Laboratory of the Discovery and Development of Novel Pesticides, Shenyang Research Institute of Chemical Industry Co. Ltd, Shenyang 110021, People's Republic of China
*Correspondence e-mail: libin1@sinochem.com

(Received 16 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, C24H30ClN3O2, the dihedral angle between the benzene and pyrazole rings is 56.86 (7)°. The C=C bond is significantly twisted, as indicated by the dihedral angle of 12.26 (1)° between the two sets of three atoms linked by the double bond.

Related literature

The bioactivity of isomers of acrylonitrile compounds often differ, see: Kenzo et al. (2006[Kenzo, F., Yasuo, K., Norio, T., Hideaki, S., Masatoshi, O. & Koichi, N. (2006). US Patent 20060178523.]); Yang et al. (2009[Yang, P., Shen, D. L., Tan, C. X., Weng, J. Q., Lu, Q., Wei, Y. C. & Kong, X. L. (2009). Zhejiang Daxue Xuebao, 36, 183-185.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30ClN3O2

  • Mr = 427.96

  • Monoclinic, P 21

  • a = 10.1796 (7) Å

  • b = 10.5648 (7) Å

  • c = 12.3632 (8) Å

  • β = 110.613 (1)°

  • V = 1244.48 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.38 × 0.34 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 1.000

  • 6437 measured reflections

  • 4354 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.03

  • 4354 reflections

  • 276 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2014 Friedel pairs

  • Flack parameter: 0.06 (6)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylonitrile compounds display a broad range of biological, medical and pharmacological properties. There is a double bond in the molecule of the acrylonitrile compounds, and both geometric isomers referred to as the E- and Z-isomer can be present. The bioactivities of them often differ from each other (Kenzo et al., 2006; Yang et al. 2009). In the process of preparation of the title compound, its geometric isomer product was also afforded, which showed obviously different acaricidal activity with the title compound. In order to confirm the geometry configuration, we report the crystal structure of the title compound (I) in this paper. The molecular structure of (I) is shown in Fig. 1. The the benzene and pyrazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 56.86 (7)°. The dihedral angle between C7/C6/O1 and C15/C13/C14 is 12.26 (1)°. The C(14)—C(13)—C(15)—C(20), O(1)—C(6)—C(13)—C(14), C(7)—C(6)—C(13)—C(14) and C(5)—O(1)—C(6)—C(7) torsion angles are -44.9 (3), -13.6 (3), 172.1 (2) and -69.5 (2)°, respectively. The crystal packing of (I) shows in Fig. 2. No significant interactions, such as hydrogen bonds or pi-pi stacking, are observed in (I). Examination of this structure with PLATON(Spek, 2009) reveals no solvent-accessible voids in the unit cell.

Related literature top

The bioactivity of isomers of acrylonitrile compounds often differ, see: Kenzo et al. (2006); Yang et al. (2009).

Experimental top

The title compound was synthesized by 2-(4-(tert-butyl) phenyl)-3-(4-chloro-1-ethyl-3-methyl-1H-pyrazol-5-yl) -3-hydroxyacrylonitrile with pivaloyl chloride in THF. The crude products were purified by silica-gel column chromatography and then grown from heptane to afford colorless blocks of (I). To the mixture of 2-(4-(tert-butyl)phenyl)-3-(4-chloro- 1-ethyl-3-methyl-1H-pyrazol-5-yl)-3-hydroxyacrylonitrile (0.69 g, 2.0 mmol) and triethyl amine (0.24 g, 2.4 mmol) in THF (10 ml), pivaloyl chloride (0.29 g, 2.4 mmol) was added dropwise at roomtemperature and reacted for 1 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/20), The title product compound was gained as a white solid (0.13 g, 15%).

Anal. Calcd for C24H30Cl1N3O2: C, 67.35; H, 7.07; Cl, 8.28; N, 9.82; O, 7.48. Found: C, 67.33; H, 7.11; N, Cl, 8.32; N, 9.85; O, 7.52. 1H NMR(DMSO): 0.98 (s, 9H, CO(CH3)3), 1.27 (s, 9H, Ph-(CH3)3), 1.36 (t, 3H, CH3), 2.25 (s, 3H, CH3), 3.60 (q, 2H, N—CH2), 7.06 (d, 2H, Ph), 7.31 (d, 2H, Ph).

Refinement top

Although all H atoms were visible in difference maps, they werefinally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I).
(Z)-2-(4-tert-Butylphenyl)-1-(4-chloro-1-ethyl-3-methyl- 1H-pyrazol-5-yl)-2-cyanovinyl pivalate top
Crystal data top
C24H30ClN3O2F(000) = 456
Mr = 427.96Dx = 1.142 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.1796 (7) ÅCell parameters from 2837 reflections
b = 10.5648 (7) Åθ = 2.6–22.6°
c = 12.3632 (8) ŵ = 0.18 mm1
β = 110.613 (1)°T = 296 K
V = 1244.48 (14) Å3Block, colorless
Z = 20.38 × 0.34 × 0.28 mm
Data collection top
Bruker SMART CCD
diffractometer
4354 independent reflections
Radiation source: fine-focus sealed tube3756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.757, Tmax = 1.000k = 1212
6437 measured reflectionsl = 714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0882P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4354 reflectionsΔρmax = 0.14 e Å3
276 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 2014 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C24H30ClN3O2V = 1244.48 (14) Å3
Mr = 427.96Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.1796 (7) ŵ = 0.18 mm1
b = 10.5648 (7) ÅT = 296 K
c = 12.3632 (8) Å0.38 × 0.34 × 0.28 mm
β = 110.613 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3756 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.000Rint = 0.014
6437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.17 e Å3
4354 reflectionsAbsolute structure: Flack (1983), 2014 Friedel pairs
276 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91735 (8)0.12628 (7)0.43386 (5)0.0805 (2)
O10.88635 (15)0.00475 (13)0.67430 (13)0.0546 (4)
O20.6841 (2)0.0528 (2)0.6923 (2)0.1073 (8)
N10.83545 (19)0.33952 (17)0.65433 (15)0.0533 (4)
N20.7959 (2)0.41956 (19)0.56420 (17)0.0611 (5)
N31.0994 (3)0.0527 (2)0.9522 (2)0.0910 (8)
C10.8112 (4)0.2484 (3)0.6992 (3)0.0988 (10)
H1A0.90570.23030.70430.148*
H1B0.78660.33270.67000.148*
H1C0.80450.24180.77450.148*
C20.5602 (4)0.1789 (4)0.6095 (4)0.1147 (13)
H2A0.55590.18020.68590.172*
H2B0.53010.25920.57290.172*
H2C0.49990.11330.56500.172*
C30.7257 (4)0.1646 (4)0.4991 (3)0.1048 (11)
H3A0.67150.09950.44890.157*
H3B0.69260.24610.46640.157*
H3C0.82270.15540.50770.157*
C40.7104 (3)0.1533 (3)0.6172 (2)0.0666 (6)
C50.7515 (2)0.0214 (2)0.6629 (2)0.0581 (6)
C60.9388 (2)0.1258 (2)0.70985 (16)0.0475 (4)
C70.8815 (2)0.2278 (2)0.62748 (17)0.0483 (5)
C80.8687 (2)0.2379 (2)0.51326 (17)0.0532 (5)
C90.8173 (2)0.3588 (2)0.47794 (19)0.0567 (5)
C100.8154 (2)0.3768 (2)0.76083 (17)0.0670 (6)
H10A0.86850.45330.79040.080*
H10B0.85130.31070.81820.080*
C110.6638 (2)0.3997 (2)0.74279 (17)0.1022 (11)
H11A0.62890.46740.68840.153*
H11B0.65470.42230.81500.153*
H11C0.61090.32420.71340.153*
C120.7861 (3)0.4190 (3)0.3620 (2)0.0822 (8)
H12A0.70610.37850.30670.123*
H12B0.86580.40990.33820.123*
H12C0.76630.50730.36670.123*
C131.0443 (2)0.1363 (2)0.81182 (16)0.0479 (4)
C141.0747 (2)0.0294 (2)0.8883 (2)0.0589 (6)
C151.1321 (2)0.2504 (2)0.85119 (16)0.0481 (5)
C161.1890 (2)0.3123 (2)0.78031 (18)0.0578 (6)
H161.17150.28230.70580.069*
C171.2721 (2)0.4187 (2)0.81808 (19)0.0583 (5)
H171.30870.45900.76810.070*
C181.3018 (2)0.4663 (2)0.9282 (2)0.0543 (5)
C191.2453 (3)0.4019 (3)0.9993 (2)0.0660 (6)
H191.26290.43151.07390.079*
C201.1640 (3)0.2955 (2)0.96248 (19)0.0630 (6)
H201.12990.25331.01320.076*
C211.3905 (3)0.5854 (2)0.9708 (2)0.0702 (7)
C221.4498 (5)0.6366 (4)0.8833 (4)0.1287 (15)
H22A1.51040.57440.86880.193*
H22B1.50230.71230.91300.193*
H22C1.37430.65560.81260.193*
C231.5085 (5)0.5570 (5)1.0820 (4)0.1517 (19)
H23A1.57330.49951.06730.227*
H23B1.47140.51931.13580.227*
H23C1.55630.63421.11400.227*
C241.2955 (5)0.6859 (4)0.9907 (6)0.170 (2)
H24A1.34990.75951.02410.255*
H24B1.25150.65381.04220.255*
H24C1.22470.70810.91830.255*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1082 (5)0.0814 (4)0.0610 (3)0.0026 (4)0.0413 (3)0.0081 (3)
O10.0532 (8)0.0480 (8)0.0624 (9)0.0004 (6)0.0201 (7)0.0052 (7)
O20.0921 (14)0.0818 (14)0.178 (2)0.0117 (12)0.0853 (16)0.0348 (15)
N10.0636 (11)0.0477 (10)0.0436 (9)0.0047 (9)0.0125 (8)0.0029 (8)
N20.0659 (12)0.0518 (11)0.0584 (11)0.0022 (9)0.0130 (9)0.0111 (9)
N30.1001 (17)0.0791 (16)0.0874 (17)0.0104 (14)0.0250 (14)0.0343 (15)
C10.132 (3)0.0590 (17)0.102 (2)0.0037 (18)0.037 (2)0.0024 (16)
C20.092 (2)0.113 (3)0.154 (3)0.044 (2)0.062 (2)0.035 (3)
C30.136 (3)0.105 (2)0.081 (2)0.043 (2)0.0475 (19)0.0326 (19)
C40.0687 (15)0.0691 (15)0.0645 (14)0.0174 (13)0.0267 (12)0.0106 (13)
C50.0579 (13)0.0565 (13)0.0620 (13)0.0018 (11)0.0237 (11)0.0025 (11)
C60.0525 (11)0.0435 (10)0.0486 (10)0.0008 (10)0.0205 (9)0.0027 (10)
C70.0492 (11)0.0481 (12)0.0437 (11)0.0029 (9)0.0116 (8)0.0015 (9)
C80.0534 (12)0.0613 (14)0.0425 (11)0.0060 (10)0.0139 (9)0.0029 (10)
C90.0533 (12)0.0623 (14)0.0474 (12)0.0064 (10)0.0089 (9)0.0106 (11)
C100.0819 (16)0.0622 (14)0.0536 (13)0.0178 (12)0.0196 (11)0.0029 (11)
C110.101 (2)0.129 (3)0.088 (2)0.046 (2)0.0465 (17)0.020 (2)
C120.0894 (18)0.089 (2)0.0608 (15)0.0074 (16)0.0171 (13)0.0255 (14)
C130.0493 (10)0.0498 (11)0.0432 (10)0.0054 (10)0.0146 (8)0.0046 (9)
C140.0578 (13)0.0611 (14)0.0535 (12)0.0024 (11)0.0144 (10)0.0082 (12)
C150.0473 (10)0.0496 (12)0.0435 (11)0.0035 (9)0.0113 (8)0.0036 (9)
C160.0646 (13)0.0678 (15)0.0399 (11)0.0063 (11)0.0173 (9)0.0044 (10)
C170.0624 (13)0.0601 (14)0.0532 (13)0.0079 (11)0.0211 (10)0.0024 (11)
C180.0503 (11)0.0492 (12)0.0581 (13)0.0035 (9)0.0122 (9)0.0026 (10)
C190.0712 (14)0.0778 (17)0.0463 (12)0.0073 (13)0.0172 (11)0.0142 (12)
C200.0714 (14)0.0747 (17)0.0433 (12)0.0100 (13)0.0207 (10)0.0018 (11)
C210.0713 (15)0.0530 (14)0.0815 (17)0.0066 (11)0.0209 (13)0.0120 (12)
C220.160 (4)0.104 (3)0.139 (3)0.067 (3)0.073 (3)0.032 (3)
C230.127 (3)0.126 (3)0.136 (3)0.064 (3)0.035 (3)0.008 (3)
C240.157 (4)0.074 (2)0.299 (7)0.007 (3)0.107 (5)0.066 (4)
Geometric parameters (Å, º) top
Cl1—C81.715 (2)C11—H11B0.9600
O1—C51.358 (3)C11—H11C0.9600
O1—C61.396 (3)C12—H12A0.9600
O2—C51.181 (3)C12—H12B0.9600
N1—N21.343 (2)C12—H12C0.9600
N1—C71.354 (3)C13—C141.434 (3)
N1—C101.456 (3)C13—C151.478 (3)
N2—C91.327 (3)C15—C161.374 (3)
N3—C141.140 (3)C15—C201.382 (3)
C1—C41.536 (4)C16—C171.385 (3)
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C17—C181.382 (3)
C1—H1C0.9600C17—H170.9300
C2—C41.522 (4)C18—C191.386 (3)
C2—H2A0.9600C18—C211.530 (3)
C2—H2B0.9600C19—C201.375 (3)
C2—H2C0.9600C19—H190.9300
C3—C41.527 (4)C20—H200.9300
C3—H3A0.9600C21—C231.504 (5)
C3—H3B0.9600C21—C221.512 (5)
C3—H3C0.9600C21—C241.513 (5)
C4—C51.506 (4)C22—H22A0.9600
C6—C131.342 (3)C22—H22B0.9600
C6—C71.456 (3)C22—H22C0.9600
C7—C81.376 (3)C23—H23A0.9600
C8—C91.391 (3)C23—H23B0.9600
C9—C121.496 (3)C23—H23C0.9600
C10—C111.4985C24—H24A0.9600
C10—H10A0.9700C24—H24B0.9600
C10—H10B0.9700C24—H24C0.9600
C11—H11A0.9600
C5—O1—C6118.67 (16)H11A—C11—H11C109.5
N2—N1—C7111.98 (17)H11B—C11—H11C109.5
N2—N1—C10118.92 (17)C9—C12—H12A109.5
C7—N1—C10128.93 (18)C9—C12—H12B109.5
C9—N2—N1106.04 (18)H12A—C12—H12B109.5
C4—C1—H1A109.5C9—C12—H12C109.5
C4—C1—H1B109.5H12A—C12—H12C109.5
H1A—C1—H1B109.5H12B—C12—H12C109.5
C4—C1—H1C109.5C6—C13—C14118.0 (2)
H1A—C1—H1C109.5C6—C13—C15124.60 (19)
H1B—C1—H1C109.5C14—C13—C15117.39 (17)
C4—C2—H2A109.5N3—C14—C13177.6 (3)
C4—C2—H2B109.5C16—C15—C20117.8 (2)
H2A—C2—H2B109.5C16—C15—C13121.33 (18)
C4—C2—H2C109.5C20—C15—C13120.79 (19)
H2A—C2—H2C109.5C15—C16—C17121.02 (19)
H2B—C2—H2C109.5C15—C16—H16119.5
C4—C3—H3A109.5C17—C16—H16119.5
C4—C3—H3B109.5C18—C17—C16121.6 (2)
H3A—C3—H3B109.5C18—C17—H17119.2
C4—C3—H3C109.5C16—C17—H17119.2
H3A—C3—H3C109.5C17—C18—C19116.8 (2)
H3B—C3—H3C109.5C17—C18—C21122.5 (2)
C5—C4—C2109.1 (2)C19—C18—C21120.8 (2)
C5—C4—C3108.9 (2)C20—C19—C18121.8 (2)
C2—C4—C3111.4 (3)C20—C19—H19119.1
C5—C4—C1109.0 (2)C18—C19—H19119.1
C2—C4—C1110.4 (3)C19—C20—C15120.9 (2)
C3—C4—C1108.1 (3)C19—C20—H20119.5
O2—C5—O1120.6 (2)C15—C20—H20119.5
O2—C5—C4128.0 (2)C23—C21—C22109.5 (3)
O1—C5—C4111.3 (2)C23—C21—C24110.0 (4)
C13—C6—O1117.54 (19)C22—C21—C24107.7 (4)
C13—C6—C7125.9 (2)C23—C21—C18109.6 (2)
O1—C6—C7116.29 (16)C22—C21—C18112.6 (2)
N1—C7—C8105.53 (18)C24—C21—C18107.4 (2)
N1—C7—C6124.18 (18)C21—C22—H22A109.5
C8—C7—C6130.2 (2)C21—C22—H22B109.5
C7—C8—C9106.45 (19)H22A—C22—H22B109.5
C7—C8—Cl1126.27 (18)C21—C22—H22C109.5
C9—C8—Cl1127.17 (16)H22A—C22—H22C109.5
N2—C9—C8109.98 (18)H22B—C22—H22C109.5
N2—C9—C12121.6 (2)C21—C23—H23A109.5
C8—C9—C12128.4 (2)C21—C23—H23B109.5
N1—C10—C11111.96 (10)H23A—C23—H23B109.5
N1—C10—H10A109.2C21—C23—H23C109.5
C11—C10—H10A109.2H23A—C23—H23C109.5
N1—C10—H10B109.2H23B—C23—H23C109.5
C11—C10—H10B109.2C21—C24—H24A109.5
H10A—C10—H10B107.9C21—C24—H24B109.5
C10—C11—H11A109.5H24A—C24—H24B109.5
C10—C11—H11B109.5C21—C24—H24C109.5
H11A—C11—H11B109.5H24A—C24—H24C109.5
C10—C11—H11C109.5H24B—C24—H24C109.5
C7—N1—N2—C90.3 (2)Cl1—C8—C9—C122.9 (3)
C10—N1—N2—C9175.99 (18)N2—N1—C10—C1160.59 (19)
C6—O1—C5—O26.7 (3)C7—N1—C10—C11114.27 (19)
C6—O1—C5—C4176.59 (18)O1—C6—C13—C1413.6 (3)
C2—C4—C5—O21.9 (4)C7—C6—C13—C14172.1 (2)
C3—C4—C5—O2123.7 (3)O1—C6—C13—C15166.20 (18)
C1—C4—C5—O2118.6 (3)C7—C6—C13—C158.1 (3)
C2—C4—C5—O1178.4 (2)C6—C13—C14—N3137 (6)
C3—C4—C5—O159.9 (3)C15—C13—C14—N343 (7)
C1—C4—C5—O157.8 (3)C6—C13—C15—C1647.2 (3)
C5—O1—C6—C13115.7 (2)C14—C13—C15—C16132.6 (2)
C5—O1—C6—C769.5 (2)C6—C13—C15—C20135.3 (2)
N2—N1—C7—C80.6 (2)C14—C13—C15—C2044.9 (3)
C10—N1—C7—C8174.54 (19)C20—C15—C16—C171.9 (3)
N2—N1—C7—C6176.18 (18)C13—C15—C16—C17179.5 (2)
C10—N1—C7—C68.7 (3)C15—C16—C17—C180.4 (3)
C13—C6—C7—N153.3 (3)C16—C17—C18—C190.4 (3)
O1—C6—C7—N1132.4 (2)C16—C17—C18—C21178.5 (2)
C13—C6—C7—C8122.7 (2)C17—C18—C19—C200.2 (4)
O1—C6—C7—C851.6 (3)C21—C18—C19—C20179.2 (2)
N1—C7—C8—C91.2 (2)C18—C19—C20—C151.8 (4)
C6—C7—C8—C9175.3 (2)C16—C15—C20—C192.6 (3)
N1—C7—C8—Cl1177.54 (16)C13—C15—C20—C19179.8 (2)
C6—C7—C8—Cl11.0 (3)C17—C18—C21—C23126.8 (4)
N1—N2—C9—C81.1 (2)C19—C18—C21—C2354.3 (4)
N1—N2—C9—C12179.5 (2)C17—C18—C21—C224.7 (4)
C7—C8—C9—N21.5 (2)C19—C18—C21—C22176.4 (3)
Cl1—C8—C9—N2177.76 (17)C17—C18—C21—C24113.7 (4)
C7—C8—C9—C12179.2 (2)C19—C18—C21—C2465.2 (4)

Experimental details

Crystal data
Chemical formulaC24H30ClN3O2
Mr427.96
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.1796 (7), 10.5648 (7), 12.3632 (8)
β (°) 110.613 (1)
V3)1244.48 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.38 × 0.34 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.757, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6437, 4354, 3756
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections4354
No. of parameters276
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17
Absolute structureFlack (1983), 2014 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKenzo, F., Yasuo, K., Norio, T., Hideaki, S., Masatoshi, O. & Koichi, N. (2006). US Patent 20060178523.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, P., Shen, D. L., Tan, C. X., Weng, J. Q., Lu, Q., Wei, Y. C. & Kong, X. L. (2009). Zhejiang Daxue Xuebao, 36, 183–185.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds