organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­benzo­yl)-3-cyclo­hexyl-3-methyl­thio­urea

aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and bFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 17 June 2011; accepted 25 June 2011; online 2 July 2011)

In the title compound, C15H19ClN2OS, the dihedral angle between the amide and thio­urea fragments is 58.07 (17)°. The cyclo­hexane group adopts a chair conformation and is twisted relative to the thio­urea fragment, forming a dihedral angle of 87.32 (18)°. In the crystal, N—H⋯S hydrogen bond links the mol­ecules into chains running parallel to the a-axis direction.

Related literature

For related structures and background references, see: Al-abbasi & Kassim (2011[Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.]); Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.]). For further synthetic details, see: Hassan et al. (2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19ClN2OS

  • Mr = 310.83

  • Triclinic, [P \overline 1]

  • a = 5.042 (2) Å

  • b = 11.368 (4) Å

  • c = 15.139 (6) Å

  • α = 69.865 (7)°

  • β = 82.698 (8)°

  • γ = 80.702 (8)°

  • V = 801.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.52 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.989

  • 9192 measured reflections

  • 3149 independent reflections

  • 1935 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.192

  • S = 1.10

  • 3149 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.73 3.411 (4) 137
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is a thiourea derivative analogous to our previously reported compounds (Al-abbasi & Kassim, 2011; Nasir et al., 2011). The thiono S and the carbonyl O adopt a gauche conformation at a partially double N1—C8 bond with C7—N1—C8—S1 torsion angle of -124.4 (3)°. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8) and the amide group (O1/N1/C1/C7/C8) is 58.07 (17)°. The cyclohexane has a chair corformation and the mean planes of (C9/C10/C11/C12/C13/C14) and the 4-chlorobenzoyl (Cl1/C1/C2/C3/C4/C5/C6/C7) fragments make an angle of 26.8 (2)°.

In the crystal, intermolecular N1—H···S1 hydrogen bond links the molecules into a one dimentional polymeric structure parallel to the a-axis.

Related literature top

For related structures and background references, see: Al-abbasi & Kassim (2011); Nasir et al. (2011). For further synthetic details, see: Hassan et al. (2008).

Experimental top

The title compound was prepared according to a previously reported compound (Hassan et al., 2008). Colourless plates of (I) were obtained by a slow evaporation of ethanolic solution at room temperature (yield 80%).

Refinement top

All H atoms were postioned geometrically with C—H bond lengths in the range 0.93 - 0.97 Å and N—H bond of 0.86 Å,.and refined in the riding model approximation with Uiso(H)=1.2Ueq(C,N), except for methyl group where Uiso(H)= 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound down the c-axis showing the intermolecular hydrogen bonds N—H···S (-x+1, -y + 1, -z).
1-(4-Chlorobenzoyl)-3-cyclohexyl-3-methylthiourea top
Crystal data top
C15H19ClN2OSZ = 2
Mr = 310.83F(000) = 328
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Melting point = 418–420 K
a = 5.042 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.368 (4) ÅCell parameters from 1114 reflections
c = 15.139 (6) Åθ = 1.9–26.0°
α = 69.865 (7)°µ = 0.37 mm1
β = 82.698 (8)°T = 298 K
γ = 80.702 (8)°Plate, colourless
V = 801.7 (5) Å30.52 × 0.23 × 0.03 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scanθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.906, Tmax = 0.989k = 1414
9192 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.0972P]
where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H19ClN2OSγ = 80.702 (8)°
Mr = 310.83V = 801.7 (5) Å3
Triclinic, P1Z = 2
a = 5.042 (2) ÅMo Kα radiation
b = 11.368 (4) ŵ = 0.37 mm1
c = 15.139 (6) ÅT = 298 K
α = 69.865 (7)°0.52 × 0.23 × 0.03 mm
β = 82.698 (8)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1935 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.989Rint = 0.063
9192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.10Δρmax = 0.37 e Å3
3149 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3915 (2)0.34433 (9)0.12184 (8)0.0545 (4)
Cl11.2888 (4)0.63599 (15)0.45045 (10)0.1074 (6)
N10.7565 (6)0.3373 (3)0.0182 (2)0.0470 (8)
H10.79960.41110.02780.056*
N20.7860 (6)0.1587 (3)0.1141 (2)0.0436 (8)
O10.7203 (6)0.1941 (3)0.0894 (2)0.0647 (9)
C10.9200 (8)0.3791 (3)0.1813 (3)0.0453 (10)
C80.6580 (8)0.2720 (3)0.0727 (3)0.0434 (10)
C70.7916 (8)0.2943 (4)0.0951 (3)0.0496 (10)
C21.1049 (8)0.4556 (4)0.1799 (3)0.0511 (10)
H21.15130.45490.12210.061*
C90.6886 (8)0.0807 (3)0.2086 (3)0.0500 (10)
H90.49770.11150.21790.060*
C31.2217 (9)0.5326 (4)0.2615 (3)0.0593 (12)
H31.34860.58230.25930.071*
C100.8322 (9)0.0976 (4)0.2850 (3)0.0642 (12)
H10A0.81010.18630.27890.077*
H10B1.02330.06990.27720.077*
C60.8558 (9)0.3803 (4)0.2693 (3)0.0614 (12)
H60.73760.32710.27220.074*
C151.0483 (8)0.1113 (4)0.0754 (3)0.0561 (11)
H15A1.02000.06010.03930.084*
H15B1.15720.06140.12620.084*
H15C1.13820.18130.03540.084*
C41.1485 (10)0.5351 (4)0.3466 (3)0.0668 (13)
C50.9673 (10)0.4596 (5)0.3505 (3)0.0718 (14)
H50.92010.46230.40860.086*
C140.7051 (9)0.0591 (4)0.2195 (4)0.0708 (14)
H14A0.60450.06790.17210.085*
H14B0.89150.09300.20980.085*
C120.7376 (12)0.1166 (6)0.3931 (4)0.108 (2)
H12A0.65730.16240.45470.130*
H12B0.92540.15180.38860.130*
C130.5919 (11)0.1324 (5)0.3164 (5)0.100 (2)
H13A0.61010.22120.32290.120*
H13B0.40150.10310.32400.120*
C110.7191 (12)0.0218 (6)0.3827 (4)0.0969 (18)
H11A0.81910.03060.43030.116*
H11B0.53220.05490.39270.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0603 (7)0.0371 (6)0.0621 (7)0.0054 (5)0.0001 (5)0.0182 (5)
Cl10.1343 (14)0.1065 (12)0.0655 (9)0.0256 (10)0.0032 (9)0.0077 (8)
N10.065 (2)0.0364 (17)0.045 (2)0.0057 (15)0.0051 (17)0.0215 (15)
N20.0444 (19)0.0371 (17)0.051 (2)0.0010 (14)0.0094 (16)0.0180 (15)
O10.090 (2)0.0534 (18)0.065 (2)0.0119 (16)0.0157 (17)0.0333 (16)
C10.049 (2)0.043 (2)0.046 (2)0.0083 (18)0.0065 (19)0.0231 (19)
C80.051 (2)0.038 (2)0.050 (2)0.0032 (18)0.010 (2)0.0238 (19)
C70.053 (3)0.043 (2)0.057 (3)0.0087 (19)0.016 (2)0.025 (2)
C20.051 (3)0.054 (2)0.055 (3)0.001 (2)0.006 (2)0.030 (2)
C90.042 (2)0.039 (2)0.067 (3)0.0003 (17)0.009 (2)0.016 (2)
C30.057 (3)0.056 (3)0.070 (3)0.003 (2)0.006 (2)0.029 (2)
C100.078 (3)0.057 (3)0.054 (3)0.015 (2)0.007 (2)0.010 (2)
C60.074 (3)0.066 (3)0.055 (3)0.004 (2)0.015 (2)0.033 (2)
C150.050 (3)0.056 (2)0.069 (3)0.011 (2)0.014 (2)0.033 (2)
C40.073 (3)0.064 (3)0.056 (3)0.002 (3)0.003 (3)0.017 (2)
C50.085 (4)0.087 (4)0.047 (3)0.002 (3)0.018 (3)0.028 (3)
C140.059 (3)0.037 (2)0.112 (4)0.002 (2)0.019 (3)0.016 (3)
C120.080 (4)0.093 (5)0.103 (5)0.011 (3)0.005 (4)0.024 (4)
C130.062 (3)0.045 (3)0.163 (6)0.013 (2)0.003 (4)0.003 (3)
C110.106 (5)0.104 (5)0.061 (3)0.018 (4)0.004 (3)0.000 (3)
Geometric parameters (Å, º) top
S1—C81.687 (4)C10—H10A0.9700
Cl1—C41.739 (5)C10—H10B0.9700
N1—C81.391 (5)C6—C51.365 (6)
N1—C71.391 (5)C6—H60.9300
N1—H10.8600C15—H15A0.9600
N2—C81.321 (4)C15—H15B0.9600
N2—C91.470 (5)C15—H15C0.9600
N2—C151.474 (5)C4—C51.370 (6)
O1—C71.221 (4)C5—H50.9300
C1—C21.381 (5)C14—C131.507 (7)
C1—C61.406 (5)C14—H14A0.9700
C1—C71.474 (5)C14—H14B0.9700
C2—C31.370 (6)C12—C111.515 (8)
C2—H20.9300C12—C131.524 (8)
C9—C101.520 (6)C12—H12A0.9700
C9—C141.530 (5)C12—H12B0.9700
C9—H90.9800C13—H13A0.9700
C3—C41.375 (6)C13—H13B0.9700
C3—H30.9300C11—H11A0.9700
C10—C111.524 (6)C11—H11B0.9700
C8—N1—C7126.1 (3)N2—C15—H15A109.5
C8—N1—H1117.0N2—C15—H15B109.5
C7—N1—H1117.0H15A—C15—H15B109.5
C8—N2—C9120.4 (3)N2—C15—H15C109.5
C8—N2—C15122.6 (3)H15A—C15—H15C109.5
C9—N2—C15116.5 (3)H15B—C15—H15C109.5
C2—C1—C6118.3 (4)C5—C4—C3120.9 (4)
C2—C1—C7123.2 (4)C5—C4—Cl1119.9 (4)
C6—C1—C7118.5 (4)C3—C4—Cl1119.2 (4)
N2—C8—N1116.8 (3)C6—C5—C4120.3 (4)
N2—C8—S1125.5 (3)C6—C5—H5119.9
N1—C8—S1117.8 (3)C4—C5—H5119.9
O1—C7—N1121.5 (4)C13—C14—C9110.6 (4)
O1—C7—C1124.2 (4)C13—C14—H14A109.5
N1—C7—C1114.4 (3)C9—C14—H14A109.5
C3—C2—C1121.6 (4)C13—C14—H14B109.5
C3—C2—H2119.2C9—C14—H14B109.5
C1—C2—H2119.2H14A—C14—H14B108.1
N2—C9—C10111.3 (3)C11—C12—C13110.4 (5)
N2—C9—C14113.4 (4)C11—C12—H12A109.6
C10—C9—C14110.9 (4)C13—C12—H12A109.6
N2—C9—H9107.0C11—C12—H12B109.6
C10—C9—H9107.0C13—C12—H12B109.6
C14—C9—H9107.0H12A—C12—H12B108.1
C2—C3—C4119.0 (4)C14—C13—C12111.1 (4)
C2—C3—H3120.5C14—C13—H13A109.4
C4—C3—H3120.5C12—C13—H13A109.4
C9—C10—C11110.8 (4)C14—C13—H13B109.4
C9—C10—H10A109.5C12—C13—H13B109.4
C11—C10—H10A109.5H13A—C13—H13B108.0
C9—C10—H10B109.5C12—C11—C10111.0 (5)
C11—C10—H10B109.5C12—C11—H11A109.4
H10A—C10—H10B108.1C10—C11—H11A109.4
C5—C6—C1120.0 (4)C12—C11—H11B109.4
C5—C6—H6120.0C10—C11—H11B109.4
C1—C6—H6120.0H11A—C11—H11B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.733.411 (4)137
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H19ClN2OS
Mr310.83
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.042 (2), 11.368 (4), 15.139 (6)
α, β, γ (°)69.865 (7), 82.698 (8), 80.702 (8)
V3)801.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.52 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.906, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9192, 3149, 1935
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.192, 1.10
No. of reflections3149
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.733.411 (4)137
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for grants UKM-GUP-BTT-07–30–190 and UKM-OUP-TK-16–73/2010 and sabbatical leave for MBK, and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009. AAA thanks the Libyan Ministry of Higher Education and Sabha University for her PhD schol­arship.

References

First citationAl-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds