organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-amino-5-bromo­benzoate

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: iukhan@gcu.edu.pk, akkurt@erciyes.edu.tr

(Received 23 June 2011; accepted 27 June 2011; online 2 July 2011)

In the title compound, C8H8BrNO2, the dihedral angle between the aromatic ring and the methyl acetate side chain is 5.73 (12)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, mol­ecules are connected by N—H⋯O inter­actions, generating zigzag chains running along the b-axis direction.

Related literature

For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrNO2

  • Mr = 230.05

  • Monoclinic, P 21

  • a = 3.9852 (2) Å

  • b = 9.1078 (5) Å

  • c = 12.1409 (7) Å

  • β = 95.238 (3)°

  • V = 438.83 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.64 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 3878 measured reflections

  • 1822 independent reflections

  • 1570 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.045

  • S = 0.94

  • 1822 reflections

  • 116 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 655 Freidel pairs

  • Flack parameter: 0.022 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.84 (2) 2.08 (3) 2.717 (3) 133 (3)
N1—H2N⋯O1i 0.85 (2) 2.22 (3) 3.039 (3) 162 (2)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an intermediate for the synthesis of benzothiazines.

In the title compound (I), (Fig. 1), except H atoms, all atoms are almost coplanar with the maximum deviations of -0.122 (2) Å for O1, 0.077 (2) Å for O2, -0.050 (1) Å for Br1 and 0.048 (3) Å for C8. The C5—C6—C7—O1, C5—C6—C7—O2, C6—C7—O2—C8 and O1—C7—O2—C8 torsion angles are 174.3 (2), -5.2 (3), -178.9 (2) and 0.6 (3)°, respectively.

The molecular conformation is stabilized by intramolecular N—H···O hydrogen bond (Table 1, Fig. 1) forming S(6) ring (Bernstein et al., 1995). In the crystal structure, intermolecular N—H···O interactions link the neighbouring molecules to each other, producing a zigzag chain along the b axis (Table 1). Figures 2 and 3 show the packing and hydrogen bonding of the title compound viewing down the a and b-axes, respectively.

Related literature top

For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was purchased from Sigma-Aldrich and recrystalized in methanol to yield light yellow blocks.

Refinement top

In the last cycles of the refinement, 3 reflections (0 1 1), (0 - 1 1) and (0 0 1) were eliminated due to being poorly measured in the vicinity of the beam stop. The H atoms of the NH2 group were located in a difference Fourier map, and refined with a distance restraint N—H = 0.86 (2) Å. Their isotropic displacement parameters were set to be 1.2Ueq(N). The other H atoms were positioned geometrically with C–H distances of 0.93 Å (aromatic) and 0.96 Å (methyl), and refined using a riding model, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewing down the a axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The packing and hydrogen bonding of the title compound viewing down the b axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 2-amino-5-bromobenzoate top
Crystal data top
C8H8BrNO2F(000) = 228
Mr = 230.05Dx = 1.741 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2303 reflections
a = 3.9852 (2) Åθ = 2.8–26.3°
b = 9.1078 (5) ŵ = 4.64 mm1
c = 12.1409 (7) ÅT = 296 K
β = 95.238 (3)°Block, light yellow
V = 438.83 (4) Å30.21 × 0.19 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1570 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.3°, θmin = 3.4°
ϕ and ω scansh = 35
3878 measured reflectionsk = 1210
1822 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
1822 reflectionsΔρmax = 0.29 e Å3
116 parametersΔρmin = 0.24 e Å3
3 restraintsAbsolute structure: Flack (1983), 655 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (9)
Crystal data top
C8H8BrNO2V = 438.83 (4) Å3
Mr = 230.05Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.9852 (2) ŵ = 4.64 mm1
b = 9.1078 (5) ÅT = 296 K
c = 12.1409 (7) Å0.21 × 0.19 × 0.15 mm
β = 95.238 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1570 reflections with I > 2σ(I)
3878 measured reflectionsRint = 0.021
1822 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045Δρmax = 0.29 e Å3
S = 0.94Δρmin = 0.24 e Å3
1822 reflectionsAbsolute structure: Flack (1983), 655 Freidel pairs
116 parametersAbsolute structure parameter: 0.022 (9)
3 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60353 (6)0.04286 (5)0.06725 (2)0.0596 (1)
O10.0244 (5)0.5400 (3)0.36497 (11)0.0619 (6)
O20.1200 (4)0.5450 (3)0.19255 (11)0.0510 (5)
N10.1618 (6)0.3011 (2)0.48993 (17)0.0516 (8)
C10.2591 (6)0.2478 (2)0.39185 (18)0.0377 (8)
C20.3968 (6)0.1064 (2)0.3901 (2)0.0434 (8)
C30.4990 (5)0.0477 (4)0.29613 (16)0.0435 (7)
C40.4676 (6)0.1276 (2)0.19848 (18)0.0403 (8)
C50.3422 (6)0.2668 (2)0.19724 (18)0.0378 (7)
C60.2343 (6)0.3290 (2)0.29357 (17)0.0348 (7)
C70.0988 (6)0.4787 (2)0.28974 (19)0.0394 (8)
C80.0137 (8)0.6915 (3)0.1821 (2)0.0596 (10)
H1N0.039 (8)0.376 (2)0.484 (3)0.0710*
H20.418700.051500.455000.0520*
H2N0.147 (7)0.240 (3)0.5425 (19)0.0710*
H30.590200.046400.297100.0520*
H50.328100.321000.132000.0450*
H8A0.247900.690400.194800.0900*
H8B0.010500.727800.109000.0900*
H8C0.107200.754200.235500.0900*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0709 (2)0.0566 (2)0.0534 (2)0.0159 (2)0.0178 (1)0.0131 (2)
O10.1002 (13)0.0407 (8)0.0489 (9)0.0161 (15)0.0288 (8)0.0031 (12)
O20.0743 (10)0.0373 (8)0.0435 (8)0.0152 (14)0.0164 (7)0.0039 (11)
N10.0771 (17)0.0435 (13)0.0359 (12)0.0050 (11)0.0151 (11)0.0012 (10)
C10.0446 (14)0.0347 (13)0.0338 (12)0.0104 (10)0.0036 (10)0.0033 (10)
C20.0526 (16)0.0379 (13)0.0396 (13)0.0011 (10)0.0042 (10)0.0078 (10)
C30.0469 (12)0.0305 (11)0.0528 (12)0.0054 (16)0.0035 (9)0.0033 (17)
C40.0432 (14)0.0403 (14)0.0378 (13)0.0010 (10)0.0059 (10)0.0076 (10)
C50.0468 (14)0.0342 (12)0.0333 (12)0.0032 (10)0.0089 (9)0.0008 (10)
C60.0397 (14)0.0317 (12)0.0334 (12)0.0024 (9)0.0050 (9)0.0032 (9)
C70.0482 (15)0.0304 (11)0.0400 (13)0.0016 (9)0.0058 (10)0.0035 (10)
C80.080 (2)0.0332 (14)0.0659 (18)0.0172 (13)0.0088 (14)0.0075 (12)
Geometric parameters (Å, º) top
Br1—C41.893 (2)C3—C41.387 (3)
O1—C71.212 (3)C4—C51.362 (3)
O2—C71.335 (3)C5—C61.402 (3)
O2—C81.438 (4)C6—C71.466 (3)
N1—C11.374 (3)C2—H20.9300
N1—H1N0.84 (2)C3—H30.9300
N1—H2N0.85 (2)C5—H50.9300
C1—C61.400 (3)C8—H8A0.9600
C1—C21.401 (3)C8—H8B0.9600
C2—C31.356 (3)C8—H8C0.9600
C7—O2—C8116.41 (18)O1—C7—O2121.4 (2)
C1—N1—H1N115 (2)O1—C7—C6125.3 (2)
C1—N1—H2N117.5 (18)O2—C7—C6113.3 (2)
H1N—N1—H2N121 (3)C1—C2—H2119.00
C2—C1—C6118.0 (2)C3—C2—H2119.00
N1—C1—C2118.68 (19)C2—C3—H3120.00
N1—C1—C6123.27 (18)C4—C3—H3120.00
C1—C2—C3121.6 (2)C4—C5—H5120.00
C2—C3—C4120.1 (3)C6—C5—H5120.00
Br1—C4—C3119.67 (17)O2—C8—H8A110.00
Br1—C4—C5120.19 (16)O2—C8—H8B109.00
C3—C4—C5120.1 (2)O2—C8—H8C109.00
C4—C5—C6120.46 (19)H8A—C8—H8B109.00
C5—C6—C7119.32 (18)H8A—C8—H8C109.00
C1—C6—C5119.64 (18)H8B—C8—H8C109.00
C1—C6—C7121.05 (19)
C8—O2—C7—C6178.9 (2)C2—C3—C4—C51.7 (4)
C8—O2—C7—O10.6 (3)Br1—C4—C5—C6178.61 (18)
C6—C1—C2—C31.1 (3)C3—C4—C5—C61.9 (4)
N1—C1—C2—C3179.7 (2)C4—C5—C6—C7179.7 (2)
C2—C1—C6—C50.8 (3)C4—C5—C6—C10.7 (3)
C2—C1—C6—C7178.8 (2)C1—C6—C7—O16.0 (4)
N1—C1—C6—C5179.4 (2)C5—C6—C7—O25.2 (3)
N1—C1—C6—C70.2 (4)C1—C6—C7—O2174.5 (2)
C1—C2—C3—C40.2 (4)C5—C6—C7—O1174.3 (2)
C2—C3—C4—Br1178.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.84 (2)2.08 (3)2.717 (3)133 (3)
N1—H2N···O1i0.85 (2)2.22 (3)3.039 (3)162 (2)
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H8BrNO2
Mr230.05
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)3.9852 (2), 9.1078 (5), 12.1409 (7)
β (°) 95.238 (3)
V3)438.83 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.64
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3878, 1822, 1570
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.045, 0.94
No. of reflections1822
No. of parameters116
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24
Absolute structureFlack (1983), 655 Freidel pairs
Absolute structure parameter0.022 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.84 (2)2.08 (3)2.717 (3)133 (3)
N1—H2N···O1i0.85 (2)2.22 (3)3.039 (3)162 (2)
Symmetry code: (i) x, y1/2, z+1.
 

Acknowledgements

The authors are grateful to Mr Shahzad Shrif for his assistance and the Higher Education Commission (HEC), Pakistan, for financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds